1
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
2
|
Chen L, Zhao X, He Y, Yang H. Cloning, purification and characterisation of cytosolic fructose-1,6-bisphosphatase from mung bean (Vigna radiata). Food Chem 2021; 347:128973. [PMID: 33444888 DOI: 10.1016/j.foodchem.2020.128973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/26/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
To improve the crop yield and quality, the cytosolic fructose-1,6-bisphosphatase (cFBPase) from mung bean (Vigna radiata), a rate-limiting enzyme in gluconeogenesis, was cloned, purified, and structurally characterised. To function it required Mg2+ and Mn2+ at 0.01-10 mM. The Michaelis-Menton constant and adenosine monophosphate (AMP) inhibitory constant (Ki) were 7.96 and 111.09 μM, respectively. The functional site residues of AMP binding (Arg30, Asp32, and Phe33) and the active site residues (Asn218 and Met251) were tested via site-directed mutagenesis and molecular docking. Asn218 and Met251 were replaced by Tyr and Leu, respectively. The M251L mutant showed enhanced substrate affinity and activity, resulting from decreased binding energy (-2.58 kcal·mol-1) and molecular distance (4.2 Å). AMP binding site mutations changed the enzyme activities, indicating a connection between the binding and active sites. Furthermore, Ki and docking analysis revealed that Asp32 plays a key role in maintaining the AMP binding conformation.
Collapse
Affiliation(s)
- Lin Chen
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Xue Zhao
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Yun He
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
3
|
Han X, Huang Y, Wei L, Chen H, Guo Y, Tang Z, Hu W, Xia Q, Wang Q, Yan J, Ren Y. Biological evaluation and SAR analysis of novel covalent inhibitors against fructose-1,6-bisphosphatase. Bioorg Med Chem 2020; 28:115624. [PMID: 32828433 DOI: 10.1016/j.bmc.2020.115624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 11/25/2022]
Abstract
Fructose-1,6-bisphosphatase (FBPase) is an attractive target for affecting the GNG pathway. In our previous study, the C128 site of FBPase has been identified as a new allosteric site, where several nitrovinyl compounds can bind to inhibit FBPase activity. Herein, a series of nitrostyrene derivatives were further synthesized, and their inhibitory activities against FBPase were investigated in vitro. Most of the prepared nitrostyrene compounds exhibit potent FBPase inhibition (IC50 < 10 μM). Specifically, when the substituents of F, Cl, OCH3, CF3, OH, COOH, or 2-nitrovinyl were installed at the R2 (meta-) position of the benzene ring, the FBPase inhibitory activities of the resulting compounds increased 4.5-55 folds compared to those compounds with the same groups at the R1 (para-) position. In addition, the preferred substituents at the R3 position were Cl or Br, thus compound HS36 exhibited the most potent inhibitory activity (IC50 = 0.15 μM). The molecular docking and site-directed mutation suggest that C128 and N125 are essential for the binding of HS36 and FBPase, which is consistent with the C128-N125-S123 allosteric inhibition mechanism. The reaction enthalpy calculations show that the order of the reactions of compounds with thiol groups at the R3 position is Cl > H > CH3. CoMSIA analysis is consistent with our proposed binding mode. The effect of compounds HS12 and HS36 on glucose production in primary mouse hepatocytes were further evaluated, showing that the inhibition was 71% and 41% at 100 μM, respectively.
Collapse
Affiliation(s)
- Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Yunyuan Huang
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lin Wei
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Haifeng Chen
- Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Yanrong Guo
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Zilong Tang
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wei Hu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Qinfei Xia
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Qi Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Jufen Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Yanliang Ren
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
4
|
Ayna A, Moody PCE. Activity of fructose-1,6-bisphosphatase from Campylobacter jejuni. Biochem Cell Biol 2020; 98:518-524. [PMID: 32125881 DOI: 10.1139/bcb-2020-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The glycolytic pathway of the enteric pathogen Campylobacter jejuni is incomplete; the absence of phosphofructokinase means that the suppression of futile cycling at this point in the glycolytic-gluconeogenic pathway might not be required, and therefore the mechanism for controlling pathway flux is likely to be quite different or absent. In this study, the characteristics of fructose-1,6-bisphosphatase (FBPase) of C. jejuni are described and the regulation of this enzyme is compared with the equivalent enzymes from organisms capable of glycolysis. The enzyme is insensitive to AMP inhibition, unlike other type I FBPases. Campylobacter jejuni FBPase also shows limited sensitivity to other glycolytic and gluconeogenic intermediates. The allosteric cooperative control of the enzyme's activity found in type I FBPases appears to have been lost.
Collapse
Affiliation(s)
- Adnan Ayna
- Department of Chemistry, Faculty of Sciences and Arts, Bingol University, 12000 Bingol, Turkey
| | - Peter C E Moody
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 7RH, UK
| |
Collapse
|
5
|
He X, Ni D, Lu S, Zhang J. Characteristics of Allosteric Proteins, Sites, and Modulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:107-139. [DOI: 10.1007/978-981-13-8719-7_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Huang Y, Chi B, Xu Y, Song R, Wei L, Rao L, Feng L, Ren Y, Wan J. In silico screening of a novel scaffold for fructose-1,6-bisphosatase (FBPase) inhibitors. J Mol Graph Model 2018; 86:142-148. [PMID: 30366190 DOI: 10.1016/j.jmgm.2018.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 12/22/2022]
Abstract
Fructose-1, 6-bisphosphatase (FBPase) has been regarded as an attractive drug target to control blood glucose against Type 2 diabetes (T2D). In this study, by using the strategy of pharmacophore-based virtual screening, a novel scaffold inhibitor targeted the AMP allosteric site of human liver FBPase were screened, their inhibitory activities were further tested. The experimental results showed that compound H27 exhibited high inhibitory activities with the IC50 value of 5.3 μM. Therefore, compound H27 was chosen as the probe molecule, it's possible binding conformation targeted into FBPase was identified by using DOX2.0 strategy. The importance of key residues (T27, T31, K112 and R140) in allosteric site of FBPase for the binding inhibitors were validated by mutation experiments. The agreement between theory and experiment suggest that the interactional information of FBPase and inhibitors (H27) were reliable. On basis of these rational interactional information, the compound H29 was further designed to exhibit more potential FBPase inhibition (IC50 = 2.5 μM).
Collapse
Affiliation(s)
- Yunyuan Huang
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Bo Chi
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yanhong Xu
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Rongrong Song
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Lin Wei
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Li Rao
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Lingling Feng
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yanliang Ren
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Jian Wan
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
7
|
Yuan M, Vásquez-Valdivieso MG, McNae IW, Michels PAM, Fothergill-Gilmore LA, Walkinshaw MD. Structures of Leishmania Fructose-1,6-Bisphosphatase Reveal Species-Specific Differences in the Mechanism of Allosteric Inhibition. J Mol Biol 2017; 429:3075-3089. [PMID: 28882541 PMCID: PMC5639204 DOI: 10.1016/j.jmb.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 11/29/2022]
Abstract
The gluconeogenic enzyme fructose-1,6-bisphosphatase has been proposed as a potential drug target against Leishmania parasites that cause up to 20,000-30,000 deaths annually. A comparison of three crystal structures of Leishmania major fructose-1,6-bisphosphatase (LmFBPase) along with enzyme kinetic data show how AMP acts as an allosteric inhibitor and provides insight into its metal-dependent reaction mechanism. The crystal structure of the apoenzyme form of LmFBPase is a homotetramer in which the dimer of dimers adopts a planar conformation with disordered "dynamic loops". The structure of LmFBPase, complexed with manganese and its catalytic product phosphate, shows the dynamic loops locked into the active sites. A third crystal structure of LmFBPase complexed with its allosteric inhibitor AMP shows an inactive form of the tetramer, in which the dimer pairs are rotated by 18° relative to each other. The three structures suggest an allosteric mechanism in which AMP binding triggers a rearrangement of hydrogen bonds across the large and small interfaces. Retraction of the "effector loop" required for AMP binding releases the side chain of His23 from the dimer-dimer interface. This is coupled with a flip of the side chain of Arg48 which ties down the key catalytic dynamic loop in a disengaged conformation and also locks the tetramer in an inactive rotated T-state. The structure of the effector site of LmFBPase shows different structural features compared with human FBPases, thereby offering a potential and species-specific drug target.
Collapse
Affiliation(s)
- Meng Yuan
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Montserrat G Vásquez-Valdivieso
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Iain W McNae
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Paul A M Michels
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Linda A Fothergill-Gilmore
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Malcolm D Walkinshaw
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
8
|
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, is an intracellular parasite that demonstrates a remarkable ability to adapt to nutrient availability. In this issue of Cell Host & Microbe, Blume et al. (2015) describe the unique role of a gluconeogenic enzyme in regulation of glucose catabolism in T. gondii.
Collapse
|
9
|
Barciszewski J, Wisniewski J, Kolodziejczyk R, Jaskolski M, Rakus D, Dzugaj A. T-to-R switch of muscle fructose-1,6-bisphosphatase involves fundamental changes of secondary and quaternary structure. Acta Crystallogr D Struct Biol 2016; 72:536-50. [PMID: 27050133 PMCID: PMC4822563 DOI: 10.1107/s2059798316001765] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/28/2016] [Indexed: 11/11/2022] Open
Abstract
Fructose-1,6-bisphosphatase (FBPase) catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate and is a key enzyme of gluconeogenesis and glyconeogenesis and, more generally, of the control of energy metabolism and glucose homeostasis. Vertebrates, and notably Homo sapiens, express two FBPase isoforms. The liver isozyme is expressed mainly in gluconeogenic organs, where it functions as a regulator of glucose synthesis. The muscle isoform is expressed in all cells, and recent studies have demonstrated that its role goes far beyond the enzymatic function, as it can interact with various nuclear and mitochondrial proteins. Even in its enzymatic function, the muscle enzyme is different from the liver isoform, as it is 100-fold more susceptible to allosteric inhibition by AMP and this effect can be abrogated by complex formation with aldolase. All FBPases are homotetramers composed of two intimate dimers: the upper dimer and the lower dimer. They oscillate between two conformational states: the inactive T form when in complex with AMP, and the active R form. Parenthetically, it is noted that bacterial FBPases behave somewhat differently, and in the absence of allosteric activators exist in a tetramer-dimer equilibrium even at relatively high concentrations. [Hines et al. (2007), J. Biol. Chem. 282, 11696-11704]. The T-to-R transition is correlated with the conformation of the key loop L2, which in the T form becomes `disengaged' and unable to participate in the catalytic mechanism. The T states of both isoforms are very similar, with a small twist of the upper dimer relative to the lower dimer. It is shown that at variance with the well studied R form of the liver enzyme, which is flat, the R form of the muscle enzyme is diametrically different, with a perpendicular orientation of the upper and lower dimers. The crystal structure of the muscle-isozyme R form shows that in this arrangement of the tetramer completely new protein surfaces are exposed that are most likely targets for the interactions with various cellular and enzymatic partners. The cruciform R structure is stabilized by a novel `leucine lock', which prevents the key residue, Asp187, from locking loop L2 in the disengaged conformation. In addition, the crystal structures of muscle FBPase in the T conformation with and without AMP strongly suggest that the T-to-R transition is a discrete jump rather than a shift of an equilibrium smooth transition through multiple intermediate states. Finally, using snapshots from three crystal structures of human muscle FBPase, it is conclusively demonstrated that the AMP-binding event is correlated with a β→α transition at the N-terminus of the protein and with the formation of a new helical structure.
Collapse
Affiliation(s)
- Jakub Barciszewski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Janusz Wisniewski
- Department of Animal Molecular Physiology, Wrocław University, Wrocław, Poland
| | - Robert Kolodziejczyk
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Wrocław University, Wrocław, Poland
| | - Andrzej Dzugaj
- Department of Genetics, Wrocław University, Wrocław, Poland
| |
Collapse
|
10
|
A new level of regulation in gluconeogenesis: metabolic state modulates the intracellular localization of aldolase B and its interaction with liver fructose-1,6-bisphosphatase. Biochem J 2015; 472:225-37. [PMID: 26417114 DOI: 10.1042/bj20150269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/25/2015] [Indexed: 11/17/2022]
Abstract
Understanding how glucose metabolism is finely regulated at molecular and cellular levels in the liver is critical for knowing its relationship to related pathologies, such as diabetes. In order to gain insight into the regulation of glucose metabolism, we studied the liver-expressed isoforms aldolase B and fructose-1,6-bisphosphatase-1 (FBPase-1), key enzymes in gluconeogenesis, analysing their cellular localization in hepatocytes under different metabolic conditions and their protein-protein interaction in vitro and in vivo. We observed that glucose, insulin, glucagon and adrenaline differentially modulate the intracellular distribution of aldolase B and FBPase-1. Interestingly, the in vitro protein-protein interaction analysis between aldolase B and FBPase-1 showed a specific and regulable interaction between them, whereas aldolase A (muscle isozyme) and FBPase-1 showed no interaction. The affinity of the aldolase B and FBPase-1 complex was modulated by intermediate metabolites, but only in the presence of K(+). We observed a decreased association constant in the presence of adenosine monophosphate, fructose-2,6-bisphosphate, fructose-6-phosphate and inhibitory concentrations of fructose-1,6-bisphosphate. Conversely, the association constant of the complex increased in the presence of dihydroxyacetone phosphate (DHAP) and non-inhibitory concentrations of fructose-1,6-bisphosphate. Notably, in vivo FRET studies confirmed the interaction between aldolase B and FBPase-1. Also, the co-expression of aldolase B and FBPase-1 in cultured cells suggested that FBPase-1 guides the cellular localization of aldolase B. Our results provide further evidence that metabolic conditions modulate aldolase B and FBPase-1 activity at the cellular level through the regulation of their interaction, suggesting that their association confers a catalytic advantage for both enzymes.
Collapse
|