1
|
Yang S, Liu H, Fang XM, Yan F, Zhang Y. Signaling pathways in uric acid homeostasis and gout: From pathogenesis to therapeutic interventions. Int Immunopharmacol 2024; 132:111932. [PMID: 38560961 DOI: 10.1016/j.intimp.2024.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Uric acid is a product of purine degradation, and uric acid may have multiple physiologic roles, including the beneficial effects as an antioxidant and neuroprotector, maintenance of blood pressure during low salt ingestion, and modulation of immunity. However, overproduction of metabolic uric acid, and/or imbalance of renal uric acid secretion and reabsorption, and/or underexcretion of extrarenal uric acid, e.g. gut, will contribute to hyperuricemia, which is a common metabolic disease. Long-lasting hyperuricemia can induce the formation and deposition of monosodium urate (MSU) crystals within the joints and periarticular structures. MSU crystals further induce an acute, intensely painful, and sterile inflammation conditions named as gout by NLRP3 inflammasome-mediated cleavage of pro-IL-1β to bioactive IL-1β. Moreover, hyperuricemia and gout are associated with multiple cardiovascular and renal disorders, e.g., hypertension, myocardial infarction, stroke, obesity, hyperlipidemia, type 2 diabetes mellitus and chronic kidney disease. Although great efforts have been made by scientists of modern medicine, however, modern therapeutic strategies with a single target are difficult to exert long-term positive effects, and even some of these agents have severe adverse effects. The Chinese have used the ancient classic prescriptions of traditional Chinese medicine (TCM) to treat metabolic diseases, including gout, by multiple targets, for more than 2200 years. In this review, we discuss the current understanding of urate homeostasis, the pathogenesis of hyperuricemia and gout, and both modern medicine and TCM strategies for this commonly metabolic disorder. We hope these will provide the good references for treating hyperuricemia and gout.
Collapse
Affiliation(s)
- Shuangling Yang
- School of Health Sciences, Guangzhou Xinhua University, Guangzhou, Guangdong 510520, China
| | - Haimei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China.
| | - Fuman Yan
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Issue 12(th) of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi‑Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, China.
| |
Collapse
|
2
|
Tobin JD, Robinson CN, Luttrell-Williams ES, Landry GM, Dwyer D, McMartin KE. Role of plasma membrane dicarboxylate transporters in the uptake and toxicity of diglycolic acid, a metabolite of diethylene glycol, in human proximal tubule cells. Toxicol Sci 2022; 190:1-12. [PMID: 36087010 DOI: 10.1093/toxsci/kfac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diethylene glycol (DEG) mass poisonings have resulted from ingestion of pharmaceuticals mistakenly adulterated with DEG, typically leading to proximal tubular necrosis and acute kidney injury. The metabolite, diglycolic acid (DGA) accumulates greatly in kidney tissue and its direct administration results in toxicity identical to that in DEG-treated rats. DGA is a dicarboxylic acid, similar in structure to metabolites like succinate. These studies have assessed the mechanism for cellular accumulation of DGA, specifically whether DGA is taken into primary cultures of human proximal tubule (HPT) cells via sodium dicarboxylate transporters (NaDC-1 or NaDC-3) like those responsible for succinate uptake. When HPT cells were cultured on membrane inserts, sodium dependent succinate uptake was observed from both apical and basolateral directions. Pretreatment with the NaDC-1 inhibitor N-(p-amylcinnamoyl)anthranilic acid (ACA) markedly reduced apical uptakes of both succinate and DGA. Basolateral uptake of both succinate and DGA were decreased similarly following combined treatment with ACA and the NaDC-3 inhibitor 2,3-dimethylsuccinate. When the cells were pre-treated with siRNA to knockdown NaDC-1 function, apical uptake of succinate and toxicity of apically applied DGA were reduced, while the reduction in basolateral succinate uptake and basolateral DGA toxicity was marginal with NaDC-3 knockdown. DGA reduced apical uptake of succinate, but not basolateral uptake. This study confirmed that primary HPT cells retain sodium dicarboxylate transport functionality and that DGA was taken up by these transporters. This study identified NaDC-1 as a likely and NaDC-3 as a possible molecular target to reduce uptake of this toxic metabolite by the kidney.
Collapse
Affiliation(s)
- Julie D Tobin
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Corie N Robinson
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Elliot S Luttrell-Williams
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Greg M Landry
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Donard Dwyer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130.,Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Kenneth E McMartin
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| |
Collapse
|
3
|
Mishra D, Kannan K, Meadows K, Macro J, Li M, Frankel S, Rogina B. INDY-From Flies to Worms, Mice, Rats, Non-Human Primates, and Humans. FRONTIERS IN AGING 2022; 2:782162. [PMID: 35822025 PMCID: PMC9261455 DOI: 10.3389/fragi.2021.782162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/24/2021] [Indexed: 01/17/2023]
Abstract
I’m Not Dead Yet (Indy) is a fly homologue of the mammalian SLC13A5 (mSLC13A5) plasma membrane citrate transporter, a key metabolic regulator and energy sensor involved in health, longevity, and disease. Reduction of Indy gene activity in flies, and its homologs in worms, modulates metabolism and extends longevity. The metabolic changes are similar to what is obtained with caloric restriction (dietary restriction). Similar effects on metabolism have been observed in mice and rats. As a citrate transporter, INDY regulates cytoplasmic citrate levels. Indy flies heterozygous for a P-element insertion have increased spontaneous physical activity, increased fecundity, reduced insulin signaling, increased mitochondrial biogenesis, preserved intestinal stem cell homeostasis, lower lipid levels, and increased stress resistance. Mammalian Indy knockout (mIndy-KO) mice have higher sensitivity to insulin signaling, lower blood pressure and heart rate, preserved memory and are protected from the negative effects of a high-fat diet and some of the negative effects of aging. Reducing mIndy expression in human hepatocarcinoma cells has recently been shown to inhibit cell proliferation. Reduced Indy expression in the fly intestine affects intestinal stem cell proliferation, and has recently been shown to also inhibit germ cell proliferation in males with delayed sperm maturation and decreased spermatocyte numbers. These results highlight a new connection between energy metabolism and cell proliferation. The overrall picture in a variety of species points to a conserved role of INDY for metabolism and health. This is illustrated by an association of high mIndy gene expression with non-alcoholic fatty liver disease in obese humans. mIndy (mSLC13A5) coding region mutations (e.g., loss-of-function) are also associated with adverse effects in humans, such as autosomal recessive early infantile epileptic encephalopathy and Kohlschütter−Tönz syndrome. The recent findings illustrate the importance of mIndy gene for human health and disease. Furthermore, recent work on small-molecule regulators of INDY highlights the promise of INDY-based treatments for ameliorating disease and promoting healthy aging.
Collapse
Affiliation(s)
- Dushyant Mishra
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kavitha Kannan
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kali Meadows
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Jacob Macro
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Michael Li
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Stewart Frankel
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Blanka Rogina
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States.,Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
4
|
Wei H, Moffett JR, Amanat M, Fatemi A, Tsukamoto T, Namboodiri AM, Slusher BS. The pathogenesis of, and pharmacological treatment for, Canavan disease. Drug Discov Today 2022; 27:2467-2483. [DOI: 10.1016/j.drudis.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
|
5
|
Khellaf A, Garcia NM, Tajsic T, Alam A, Stovell MG, Killen MJ, Howe DJ, Guilfoyle MR, Jalloh I, Timofeev I, Murphy MP, Carpenter TA, Menon DK, Ercole A, Hutchinson PJ, Carpenter KL, Thelin EP, Helmy A. Focally administered succinate improves cerebral metabolism in traumatic brain injury patients with mitochondrial dysfunction. J Cereb Blood Flow Metab 2022; 42:39-55. [PMID: 34494481 PMCID: PMC8721534 DOI: 10.1177/0271678x211042112] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Following traumatic brain injury (TBI), raised cerebral lactate/pyruvate ratio (LPR) reflects impaired energy metabolism. Raised LPR correlates with poor outcome and mortality following TBI. We prospectively recruited patients with TBI requiring neurocritical care and multimodal monitoring, and utilised a tiered management protocol targeting LPR. We identified patients with persistent raised LPR despite adequate cerebral glucose and oxygen provision, which we clinically classified as cerebral 'mitochondrial dysfunction' (MD). In patients with TBI and MD, we administered disodium 2,3-13C2 succinate (12 mmol/L) by retrodialysis into the monitored region of the brain. We recovered 13C-labelled metabolites by microdialysis and utilised nuclear magnetic resonance spectroscopy (NMR) for identification and quantification.Of 33 patients with complete monitoring, 73% had MD at some point during monitoring. In 5 patients with multimodality-defined MD, succinate administration resulted in reduced LPR(-12%) and raised brain glucose(+17%). NMR of microdialysates demonstrated that the exogenous 13C-labelled succinate was metabolised intracellularly via the tricarboxylic acid cycle. By targeting LPR using a tiered clinical algorithm incorporating intracranial pressure, brain tissue oxygenation and microdialysis parameters, we identified MD in TBI patients requiring neurointensive care. In these, focal succinate administration improved energy metabolism, evidenced by reduction in LPR. Succinate merits further investigation for TBI therapy.
Collapse
Affiliation(s)
- Abdelhakim Khellaf
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Nuria Marco Garcia
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tamara Tajsic
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Aftab Alam
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Matthew G Stovell
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Department of Neurosurgery, The Walton Centre, Liverpool, UK
| | - Monica J Killen
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Duncan J Howe
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ivan Timofeev
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - T Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David K Menon
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ari Ercole
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri Lh Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eric P Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Thermostability-based binding assays reveal complex interplay of cation, substrate and lipid binding in the bacterial DASS transporter, VcINDY. Biochem J 2021; 478:3847-3867. [PMID: 34643224 PMCID: PMC8652582 DOI: 10.1042/bcj20210061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/04/2022]
Abstract
The divalent anion sodium symporter (DASS) family of transporters (SLC13 family in humans) are key regulators of metabolic homeostasis, disruption of which results in protection from diabetes and obesity, and inhibition of liver cancer cell proliferation. Thus, DASS transporter inhibitors are attractive targets in the treatment of chronic, age-related metabolic diseases. The characterisation of several DASS transporters has revealed variation in the substrate selectivity and flexibility in the coupling ion used to power transport. Here, using the model DASS co-transporter, VcINDY from Vibrio cholerae, we have examined the interplay of the three major interactions that occur during transport: the coupling ion, the substrate, and the lipid environment. Using a series of high-throughput thermostability-based interaction assays, we have shown that substrate binding is Na+-dependent; a requirement that is orchestrated through a combination of electrostatic attraction and Na+-induced priming of the binding site architecture. We have identified novel DASS ligands and revealed that ligand binding is dominated by the requirement of two carboxylate groups in the ligand that are precisely distanced to satisfy carboxylate interaction regions of the substrate-binding site. We have also identified a complex relationship between substrate and lipid interactions, which suggests a dynamic, regulatory role for lipids in VcINDY's transport cycle.
Collapse
|
7
|
Lizarraga SB, Ma L, Maguire AM, van Dyck LI, Wu Q, Ouyang Q, Kavanaugh BC, Nagda D, Livi LL, Pescosolido MF, Schmidt M, Alabi S, Cowen MH, Brito-Vargas P, Hoffman-Kim D, Gamsiz Uzun ED, Schlessinger A, Jones RN, Morrow EM. Human neurons from Christianson syndrome iPSCs reveal mutation-specific responses to rescue strategies. Sci Transl Med 2021; 13:13/580/eaaw0682. [PMID: 33568516 DOI: 10.1126/scitranslmed.aaw0682] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/04/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Christianson syndrome (CS), an X-linked neurological disorder characterized by postnatal attenuation of brain growth (postnatal microcephaly), is caused by mutations in SLC9A6, the gene encoding endosomal Na+/H+ exchanger 6 (NHE6). To hasten treatment development, we established induced pluripotent stem cell (iPSC) lines from patients with CS representing a mutational spectrum, as well as biologically related and isogenic control lines. We demonstrated that pathogenic mutations lead to loss of protein function by a variety of mechanisms: The majority of mutations caused loss of mRNA due to nonsense-mediated mRNA decay; however, a recurrent, missense mutation (the G383D mutation) had both loss-of-function and dominant-negative activities. Regardless of mutation, all patient-derived neurons demonstrated reduced neurite growth and arborization, likely underlying diminished postnatal brain growth in patients. Phenotype rescue strategies showed mutation-specific responses: A gene transfer strategy was effective in nonsense mutations, but not in the G383D mutation, wherein residual protein appeared to interfere with rescue. In contrast, application of exogenous trophic factors (BDNF or IGF-1) rescued arborization phenotypes across all mutations. These results may guide treatment development in CS, including gene therapy strategies wherein our data suggest that response to treatment may be dictated by the class of mutation.
Collapse
Affiliation(s)
- Sofia B Lizarraga
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC 29208, USA
| | - Li Ma
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| | - Abbie M Maguire
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.,Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI 02912, USA
| | - Laura I van Dyck
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Qing Wu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA.,Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
| | - Qing Ouyang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| | - Brian C Kavanaugh
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA.,Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI 02912, USA.,Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Emma Pendleton Bradley Hospital, East Providence, RI 02915, USA
| | - Dipal Nagda
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Liane L Livi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Matthew F Pescosolido
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA.,Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI 02912, USA.,Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Emma Pendleton Bradley Hospital, East Providence, RI 02915, USA
| | - Michael Schmidt
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA.,Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI 02912, USA.,Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Emma Pendleton Bradley Hospital, East Providence, RI 02915, USA
| | - Shanique Alabi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mara H Cowen
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC 29208, USA
| | - Paul Brito-Vargas
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC 29208, USA
| | - Diane Hoffman-Kim
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA.,Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA.,Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
| | - Ece D Gamsiz Uzun
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA.,Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richard N Jones
- Quantitative Sciences Program, Department of Psychiatry and Human Behavior and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA. .,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA.,Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI 02912, USA.,Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Emma Pendleton Bradley Hospital, East Providence, RI 02915, USA
| |
Collapse
|
8
|
Sauer DB, Song J, Wang B, Hilton JK, Karpowich NK, Mindell JA, Rice WJ, Wang DN. Structure and inhibition mechanism of the human citrate transporter NaCT. Nature 2021; 591:157-161. [PMID: 33597751 PMCID: PMC7933130 DOI: 10.1038/s41586-021-03230-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022]
Abstract
Citrate is most well-known as an intermediate in the TCA cycle of the cell. In addition to this essential role in energy metabolism, the tricarboxylate anion also acts as both a precursor and a regulator of fatty acid synthesis 1–3. Thus, the rate of fatty acid synthesis correlates directly with the cytosolic citrate concentration 4,5. Liver cells import citrate via the sodium-dependent citrate transporter NaCT (SLC13A5), and as a consequence this protein is a potential target for anti-obesity drugs. To understand the structural basis of its inhibition mechanism, we have determined cryo-electron microscopy structures of human NaCT in complex with citrate and with a small molecule inhibitor. These structures reveal how the inhibitor, bound at the same site as citrate, arrests the protein’s transport cycle. The NaCT-inhibitor structure also explains why the compound selectively inhibits NaCT over two homologous human dicarboxylate transporters, and suggests ways to further improve the affinity and selectivity. Finally, the NaCT structures provide a framework for understanding how various mutations abolish NaCT’s transport activity in the brain and thereby cause SLC13A5-Epilepsy in newborns 6–8.
Collapse
Affiliation(s)
- David B Sauer
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Jinmei Song
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Bing Wang
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
| | - Jacob K Hilton
- Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Nathan K Karpowich
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, USA.,Janssen Pharmaceuticals, Spring House, PA, USA
| | - Joseph A Mindell
- Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - William J Rice
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA. .,Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA.
| | - Da-Neng Wang
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA. .,Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Sampson CDD, Stewart MJ, Mindell JA, Mulligan C. Solvent accessibility changes in a Na +-dependent C 4-dicarboxylate transporter suggest differential substrate effects in a multistep mechanism. J Biol Chem 2020; 295:18524-18538. [PMID: 33087444 PMCID: PMC7939474 DOI: 10.1074/jbc.ra120.013894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/06/2020] [Indexed: 11/06/2022] Open
Abstract
The divalent anion sodium symporter (DASS) family (SLC13) plays critical roles in metabolic homeostasis, influencing many processes, including fatty acid synthesis, insulin resistance, and adiposity. DASS transporters catalyze the Na+-driven concentrative uptake of Krebs cycle intermediates and sulfate into cells; disrupting their function can protect against age-related metabolic diseases and can extend lifespan. An inward-facing crystal structure and an outward-facing model of a bacterial DASS family member, VcINDY from Vibrio cholerae, predict an elevator-like transport mechanism involving a large rigid body movement of the substrate-binding site. How substrate binding influences the conformational state of VcINDY is currently unknown. Here, we probe the interaction between substrate binding and protein conformation by monitoring substrate-induced solvent accessibility changes of broadly distributed positions in VcINDY using a site-specific alkylation strategy. Our findings reveal that accessibility to all positions tested is modulated by the presence of substrates, with the majority becoming less accessible in the presence of saturating concentrations of both Na+ and succinate. We also observe separable effects of Na+ and succinate binding at several positions suggesting distinct effects of the two substrates. Furthermore, accessibility changes to a solely succinate-sensitive position suggests that substrate binding is a low-affinity, ordered process. Mapping these accessibility changes onto the structures of VcINDY suggests that Na+ binding drives the transporter into an as-yet-unidentified conformational state, involving rearrangement of the substrate-binding site-associated re-entrant hairpin loops. These findings provide insight into the mechanism of VcINDY, which is currently the only structurally characterized representative of the entire DASS family.
Collapse
Affiliation(s)
- Connor D D Sampson
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Matthew J Stewart
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Joseph A Mindell
- Membrane Transport Biophysics Section, Porter Neuroscience Research Center, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
10
|
Zhang B, Li B, Men XH, Xu ZW, Wu H, Qin XT, Xu F, Teng Y, Yuan SJ, Jin LQ, Liu ZQ, Zheng YG. Proteome sequencing and analysis of Ophiocordyceps sinensis at different culture periods. BMC Genomics 2020; 21:886. [PMID: 33308160 PMCID: PMC7731760 DOI: 10.1186/s12864-020-07298-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/02/2020] [Indexed: 01/04/2023] Open
Abstract
Background Ophiocordyceps sinensis is an important traditional Chinese medicine for its comprehensive active ingredients, such as cordycepin, cordycepic acid, and Cordyceps polysaccharide. O. sinensis zjut, a special strain isolated from O. sinensis, has similar pharmacological functions to wild O. sinensis. Currently, O. sinensis with artificial cultivation has been widely studied, but systematic fundamental research at protein levels has not been determined. Results Proteomes of O. sinensis zjut at different culture periods (growth period, 3rd day; pre-stable period, 6th day; and stable period, 9th day) were relatively quantified by relative isotope markers and absolute quantitative technology. In total, 4005 proteins were obtained and further annotated with Gene Ontology, Kyoto Encyclopedia of Genes and Genomes database. Based on the result of the annotations, metabolic pathways of active ingredients, amino acids and fatty acid were constructed, and the related enzymes were exhibited. Subsequently, comparative proteomics of O. sinensis zjut identified the differentially expressed proteins (DEPs) by growth in different culture periods, to find the important proteins involved in metabolic pathways of active ingredients. 605 DEPs between 6d-VS-3d, 1188 DEPs between 9d-VS-3d, and 428 DEPs between 9d-VS-6d were obtained, respectively. Conclusion This work provided scientific basis to study protein profile and comparison of protein expression levels of O. sinensis zjut, and it will be helpful for metabolic engineering works to active ingredients for exploration, application and improvement of this fungus. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07298-z.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bo Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiao-Hui Men
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhe-Wen Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hui Wu
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Xiang-Tian Qin
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Feng Xu
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Yi Teng
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Shui-Jin Yuan
- HuaDong Medicine (Hangzhou) Bailing Biological Technology Co., Ltd, Hangzhou, 311220, China.,East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, China
| | - Li-Qun Jin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
11
|
Dewulf JP, Wiame E, Dorboz I, Elmaleh-Bergès M, Imbard A, Dumitriu D, Rak M, Bourillon A, Helaers R, Malla A, Renaldo F, Boespflug-Tanguy O, Vincent MF, Benoist JF, Wevers RA, Schlessinger A, Van Schaftingen E, Nassogne MC, Schiff M. SLC13A3 variants cause acute reversible leukoencephalopathy and α-ketoglutarate accumulation. Ann Neurol 2019; 85:385-395. [PMID: 30635937 DOI: 10.1002/ana.25412] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/22/2023]
Abstract
OBJECTIVE SLC13A3 encodes the plasma membrane Na+ /dicarboxylate cotransporter 3, which imports inside the cell 4 to 6 carbon dicarboxylates as well as N-acetylaspartate (NAA). SLC13A3 is mainly expressed in kidney, in astrocytes, and in the choroid plexus. We describe two unrelated patients presenting with acute, reversible (and recurrent in one) neurological deterioration during a febrile illness. Both patients exhibited a reversible leukoencephalopathy and a urinary excretion of α-ketoglutarate (αKG) that was markedly increased and persisted over time. In one patient, increased concentrations of cerebrospinal fluid NAA and dicarboxylates (including αKG) were observed. Extensive workup was unsuccessful, and a genetic cause was suspected. METHODS Whole exome sequencing (WES) was performed. Our teams were connected through GeneMatcher. RESULTS WES analysis revealed variants in SLC13A3. A homozygous missense mutation (p.Ala254Asp) was found in the first patient. The second patient was heterozygous for another missense mutation (p.Gly548Ser) and an intronic mutation affecting splicing as demonstrated by reverse transcriptase polymerase chain reaction performed in muscle tissue (c.1016 + 3A > G). Mutations and segregation were confirmed by Sanger sequencing. Functional studies performed on HEK293T cells transiently transfected with wild-type and mutant SLC13A3 indicated that the missense mutations caused a marked reduction in the capacity to transport αKG, succinate, and NAA. INTERPRETATION SLC13A3 deficiency causes acute and reversible leukoencephalopathy with marked accumulation of αKG. Urine organic acids (especially αKG and NAA) and SLC13A3 mutations should be screened in patients presenting with unexplained reversible leukoencephalopathy, for which SLC13A3 deficiency is a novel differential diagnosis. ANN NEUROL 2019;85:385-395.
Collapse
Affiliation(s)
- Joseph P Dewulf
- Laboratory of Physiological Chemistry, de Duve Institute, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium.,Department of Laboratory Medicine, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Elsa Wiame
- Laboratory of Physiological Chemistry, de Duve Institute, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
| | - Imen Dorboz
- UMR1141, PROTECT, INSERM, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Monique Elmaleh-Bergès
- Department of Pediatric Imaging, Robert Debré University Hospital, Public APHP, Paris, France
| | - Apolline Imbard
- Laboratory of Biochemistry, Robert Debré University Hospital, APHP, France.,Paris-Sud University, Châtenay-Malabry, France
| | - Dana Dumitriu
- Department of Pediatric Imaging, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Malgorzata Rak
- UMR1141, PROTECT, INSERM, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Agnès Bourillon
- Laboratory of Biochemistry, Robert Debré University Hospital, APHP, France.,Paris-Sud University, Châtenay-Malabry, France
| | - Raphaël Helaers
- Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Alisha Malla
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Florence Renaldo
- UMR1141, PROTECT, INSERM, Paris Diderot University, Sorbonne Paris Cité, Paris, France.,Department of Pediatric Neurology and Metabolic Diseases, Robert Debré University Hospital, APHP, Paris, France.,Reference Center for Leukodystrophies and Rare Leukoencephalopathies, LEUKOFRANCE, Robert Debré University Hospital, APHP, Paris, France
| | - Odile Boespflug-Tanguy
- UMR1141, PROTECT, INSERM, Paris Diderot University, Sorbonne Paris Cité, Paris, France.,Department of Pediatric Neurology and Metabolic Diseases, Robert Debré University Hospital, APHP, Paris, France.,Reference Center for Leukodystrophies and Rare Leukoencephalopathies, LEUKOFRANCE, Robert Debré University Hospital, APHP, Paris, France
| | - Marie-Françoise Vincent
- Department of Laboratory Medicine, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Jean-François Benoist
- Laboratory of Biochemistry, Robert Debré University Hospital, APHP, France.,Paris-Sud University, Châtenay-Malabry, France
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emile Van Schaftingen
- Laboratory of Physiological Chemistry, de Duve Institute, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Brussels, Belgium
| | - Marie-Cécile Nassogne
- Pediatric Neurology Unit, Cliniques universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Manuel Schiff
- UMR1141, PROTECT, INSERM, Paris Diderot University, Sorbonne Paris Cité, Paris, France.,Department of Pediatric Neurology and Metabolic Diseases, Robert Debré University Hospital, APHP, Paris, France.,Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, Paris, France
| |
Collapse
|
12
|
Singh N, Scalise M, Galluccio M, Wieder M, Seidel T, Langer T, Indiveri C, Ecker GF. Discovery of Potent Inhibitors for the Large Neutral Amino Acid Transporter 1 (LAT1) by Structure-Based Methods. Int J Mol Sci 2018; 20:ijms20010027. [PMID: 30577601 PMCID: PMC6337383 DOI: 10.3390/ijms20010027] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 12/20/2022] Open
Abstract
The large neutral amino acid transporter 1 (LAT1) is a promising anticancer target that is required for the cellular uptake of essential amino acids that serve as building blocks for cancer growth and proliferation. Here, we report a structure-based approach to identify chemically diverse and potent inhibitors of LAT1. First, a homology model of LAT1 that is based on the atomic structures of the prokaryotic homologs was constructed. Molecular docking of nitrogen mustards (NMs) with a wide range of affinity allowed for deriving a common binding mode that could explain the structure−activity relationship pattern in NMs. Subsequently, validated binding hypotheses were subjected to molecular dynamics simulation, which allowed for extracting a set of dynamic pharmacophores. Finally, a library of ~1.1 million molecules was virtually screened against these pharmacophores, followed by docking. Biological testing of the 30 top-ranked hits revealed 13 actives, with the best compound showing an IC50 value in the sub-μM range.
Collapse
Affiliation(s)
- Natesh Singh
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | - Mariafrancesca Scalise
- Department DiBEST, Unit of Biochemistry & Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| | - Michele Galluccio
- Department DiBEST, Unit of Biochemistry & Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| | - Marcus Wieder
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | - Thomas Seidel
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | - Cesare Indiveri
- Department DiBEST, Unit of Biochemistry & Molecular Biotechnology, University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy.
| | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| |
Collapse
|
13
|
Analysis of naturally occurring mutations in the human uptake transporter NaCT important for bone and brain development and energy metabolism. Sci Rep 2018; 8:11330. [PMID: 30054523 PMCID: PMC6063891 DOI: 10.1038/s41598-018-29547-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/13/2018] [Indexed: 11/30/2022] Open
Abstract
The human uptake transporter NaCT is important for human brain development, brain function and energy metabolism and mediates the uptake of citrate and other intermediates of the tricarboxylic acid cycle from blood into neurons and hepatocytes. Mutations in the SLC13A5 gene encoding NaCT are associated with epileptic encephalopathy. To gain more insights into the transport mechanisms we analyzed the functional consequences of mutations in the SLC13A5 gene on NaCT-mediated transport function. Using HEK293 cells expressing wild-type and eight mutated NaCT proteins, we investigated the mRNA and protein amount as well as the protein localization of all NaCT variants. Furthermore, the impact on NaCT-mediated citrate uptake was measured. In addition, a structural model of the transport pore was generated to rationalize the consequences of the mutations on a structural basis. We demonstrated that all proteins were synthesized with an identical molecular weight as the wild-type transporter but several mutations (NaCTp.G219R, −p.G219E, −p.T227M, −p.L420P and −p.L488P) lead to a complete loss of NaCT-mediated citrate transport. This loss of transport activity can be explained on the basis of the developed structural model. This model may help in the further elucidation of the transport mechanism of this important uptake transporter.
Collapse
|
14
|
Stovell MG, Mada MO, Helmy A, Carpenter TA, Thelin EP, Yan JL, Guilfoyle MR, Jalloh I, Howe DJ, Grice P, Mason A, Giorgi-Coll S, Gallagher CN, Murphy MP, Menon DK, Hutchinson PJ, Carpenter KLH. The effect of succinate on brain NADH/NAD + redox state and high energy phosphate metabolism in acute traumatic brain injury. Sci Rep 2018; 8:11140. [PMID: 30042490 PMCID: PMC6057963 DOI: 10.1038/s41598-018-29255-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/04/2018] [Indexed: 12/11/2022] Open
Abstract
A key pathophysiological process and therapeutic target in the critical early post-injury period of traumatic brain injury (TBI) is cell mitochondrial dysfunction; characterised by elevation of brain lactate/pyruvate (L/P) ratio in the absence of hypoxia. We previously showed that succinate can improve brain extracellular chemistry in acute TBI, but it was not clear if this translates to a change in downstream energy metabolism. We studied the effect of microdialysis-delivered succinate on brain energy state (phosphocreatine/ATP ratio (PCr/ATP)) with 31P MRS at 3T, and tissue NADH/NAD+ redox state using microdialysis (L/P ratio) in eight patients with acute major TBI (mean 7 days). Succinate perfusion was associated with increased extracellular pyruvate (+26%, p < 0.0001) and decreased L/P ratio (-13%, p < 0.0001) in patients overall (baseline-vs-supplementation over time), but no clear-cut change in 31P MRS PCr/ATP existed in our cohort (p > 0.4, supplemented-voxel-vs-contralateral voxel). However, the percentage decrease in L/P ratio for each patient following succinate perfusion correlated significantly with their percentage increase in PCr/ATP ratio (Spearman's rank correlation, r = -0.86, p = 0.024). Our findings support the interpretation that L/P ratio is linked to brain energy state, and that succinate may support brain energy metabolism in select TBI patients suffering from mitochondrial dysfunction.
Collapse
Affiliation(s)
- Matthew G Stovell
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Marius O Mada
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - T Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Eric P Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jiun-Lin Yan
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Duncan J Howe
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Peter Grice
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Andrew Mason
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Susan Giorgi-Coll
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Clare N Gallagher
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - David K Menon
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
15
|
Willmes DM, Kurzbach A, Henke C, Schumann T, Zahn G, Heifetz A, Jordan J, Helfand SL, Birkenfeld AL. The longevity gene INDY ( I 'm N ot D ead Y et) in metabolic control: Potential as pharmacological target. Pharmacol Ther 2018; 185:1-11. [DOI: 10.1016/j.pharmthera.2017.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Barin-Le Guellec C, Largeau B, Bon D, Marquet P, Hauet T. Ischemia/reperfusion-associated tubular cells injury in renal transplantation: Can metabolomics inform about mechanisms and help identify new therapeutic targets? Pharmacol Res 2018; 129:34-43. [PMID: 29309901 DOI: 10.1016/j.phrs.2017.12.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 12/31/2022]
Abstract
Tubular cells are central targets of ischemia-reperfusion (I/R) injury in kidney transplantation. Inflammation and metabolic disturbances occurring within these cells are deleterious by themselves but also favor secondary events, such as activation of immune response. It is critical to have an in depth understanding of the mechanisms governing tubular cells response to I/R if one wants to define pertinent biomarkers or to elaborate targeted therapeutic interventions. As oxidative damage was shown to be central in the patho-physiological mechanisms, the impact of I/R on proximal tubular cells metabolism has been widely studied, contrary to its effects on expression and activity of membrane transporters of the proximal tubular cells. Yet, temporal modulation of transporters over ischemia and reperfusion periods appears to play a central role, not only in the induction of cells injury but also in graft function recovery. Metabolomics in cell models or diverse biofluids has the potential to provide large pictures of biochemical consequences of I/R. Metabolomic studies conducted in experimental models of I/R or in transplanted patients indeed retrieved metabolites belonging to the pathways known to be particularly affected. Interestingly, they also revealed that metabolic disturbances and transporters activities are in very close mutual interplay. As well as helping to select diagnostic biomarkers, such analyses could also contribute to identify new pharmacological targets and to set up innovative nephroprotective strategies for the future. Even if various therapeutic approaches have been evaluated for a long time to prevent or treat I/R injuries, metabolomics has helped identifying new ones, those related to membrane transporters seeming to be of particular interest. However, considering the very complex and multifactorial effects of I/R in the context of kidney transplantation, all tracks must be followed if one wants to prevent or limit its deleterious consequences.
Collapse
Affiliation(s)
- Chantal Barin-Le Guellec
- INSERM UMR 1248, IPPRITT, Limoges, France; CHU Tours, Laboratory of Biochemistry and Molecular Biology, Tours, France; FHU SUPORT, Limoges, Poitiers, Tours, France.
| | - Bérenger Largeau
- CHU Tours, Laboratory of Biochemistry and Molecular Biology, Tours, France
| | - Delphine Bon
- FHU SUPORT, Limoges, Poitiers, Tours, France; University of Poitiers, Poitiers, France; INSERM UMR 1082, IRTOMIT, Poitiers, France; CHU Poitiers, Laboratory of Biochemistry, Poitiers, France
| | - Pierre Marquet
- INSERM UMR 1248, IPPRITT, Limoges, France; FHU SUPORT, Limoges, Poitiers, Tours, France; University of Limoges, Faculty of Medicine, Limoges, France; CHU Limoges, Department of Pharmacology, Toxicology & Pharmacovigilance, Limoges, France
| | - Thierry Hauet
- FHU SUPORT, Limoges, Poitiers, Tours, France; University of Poitiers, Poitiers, France; INSERM UMR 1082, IRTOMIT, Poitiers, France; CHU Poitiers, Laboratory of Biochemistry, Poitiers, France
| |
Collapse
|
17
|
Colas C, Schlessinger A, Pajor AM. Mapping Functionally Important Residues in the Na +/Dicarboxylate Cotransporter, NaDC1. Biochemistry 2017; 56:4432-4441. [PMID: 28731330 DOI: 10.1021/acs.biochem.7b00503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transporters from the SLC13 family couple the transport of two to four Na+ ions with a di- or tricarboxylate, such as succinate or citrate. We have previously modeled mammalian members of the SLC13 family, including the Na+/dicarboxylate cotransporter NaDC1 (SLC13A2), based on a structure of the bacterial homologue VcINDY in an inward-facing conformation with one sodium ion bound at the Na1 site. In the study presented here, we modeled the outward-facing conformation of rabbit and human NaDC1 (rbNaDC1 and hNaDC1, respectively) using an outward-facing model of VcINDY as a template and identified residues in or near the putative Na2 and Na3 cation binding sites. Guided by the structural models in both conformations, we performed site-directed mutagenesis in rbNaDC1 for residues proposed to be in the Na+ or substrate binding sites. Cysteine substitution of T474 in the predicted Na2 binding site results in an inactive protein. The M539C mutant has a low apparent affinity for both sodium and lithium cations, suggesting that M539 may form part of the putative Na3 binding site. The Y432C and T86C mutants have increased Km values for succinate, supporting their proposed location in the outward-facing substrate binding site. In addition, cysteine labeling by MTSEA-biotin shows that Y432C is accessible from the outside of the cell, and the accessibility changes in the presence or absence of Na+. The results of this study improve our understanding of substrate and ion recognition in the mammalian members of the SLC13 family and provide a framework for developing conformationally specific inhibitors against these transporters.
Collapse
Affiliation(s)
- Claire Colas
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Ana M Pajor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego , La Jolla, California 92130-0714, United States
| |
Collapse
|
18
|
Jalloh I, Helmy A, Howe DJ, Shannon RJ, Grice P, Mason A, Gallagher CN, Stovell MG, van der Heide S, Murphy MP, Pickard JD, Menon DK, Carpenter TA, Hutchinson PJ, Carpenter KLH. Focally perfused succinate potentiates brain metabolism in head injury patients. J Cereb Blood Flow Metab 2017; 37:2626-2638. [PMID: 27798266 PMCID: PMC5482384 DOI: 10.1177/0271678x16672665] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/26/2016] [Accepted: 08/31/2016] [Indexed: 12/31/2022]
Abstract
Following traumatic brain injury, complex cerebral energy perturbations occur. Correlating with unfavourable outcome, high brain extracellular lactate/pyruvate ratio suggests hypoxic metabolism and/or mitochondrial dysfunction. We investigated whether focal administration of succinate, a tricarboxylic acid cycle intermediate interacting directly with the mitochondrial electron transport chain, could improve cerebral metabolism. Microdialysis perfused disodium 2,3-13C2 succinate (12 mmol/L) for 24 h into nine sedated traumatic brain injury patients' brains, with simultaneous microdialysate collection for ISCUS analysis of energy metabolism biomarkers (nine patients) and nuclear magnetic resonance of 13C-labelled metabolites (six patients). Metabolites 2,3-13C2 malate and 2,3-13C2 glutamine indicated tricarboxylic acid cycle metabolism, and 2,3-13C2 lactate suggested tricarboxylic acid cycle spinout of pyruvate (by malic enzyme or phosphoenolpyruvate carboxykinase and pyruvate kinase), then lactate dehydrogenase-mediated conversion to lactate. Versus baseline, succinate perfusion significantly decreased lactate/pyruvate ratio (p = 0.015), mean difference -12%, due to increased pyruvate concentration (+17%); lactate changed little (-3%); concentrations decreased for glutamate (-43%) (p = 0.018) and glucose (-15%) (p = 0.038). Lower lactate/pyruvate ratio suggests better redox status: cytosolic NADH recycled to NAD+ by mitochondrial shuttles (malate-aspartate and/or glycerol 3-phosphate), diminishing lactate dehydrogenase-mediated pyruvate-to-lactate conversion, and lowering glutamate. Glucose decrease suggests improved utilisation. Direct tricarboxylic acid cycle supplementation with 2,3-13C2 succinate improved human traumatic brain injury brain chemistry, indicated by biomarkers and 13C-labelling patterns in metabolites.
Collapse
Affiliation(s)
- Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Duncan J Howe
- Department of Chemistry, University of Cambridge, UK
| | - Richard J Shannon
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Peter Grice
- Department of Chemistry, University of Cambridge, UK
| | - Andrew Mason
- Department of Chemistry, University of Cambridge, UK
| | - Clare N Gallagher
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Canada
| | - Matthew G Stovell
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Susan van der Heide
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | | | - John D Pickard
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| | - David K Menon
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
- Division of Anaesthesia, Department of Medicine, University of Cambridge, UK
| | - T Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Keri LH Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, UK
| |
Collapse
|
19
|
Structure and function of the divalent anion/Na + symporter from Vibrio cholerae and a humanized variant. Nat Commun 2017; 8:15009. [PMID: 28436435 PMCID: PMC5413979 DOI: 10.1038/ncomms15009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/20/2017] [Indexed: 01/15/2023] Open
Abstract
Integral membrane proteins of the divalent anion/Na+ symporter (DASS) family translocate dicarboxylate, tricarboxylate or sulphate across cell membranes, typically by utilizing the preexisting Na+ gradient. The molecular determinants for substrate recognition by DASS remain obscure, largely owing to the absence of any substrate-bound DASS structure. Here we present 2.8-Å resolution X-ray structures of VcINDY, a DASS from Vibrio cholerae that catalyses the co-transport of Na+ and succinate. These structures portray the Na+-bound VcINDY in complexes with succinate and citrate, elucidating the binding sites for substrate and two Na+ ions. Furthermore, we report the structures of a humanized variant of VcINDY in complexes with succinate and citrate, which predict how a human citrate-transporting DASS may interact with its bound substrate. Our findings provide insights into metabolite transport by DASS, establishing a molecular basis for future studies on the regulation of this transport process. Divalent anion/Na+ symporter (DASS) transporters move intermediates of the Krebs cycle across the cell membrane. Here the authors present the substrate-bound structures of VcINDY, a DASS from Vibrio cholerae, which provide insights into the underlying transport mechanism.
Collapse
|
20
|
Sato S, Huang XP, Kroeze WK, Roth BL. Discovery and Characterization of Novel GPR39 Agonists Allosterically Modulated by Zinc. Mol Pharmacol 2016; 90:726-737. [PMID: 27754899 DOI: 10.1124/mol.116.106112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/15/2016] [Indexed: 12/19/2022] Open
Abstract
In this study, we identified two previously described kinase inhibitors-3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(3-methyl-1H-pyrazol-5-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine (LY2784544) and 1H-benzimidazole-4-carboxylic acid, 2-methyl-1-[[2-methyl-3-(trifluoromethyl)phenyl]methyl]-6-(4-morpholinyl)- (GSK2636771)-as novel GPR39 agonists by unbiased small-molecule-based screening using a β-arrestin recruitment screening approach (PRESTO-Tango). We characterized the signaling of LY2784544 and GSK2636771 and compared their signaling patterns with a previously described "GPR39-selective" agonist N-[3-chloro-4-[[[2-(methylamino)-6-(2-pyridinyl)-4- pyrimidinyl]amino]methyl]phenyl]methanesulfonamide (GPR39-C3) at both canonical and noncanonical signaling pathways. Unexpectedly, all three compounds displayed probe-dependent and pathway-dependent allosteric modulation by concentrations of zinc reported to be physiologic. LY2784544 and GS2636771 at GPR39 in the presence of zinc were generally as potent or more potent than their reported activities against kinases in whole-cell assays. These findings reveal an unexpected role of zinc as an allosteric potentiator of small-molecule-induced activation of GPR39 and expand the list of potential kinase off-targets to include understudied G protein-coupled receptors.
Collapse
Affiliation(s)
- Seiji Sato
- Department of Pharmacology (S.S., X.-P.H., W.K.K., B.L.R.) and National Institute of Mental Health Psychoactive Drug Screening Program (X.-P.H., B.L.R.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Xi-Ping Huang
- Department of Pharmacology (S.S., X.-P.H., W.K.K., B.L.R.) and National Institute of Mental Health Psychoactive Drug Screening Program (X.-P.H., B.L.R.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Wesley K Kroeze
- Department of Pharmacology (S.S., X.-P.H., W.K.K., B.L.R.) and National Institute of Mental Health Psychoactive Drug Screening Program (X.-P.H., B.L.R.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Bryan L Roth
- Department of Pharmacology (S.S., X.-P.H., W.K.K., B.L.R.) and National Institute of Mental Health Psychoactive Drug Screening Program (X.-P.H., B.L.R.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
21
|
Pajor AM, de Oliveira CA, Song K, Huard K, Shanmugasundaram V, Erion DM. Molecular Basis for Inhibition of the Na+/Citrate Transporter NaCT (SLC13A5) by Dicarboxylate Inhibitors. Mol Pharmacol 2016; 90:755-765. [DOI: 10.1124/mol.116.105049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023] Open
|
22
|
Colas C, Ung PMU, Schlessinger A. SLC Transporters: Structure, Function, and Drug Discovery. MEDCHEMCOMM 2016; 7:1069-1081. [PMID: 27672436 PMCID: PMC5034948 DOI: 10.1039/c6md00005c] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human Solute Carrier (SLC) transporters are important targets for drug development. Structure-based drug discovery for SLC transporters requires the description of their structure, dynamics, and mechanism of interaction with small molecule ligands and ions. The recent determination of atomic structures of human SLC transporters and their homologs, combined with improved computational power and prediction methods have led to an increased applicability of structure-based drug design methods for human SLC members. In this review, we provide an overview of the SLC transporters' structures and transport mechanisms. We then describe computational techniques, such as homology modeling and virtual screening that are emerging as key tools to discover chemical probes for human SLC members. We illustrate the utility of these methods by presenting case studies in which rational integration of computation and experiment was used to characterize SLC members that transport key nutrients and metabolites, including the amino acid transporters LAT-1 and ASCT2, the SLC13 family of citric acid cycle intermediate transporters, and the glucose transporter GLUT1. We conclude with a brief discussion about future directions in structure-based drug discovery for the human SLC superfamily, one of the most structurally and functionally diverse protein families in human.
Collapse
Affiliation(s)
- Claire Colas
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Peter Man-Un Ung
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avner Schlessinger
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
23
|
Klotz J, Porter BE, Colas C, Schlessinger A, Pajor AM. Mutations in the Na(+)/citrate cotransporter NaCT (SLC13A5) in pediatric patients with epilepsy and developmental delay. Mol Med 2016; 22:molmed.2016.00077. [PMID: 27261973 DOI: 10.2119/molmed.2016.00077] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/23/2016] [Indexed: 01/13/2023] Open
Abstract
Mutations in the SLC13A5 gene that codes for the Na(+)/citrate cotransporter, NaCT, are associated with early onset epilepsy, developmental delay and tooth dysplasia in children. In the present study we identify additional SLC13A5 mutations in nine epilepsy patients from six families. To better characterize the syndrome, families with affected children answered questions about the scope of illness and treatment strategies. There are currently no effective treatments, but some anti-epileptic drugs targeting the GABA system reduce seizure frequency. Acetazolamide, a carbonic anhydrase inhibitor and atypical anti-seizure medication decreases seizures in 4 patients. In contrast to previous reports, the ketogenic diet and fasting produce worsening of symptoms. The effects of the mutations on NaCT transport function and protein expression were examined by transient transfections of COS-7 cells. There was no transport activity from any of the mutant transporters, although some of the mutant transporter proteins were present on the plasma membrane. The structural model of NaCT suggests that these mutations can affect helix packing or substrate binding. We tested various treatments, including chemical chaperones and low temperatures, but none improve transport function in the NaCT mutants. Interestingly, coexpression of NaCT and the mutants results in decreased protein expression and activity of the wild-type transporter, indicating functional interaction. In conclusion, our study has identified additional SLC13A5 mutations in patients with chronic epilepsy starting in the neonatal period, with the mutations producing inactive Na(+)/citrate transporters.
Collapse
Affiliation(s)
- Jenna Klotz
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA 94305
| | - Brenda E Porter
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA 94305
| | - Claire Colas
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avner Schlessinger
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ana M Pajor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA 92130-0718
| |
Collapse
|
24
|
Colas C, Pajor AM, Schlessinger A. Structure-Based Identification of Inhibitors for the SLC13 Family of Na(+)/Dicarboxylate Cotransporters. Biochemistry 2015; 54:4900-8. [PMID: 26176240 DOI: 10.1021/acs.biochem.5b00388] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In mammals, citric acid cycle intermediates play a key role in regulating various metabolic processes, such as fatty acid synthesis and glycolysis. Members of the sodium-dependent SLC13 transporter family mediate the transport of di- and tricarboxylates into cells. SLC13 family members have been implicated in lifespan extension and resistance to high-fat diets; thus, they are emerging drug targets for aging and metabolic disorders. We previously characterized key structural determinants of substrate and cation binding for the human NaDC3/SLC13A3 transporter using a homology model. Here, we combine computational modeling and virtual screening with functional and biochemical testing, to identify nine previously unknown inhibitors for multiple members of the SLC13 family from human and mouse. Our results reveal previously unknown substrate selectivity determinants for the SLC13 family, including key residues that mediate ligand binding and transport, as well as promiscuous and specific SLC13 small molecule ligands. The newly discovered ligands can serve as chemical tools for further characterization of the SLC13 family or as lead molecules for the future development of potent inhibitors for the treatment of metabolic diseases and aging. Our results improve our understanding of the structural components that are important for substrate specificity in this physiologically important family as well as in other structurally related transport systems.
Collapse
Affiliation(s)
- Claire Colas
- †Department of Pharmacology and Systems Therapeutics, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ana M Pajor
- ‡Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, California 92130-0718, United States
| | - Avner Schlessinger
- †Department of Pharmacology and Systems Therapeutics, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|