1
|
Herman S, Lipiński P, Ogórek M, Starzyński R, Grzmil P, Bednarz A, Lenartowicz M. Molecular Regulation of Copper Homeostasis in the Male Gonad during the Process of Spermatogenesis. Int J Mol Sci 2020; 21:ijms21239053. [PMID: 33260507 PMCID: PMC7730223 DOI: 10.3390/ijms21239053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Owing to its redox properties, copper is a cofactor of enzymes that catalyze reactions in fundamental metabolic processes. However, copper-oxygen interaction, which is a source of toxic oxygen radicals generated by the Fenton reaction, makes copper a doubled-edged-sword in an oxygen environment. Among the microelements influencing male fertility, copper plays a special role because both copper deficiency and overload in the gonads worsen spermatozoa quality and disturb reproductive function in mammals. Male gametes are produced during spermatogenesis, a multi-step process that consumes large amounts of oxygen. Germ cells containing a high amount of unsaturated fatty acids in their membranes are particularly vulnerable to excess copper-mediated oxidative stress. In addition, an appropriate copper level is necessary to initiate meiosis in premeiotic germ cells. The balance between essential and toxic copper concentrations in germ cells at different stages of spermatogenesis and in Sertoli cells that support their development is handled by a network of copper importers, chaperones, recipient proteins, and exporters. Here, we describe coordinated regulation/functioning of copper-binding proteins expressed in germ and Sertoli cells with special emphasis on copper transporters, copper transporting ATPases, and SOD1, a copper-dependent antioxidant enzyme. These and other proteins assure copper bioavailability in germ cells and protection against copper toxicity.
Collapse
Affiliation(s)
- Sylwia Herman
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Magdalenka, Jastrzębiec, Poland; (P.L.); (R.S.)
| | - Mateusz Ogórek
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
| | - Rafał Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Magdalenka, Jastrzębiec, Poland; (P.L.); (R.S.)
| | - Paweł Grzmil
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
| | - Aleksandra Bednarz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
| | - Małgorzata Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland; (S.H.); (M.O.); (P.G.); (A.B.)
- Correspondence:
| |
Collapse
|
2
|
Beaudoin J, Ioannoni R, Normant V, Labbé S. A role for the transcription factor Mca1 in activating the meiosis-specific copper transporter Mfc1. PLoS One 2018; 13:e0201861. [PMID: 30086160 PMCID: PMC6080790 DOI: 10.1371/journal.pone.0201861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
When reproduction in fungi takes place by sexual means, meiosis enables the formation of haploid spores from diploid precursor cells. Copper is required for completion of meiosis in Schizosaccharomyces pombe. During the meiotic program, genes encoding copper transporters exhibit distinct temporal expression profiles. In the case of the major facilitator copper transporter 1 (Mfc1), its maximal expression is induced during middle-phase meiosis and requires the presence of the Zn6Cys2 binuclear cluster-type transcription factor Mca1. In this study, we further characterize the mechanism by which Mca1 affects the copper-starvation-induced expression of mfc1+. Using a chromatin immunoprecipitation (ChIP) approach, results showed that a functional Mca1-TAP occupies the mfc1+ promoter irrespective of whether this gene is transcriptionally active. Under conditions of copper starvation, results showed that the presence of Mca1 promotes RNA polymerase II (Pol II) occupancy along the mfc1+ transcribed region. In contrast, Pol II did not significantly occupy the mfc1+ locus in meiotic cells that were incubated in the presence of copper. Further analysis by ChIP assays revealed that binding of Pol II to chromatin at the chromosomal locus of mfc1+ is exclusively detected during meiosis and absent in cells proliferating in mitosis. Protein function analysis of a series of internal mutants compared to the full-length Mca1 identified a minimal form of Mca1 consisting of its DNA-binding domain (residues 1 to 150) fused to the amino acids 299 to 600. This shorter form is sufficient to enhance Pol II occupancy at the mfc1+ locus under low copper conditions. Taken together, these results revealed novel characteristics of Mca1 and identified an internal region of Mca1 that is required to promote Pol II-dependent mfc1+ transcription during meiosis.
Collapse
Affiliation(s)
- Jude Beaudoin
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Raphaël Ioannoni
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Vincent Normant
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Labbé
- Département de Biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- * E-mail:
| |
Collapse
|
3
|
Ogórek M, Lenartowicz M, Starzyński R, Jończy A, Staroń R, Doniec A, Krzeptowski W, Bednarz A, Pierzchała O, Lipiński P, Rajfur Z, Baster Z, Gibas-Tybur P, Grzmil P. Atp7a and Atp7b regulate copper homeostasis in developing male germ cells in mice. Metallomics 2018; 9:1288-1303. [PMID: 28820536 DOI: 10.1039/c7mt00134g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The maintenance of copper homeostasis is critical for all cells. As learned from mice with disturbed copper metabolism, this trace element is also important for spermatogenesis. The experiments conducted in yeasts have demonstrated that appropriate copper level must be preserved to enable meiosis progression; however, increased copper level is toxic for cells. This study aims to analyze the expression profile of Atp7a and Atp7b and other genes encoding copper-related proteins during spermatogenesis in mice. Using the transcripts and protein detection techniques, we demonstrate that within seminiferous tubuli, ATP7A is mainly present in early meiotic germ cells (leptotene to pachytene spermatocytes) and in Sertoli cells (SCs). During spermatogenesis, the progression Atp7a expression profile corresponds to Slc31a1 (encoding copper importer CTR1) and Atox1 (encoding chaperon protein, which delivers copper from CTR1 to ATP7A and ATP7B) expression, suggesting that male germ cells retrieve copper and ATP7A protects them from copper overdose. In contrast, ATP7B protein is observed in SCs and near elongated spermatids; thus, its function seems to be related to copper extraction during spermiogenesis. This is the first study to give a comprehensive view on the activity of copper-related genes during spermatogenesis in mice.
Collapse
Affiliation(s)
- Mateusz Ogórek
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University Kraków, Gronostajowa 9, 30-387 Kraków, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Fungal cells colonize and proliferate in distinct niches, from soil and plants to diverse tissues in human hosts. Consequently, fungi are challenged with the goal of obtaining nutrients while simultaneously elaborating robust regulatory mechanisms to cope with a range of availability of nutrients, from scarcity to excess. Copper is essential for life but also potentially toxic. In this review we describe the sophisticated homeostatic mechanisms by which fungi acquire, utilize, and control this biochemically versatile trace element. Fungal pathogens, which can occupy distinct host tissues that have their own intrinsic requirements for copper homeostasis, have evolved mechanisms to acquire copper to successfully colonize the host, disseminate to other tissues, and combat host copper bombardment mechanisms that would otherwise mitigate virulence.
Collapse
Affiliation(s)
| | | | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology.,Department of Molecular Genetics and Microbiology, and.,Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
5
|
Post-meiotic DNA double-strand breaks are conserved in fission yeast. Int J Biochem Cell Biol 2018; 98:24-28. [PMID: 29474927 DOI: 10.1016/j.biocel.2018.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 12/20/2022]
Abstract
In mammals, spermiogenesis is characterized by transient formation of DNA double-strand breaks (DSBs) in the whole population of haploid spermatids. DSB repair in such haploid context may represent a mutational transition. Using a combination of pulsed-field gel electrophoresis and specific labelling of DSBs at 3'OH DNA ends, we showed that post-meiotic, enzyme-induced DSBs are also observed in the synchronizable pat1-114 mutant of Shizosaccharomyces pombe as well as in a wild-type strain, while DNA repair is observed at later stages. This transient DNA fragmentation arises in the whole cell population and is seemingly independent of the caspase apoptotic pathway. Because histones are still present in spores, the transient DSBs do not require a major change in chromatin structure. These observations confirm the highly-conserved nature of the process in eukaryotes and provide a powerful model to study the underlying mechanism and its impact on the genetic landscape and adaptation.
Collapse
|
6
|
Sephton-Clark PCS, Voelz K. Spore Germination of Pathogenic Filamentous Fungi. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:117-157. [PMID: 29680124 DOI: 10.1016/bs.aambs.2017.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fungi, algae, plants, protozoa, and bacteria are all known to form spores, especially hardy and ubiquitous propagation structures that are also often the infectious agents of diseases. Spores can survive for thousands of years, frozen in the permafrost (Kochkina et al., 2012), with the oldest viable spores extracted after 250 million years from salt crystals (Vreeland, Rosenzweig, & Powers, 2000). Their resistance to high levels of UV, desiccation, pressure, heat, and cold enables the survival of spores in the harshest conditions (Setlow, 2016). For example, Bacillus subtilis spores can survive and remain viable after experiencing conditions similar to those on Mars (Horneck et al., 2012). Spores are disseminated through environmental factors. Wind, water, or animal carriage allow spores to be spread ubiquitously throughout the environment. Spores will break dormancy and begin to germinate once exposed to favorable conditions. Germination is the mechanism that converts the spore from a dormant biological organism to one that grows vegetatively and is capable of either sexual or asexual reproduction. The process of germination has been well studied in plants, moss, bacteria, and many fungi (Hohe & Reski, 2005; Huang & Hull, 2017; Vesty et al., 2016). Unfortunately, information on the complex signaling involved in the regulation of germination, particularly in fungi remains lacking. This chapter will discuss germination of fungal spores covering our current understanding of the regulation, signaling, outcomes, and implications of germination of pathogenic fungal spores. Owing to the morphological similarities between the spore-hyphal and yeast-hyphal transition and their relevance for disease progression, relevant aspects of fungal dimorphism will be discussed alongside spore germination in this chapter.
Collapse
Affiliation(s)
- Poppy C S Sephton-Clark
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Kerstin Voelz
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
7
|
Plante S, Normant V, Ramos-Torres KM, Labbé S. Cell-surface copper transporters and superoxide dismutase 1 are essential for outgrowth during fungal spore germination. J Biol Chem 2017; 292:11896-11914. [PMID: 28572514 PMCID: PMC5512082 DOI: 10.1074/jbc.m117.794677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/26/2017] [Indexed: 11/06/2022] Open
Abstract
During fungal spore germination, a resting spore returns to a conventional mode of cell division and resumes vegetative growth, but the requirements for spore germination are incompletely understood. Here, we show that copper is essential for spore germination in Schizosaccharomyces pombe Germinating spores develop a single germ tube that emerges from the outer spore wall in a process called outgrowth. Under low-copper conditions, the copper transporters Ctr4 and Ctr5 are maximally expressed at the onset of outgrowth. In the case of Ctr6, its expression is broader, taking place before and during outgrowth. Spores lacking Ctr4, Ctr5, and the copper sensor Cuf1 exhibit complete germination arrest at outgrowth. In contrast, ctr6 deletion only partially interferes with formation of outgrowing spores. At outgrowth, Ctr4-GFP and Ctr5-Cherry first co-localize at the spore contour, followed by re-location to a middle peripheral spore region. Subsequently, they move away from the spore body to occupy the periphery of the nascent cell. After breaking of spore dormancy, Ctr6 localizes to the vacuole membranes that are enriched in the spore body relative to the germ tube. Using a copper-binding tracker, results showed that labile copper is preferentially localized to the spore body. Further analysis showed that Ctr4 and Ctr6 are required for copper-dependent activation of the superoxide dismutase 1 (SOD1) during spore germination. This activation is critical because the loss of SOD1 activity blocked spore germination at outgrowth. Taken together, these results indicate that cell-surface copper transporters and SOD1 are required for completion of the spore germination program.
Collapse
MESH Headings
- Cation Transport Proteins/genetics
- Cation Transport Proteins/metabolism
- Copper/metabolism
- Enzyme Activation
- Gene Deletion
- Gene Expression Regulation, Fungal
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Microscopy, Fluorescence
- Microscopy, Interference
- Microscopy, Phase-Contrast
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Transport
- RNA, Fungal/metabolism
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- SLC31 Proteins
- Schizosaccharomyces/cytology
- Schizosaccharomyces/growth & development
- Schizosaccharomyces/metabolism
- Schizosaccharomyces/physiology
- Schizosaccharomyces pombe Proteins/genetics
- Schizosaccharomyces pombe Proteins/metabolism
- Spores, Fungal/cytology
- Spores, Fungal/growth & development
- Spores, Fungal/metabolism
- Spores, Fungal/physiology
- Superoxide Dismutase-1/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Red Fluorescent Protein
Collapse
Affiliation(s)
- Samuel Plante
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Vincent Normant
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Karla M Ramos-Torres
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720
| | - Simon Labbé
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada.
| |
Collapse
|
8
|
Sideri T, Yashiroda Y, Ellis DA, Rodríguez-López M, Yoshida M, Tuite MF, Bähler J. The copper transport-associated protein Ctr4 can form prion-like epigenetic determinants in Schizosaccharomyces pombe. MICROBIAL CELL 2017; 4:16-28. [PMID: 28191457 PMCID: PMC5302157 DOI: 10.15698/mic2017.01.552] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prions are protein-based infectious entities associated with fatal brain diseases
in animals, but also modify a range of host-cell phenotypes in the budding
yeast, Saccharomyces cerevisiae. Many questions remain about
the evolution and biology of prions. Although several functionally distinct
prion-forming proteins exist in S. cerevisiae, [HET-s] of
Podospora anserina is the only other known fungal prion.
Here we investigated prion-like, protein-based epigenetic transmission in the
fission yeast Schizosaccharomyces pombe. We show that
S. pombe cells can support the formation and maintenance of
the prion form of the S. cerevisiae Sup35 translation factor
[PSI+], and that the formation and propagation
of these Sup35 aggregates is inhibited by guanidine hydrochloride, indicating
commonalities in prion propagation machineries in these evolutionary diverged
yeasts. A proteome-wide screen identified the Ctr4 copper transporter subunit as
a putative prion with a predicted prion-like domain. Overexpression of
the ctr4 gene resulted in large Ctr4 protein aggregates
that were both detergent and proteinase-K resistant. Cells carrying such
[CTR+] aggregates showed increased sensitivity
to oxidative stress, and this phenotype could be transmitted to aggregate-free
[ctr-] cells by transformation with
[CTR+] cell extracts. Moreover, this
[CTR+] phenotype was inherited in a
non-Mendelian manner following mating with naïve
[ctr-] cells, but intriguingly the
[CTR+] phenotype was not eliminated by
guanidine-hydrochloride treatment. Thus, Ctr4 exhibits multiple features
diagnostic of other fungal prions and is the first example of a prion in fission
yeast. These findings suggest that transmissible protein-based determinants of
traits may be more widespread among fungi.
Collapse
Affiliation(s)
- Theodora Sideri
- University College London, Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, London, U.K
| | - Yoko Yashiroda
- Chemical Genetics Laboratory, RIKEN and Chemical Genomics Research Group, RIKEN CSRS, Saitama, Japan
| | - David A Ellis
- University College London, Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, London, U.K
| | - María Rodríguez-López
- University College London, Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, London, U.K
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN and Chemical Genomics Research Group, RIKEN CSRS, Saitama, Japan
| | - Mick F Tuite
- Kent Fungal Group, University of Kent, School of Biosciences, Canterbury, Kent, U.K
| | - Jürg Bähler
- University College London, Research Department of Genetics, Evolution & Environment and Institute of Healthy Ageing, London, U.K
| |
Collapse
|
9
|
Normant V, Beaudoin J, Labbé S. An antisense RNA-mediated mechanism eliminates a meiosis-specific copper-regulated transcript in mitotic cells. J Biol Chem 2015; 290:22622-37. [PMID: 26229103 DOI: 10.1074/jbc.m115.674556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 11/06/2022] Open
Abstract
Sense and antisense transcripts produced from convergent gene pairs could interfere with the expression of either partner gene. In Schizosaccharomyces pombe, we found that the iss1(+) gene produces two transcript isoforms, including a long antisense mRNA that is complementary to the meiotic cum1(+) sense transcript, inhibiting cum1(+) expression in vegetative cells. Inhibition of cum1(+) transcription was not at the level of its initiation because fusion of the cum1(+) promoter to the lacZ gene showed that activation of the reporter gene occurs in response to low copper conditions. Further analysis showed that the transcription factor Cuf1 and conserved copper-signaling elements (CuSEs) are required for induction of cum1(+)-lacZ transcription under copper deficiency. Insertion of a multipartite polyadenylation signal immediately downstream of iss1(+) led to the exclusive production of a shorter iss1(+) mRNA isoform, thereby allowing accumulation of cum1(+) sense mRNA in copper-limited vegetative cells. This finding suggested that the long iss1(+) antisense mRNA could pair with cum1(+) sense mRNA, thereby producing double-stranded RNA molecules that could induce RNAi. We consistently found that mutant strains for RNAi (dcr1Δ, ago1Δ, rdp1Δ, and clr4Δ) are defective in selectively eliminating cum1(+) sense transcript in the G1 phase of the cell cycle. Taken together, these results describe the first example of a copper-regulated meiotic gene repressed by an antisense transcription mechanism in vegetative cells.
Collapse
Affiliation(s)
- Vincent Normant
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Jude Beaudoin
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| | - Simon Labbé
- From the Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1E 4K8, Canada
| |
Collapse
|