1
|
Chiu YC, Yeh MC, Wang CH, Chen YA, Chang H, Lin HY, Ho MC, Lin SM. Structural basis for calcium-stimulating pore formation of Vibrio α-hemolysin. Nat Commun 2023; 14:5946. [PMID: 37741869 PMCID: PMC10517994 DOI: 10.1038/s41467-023-41579-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023] Open
Abstract
Vibrio α-hemolysins (αHLs) are β-pore-forming toxins secreted by Vibrio pathogens, crucial for the facilitation of bacterial infections through host cell lysis. These toxins are produced as inactive precursors, requiring proteolytic maturation and membrane association for activation within host tissues. Here, we investigate Vibrio campbellii αHL (VcαHL), and establish that its hemolytic activity is significantly stimulated by calcium ions, with an EC50 that aligns with physiological calcium concentrations. Furthermore, we illustrate the vital contribution of calcium ions to the oligomerization of VcαHL on membranes. Using X-ray crystallography and cryo-electron microscopy, we decipher both the immature and assembled structures of VcαHL and elucidate the conformational changes corresponding to toxin assembly. We also identify a calcium-binding module that is integral for VcαHL's calcium-dependent activation. These findings provide insights into the regulatory mechanisms of VcαHL and have the potential to inform the development of targeted therapeutic strategies against Vibrio infections.
Collapse
Affiliation(s)
- Yu-Chuan Chiu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Min-Chi Yeh
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-An Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Hsiang Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Han-You Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan
| | - Shih-Ming Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Mondal AK, Lata K, Singh M, Chatterjee S, Chauhan A, Puravankara S, Chattopadhyay K. Cryo-EM elucidates mechanism of action of bacterial pore-forming toxins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184013. [PMID: 35908609 DOI: 10.1016/j.bbamem.2022.184013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Pore-forming toxins (PFTs) rupture plasma membranes and kill target cells. PFTs are secreted as soluble monomers that undergo drastic structural rearrangements upon interacting with the target membrane and generate transmembrane oligomeric pores. A detailed understanding of the molecular mechanisms of the pore-formation process remains unclear due to limited structural insights regarding the transmembrane oligomeric pore states of the PFTs. However, recent advances in the field of cryo-electron microscopy (cryo-EM) have led to the high-resolution structure determination of the oligomeric pore forms of diverse PFTs. Here, we discuss the pore-forming mechanisms of various PFTs, specifically the mechanistic details contributed by the cryo-EM-based structural studies.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Shamaita Chatterjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Aakanksha Chauhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Sindhoora Puravankara
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali 140306, Punjab, India.
| |
Collapse
|
3
|
Kaur D, Verma P, Singh M, Sharma A, Lata K, Mukhopadhaya A, Chattopadhyay K. Pore formation-independent cell death induced by a β-barrel pore-forming toxin. FASEB J 2022; 36:e22557. [PMID: 36125006 DOI: 10.1096/fj.202200788r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Abstract
Vibrio cholerae cytolysin (VCC) is a β-barrel pore-forming toxin (β-PFT). It exhibits potent hemolytic activity against erythrocytes that appears to be a direct outcome of its pore-forming functionality. However, VCC-mediated cell-killing mechanism is more complicated in the case of nucleated mammalian cells. It induces apoptosis in the target nucleated cells, mechanistic details of which are still unclear. Furthermore, it has never been explored whether the ability of VCC to trigger programmed cell death is stringently dependent on its pore-forming activity. Here, we show that VCC can evoke hallmark features of the caspase-dependent apoptotic cell death even in the absence of the pore-forming ability. Our study demonstrates that VCC mutants with abortive pore-forming hemolytic activity can trigger apoptotic cell death responses and cytotoxicity, similar to those elicited by the wild-type toxin. VCC as well as its pore formation-deficient mutants display prominent propensity to translocate to the target cell mitochondria and cause mitochondrial membrane damage. Therefore, our results for the first time reveal that VCC, despite being an archetypical β-PFT, can kill target nucleated cells independent of its pore-forming functionality. These findings are intriguing for a β-PFT, whose destination is generally expected to remain limited on the target cell membranes, and whose mode of action is commonly attributed to the membrane-damaging pore-forming ability. Taken together, our study provides critical new insights regarding distinct implications of the two important virulence functionalities of VCC for the V. cholerae pathogenesis process: hemolytic activity for iron acquisition and cytotoxicity for tissue damage by the bacteria.
Collapse
Affiliation(s)
- Deepinder Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India.,Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pratima Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Arpita Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
4
|
Mondal AK, Sengupta N, Singh M, Biswas R, Lata K, Lahiri I, Dutta S, Chattopadhyay K. Glu289 residue in the pore-forming motif of Vibrio cholerae cytolysin is important for efficient β-barrel pore formation. J Biol Chem 2022; 298:102441. [PMID: 36055404 PMCID: PMC9520032 DOI: 10.1016/j.jbc.2022.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/19/2022] Open
Abstract
Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging β-barrel pore-forming toxin (β-PFT). Upon binding to the target membranes, VCC monomers first assemble into oligomeric pre-pore intermediates, and subsequently transform into transmembrane β-barrel pores. VCC harbors a designated pore-forming motif, which, during oligomeric pore formation, inserts into the membrane and generates a transmembrane β-barrel scaffold. It remains an enigma how the molecular architecture of the pore-forming motif regulates the VCC pore-formation mechanism. Here, we show that a specific pore-forming motif residue, E289, plays crucial regulatory roles in the pore-formation mechanism of VCC. We find that the mutation of E289A drastically compromises pore-forming activity, without affecting the structural integrity and membrane-binding potential of the toxin monomers. Although our single-particle cryo-EM analysis reveals wild type-like oligomeric β-barrel pore formation by E289A-VCC in the membrane, we demonstrate that the mutant shows severely delayed kinetics in terms of pore-forming ability that can be rescued with elevated temperature conditions. We find that the pore-formation efficacy of E289A-VCC appears to be more profoundly dependent on temperature as compared to that of the wild type toxin. Our results suggest that the E289A mutation traps membrane-bound toxin molecules in the pre-pore-like intermediate state that is hindered from converting into the functional β-barrel pores by a large energy barrier, thus highlighting the importance of this residue for the pore-formation mechanism of VCC.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Nayanika Sengupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Rupam Biswas
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Indrajit Lahiri
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India.
| |
Collapse
|
5
|
Gupta T, Mondal AK, Pani I, Chattopadhyay K, Pal SK. Elucidating liquid crystal-aqueous interface for the study of cholesterol-mediated action of a β-barrel pore forming toxin. SOFT MATTER 2022; 18:5293-5301. [PMID: 35790122 DOI: 10.1039/d2sm00447j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pore-forming toxins (PFTs) produced by pathogenic bacteria serve as prominent virulence factors with potent cell-killing activity. Most of the β-barrel PFTs form transmembrane oligomeric pores in the membrane lipid bilayer in the presence of cholesterol. The pore-formation mechanisms of the PFTs highlight well-orchestrated regulated events in the membrane environment, which involve dramatic changes in the protein structure and organization. Also, concerted crosstalk between protein and membrane lipid components appears to play crucial roles in the process. Membrane-damaging lesions formed by the pore assembly of the PFTs would also be expected to impose drastic alterations in the membrane organization, details of which remain obscure in most of the cases. Prior reports have established that aqueous interfaces of liquid crystals (LCs) offer promise as responsive interfaces for biomolecular events (at physiologically relevant concentrations), which can be visualized as optical signals. Inspired by this, herein, we sought to understand the lipid membrane interactions of a β-barrel PFT i.e., Vibrio cholerae cytolysin (VCC), using LC-aqueous interfaces. Our results show the formation of dendritic patterns upon the addition of VCC to the lipid embedded with cholesterol over the LC film. In contrast, we did not observe any LC reorientation upon the addition of VCC to the lipid-laden LC-aqueous interface in the absence of cholesterol. An array of techniques such as polarizing optical microscopy (POM), atomic force microscopy (AFM), and fluorescence measurements were utilized to decipher the LC response to the lipid interactions of VCC occurring at these interfaces. Altogether, the results obtained from our study provide a novel platform to explore the mechanistic aspects of the protein-membrane interactions, in the process of membrane pore-formation by the membrane-damaging PFTs.
Collapse
Affiliation(s)
- Tarang Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | - Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | - Ipsita Pani
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector-81, SAS Nagar, Mohali 140306, India.
| |
Collapse
|
6
|
Singh M, Rupesh N, Pandit SB, Chattopadhyay K. Curcumin Inhibits Membrane-Damaging Pore-Forming Function of the β-Barrel Pore-Forming Toxin Vibrio cholerae Cytolysin. Front Microbiol 2022; 12:809782. [PMID: 35140698 PMCID: PMC8818996 DOI: 10.3389/fmicb.2021.809782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/21/2021] [Indexed: 12/05/2022] Open
Abstract
Vibrio cholerae cytolysin (VCC) is a β-barrel pore-forming toxin (β-PFT). Upon encountering the target cells, VCC forms heptameric β-barrel pores and permeabilizes the cell membranes. Structure-function mechanisms of VCC have been extensively studied in the past. However, the existence of any natural inhibitor for VCC has not been reported yet. In the present study, we show that curcumin can compromise the membrane-damaging activity of VCC. Curcumin is known to modulate a wide variety of biological processes and functions. However, the application of curcumin in the physiological scenario often gets limited due to its extremely poor solubility in the aqueous environment. Interestingly, we find that VCC can associate with the insoluble fraction of curcumin in the aqueous medium and thus gets separated from the solution phase. This, in turn, reduces the availability of VCC to attack the target membranes and thus blocks the membrane-damaging action of the toxin. We also observe that the soluble aqueous extract of curcumin, generated by the heat treatment, compromises the pore-forming activity of VCC. Interestingly, in the presence of such soluble extract of curcumin, VCC binds to the target membranes and forms the oligomeric assembly. However, such oligomers appear to be non-functional, devoid of the pore-forming activity. The ability of curcumin to bind to VCC and neutralize its membrane-damaging activity suggests that curcumin has the potential to act as an inhibitor of this potent bacterial β-PFT.
Collapse
|
7
|
Sengupta N, Mondal AK, Mishra S, Chattopadhyay K, Dutta S. Single-particle cryo-EM reveals conformational variability of the oligomeric VCC β-barrel pore in a lipid bilayer. J Cell Biol 2021; 220:212683. [PMID: 34617964 PMCID: PMC8504180 DOI: 10.1083/jcb.202102035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/25/2021] [Accepted: 09/19/2021] [Indexed: 11/22/2022] Open
Abstract
Vibrio cholerae cytolysin (VCC) is a water-soluble, membrane-damaging, pore-forming toxin (PFT) secreted by pathogenic V. cholerae, which causes eukaryotic cell death by altering the plasma membrane permeability. VCC self-assembles on the cell surface and undergoes a dramatic conformational change from prepore to heptameric pore structure. Over the past few years, several high-resolution structures of detergent-solubilized PFTs have been characterized. However, high-resolution structural characterization of small β-PFTs in a lipid environment is still rare. Therefore, we used single-particle cryo-EM to characterize the structure of the VCC oligomer in large unilamellar vesicles, which is the first atomic-resolution cryo-EM structure of VCC. From our study, we were able to provide the first documented visualization of the rim domain amino acid residues of VCC interacting with lipid membrane. Furthermore, cryo-EM characterization of lipid bilayer–embedded VCC suggests interesting conformational variabilities, especially in the transmembrane channel, which could have a potential impact on the pore architecture and assist us in understanding the pore formation mechanism.
Collapse
Affiliation(s)
- Nayanika Sengupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Anish Kumar Mondal
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Suman Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
8
|
Mondal AK, Verma P, Sengupta N, Dutta S, Bhushan Pandit S, Chattopadhyay K. Tyrosine in the hinge region of the pore-forming motif regulates oligomeric β-barrel pore formation by Vibrio cholerae cytolysin. Mol Microbiol 2020; 115:508-525. [PMID: 33089544 DOI: 10.1111/mmi.14631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/03/2020] [Indexed: 01/27/2023]
Abstract
β-barrel pore-forming toxins perforate cell membranes by forming oligomeric β-barrel pores. The most crucial step is the membrane-insertion of the pore-forming motifs that create the transmembrane β-barrel scaffold. Molecular mechanism that regulates structural reorganization of these pore-forming motifs during β-barrel pore-formation still remains elusive. Using Vibrio cholerae cytolysin as an archetypical example of the β-barrel pore-forming toxin, we show that a key tyrosine residue (Y321) in the hinge region of the pore-forming motif plays crucial role in this process. Mutation of Y321 abrogates oligomerization of the membrane-bound toxin protomers, and blocks subsequent steps of pore-formation. Our study suggests that the presence of Y321 in the hinge region of the pore-forming motif is crucial for the toxin molecule to sense membrane-binding, and to trigger essential structural rearrangements required for the subsequent oligomerization and pore-formation process. Such a regulatory mechanism of pore-formation by V. cholerae cytolysin has not been documented earlier in the structurally related β-barrel pore-forming toxins.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Paras Verma
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Nayanika Sengupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Shashi Bhushan Pandit
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
9
|
Mondal AK, Verma P, Lata K, Singh M, Chatterjee S, Chattopadhyay K. Sequence Diversity in the Pore-Forming Motifs of the Membrane-Damaging Protein Toxins. J Membr Biol 2020; 253:469-478. [PMID: 32955633 DOI: 10.1007/s00232-020-00141-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022]
Abstract
Pore-forming proteins/toxins (PFPs/PFTs) are the distinct class of membrane-damaging proteins. They act by forming oligomeric pores in the plasma membranes. PFTs and PFPs from diverse organisms share a common mechanism of action, in which the designated pore-forming motifs of the membrane-bound protein molecules insert into the membrane lipid bilayer to create the water-filled pores. One common characteristic of these pore-forming motifs is that they are amphipathic in nature. In general, the hydrophobic sidechains of the pore-forming motifs face toward the hydrophobic core of the membranes, while the hydrophilic residues create the lining of the water-filled pore lumen. Interestingly, pore-forming motifs of the distinct subclass of PFPs/PFTs share very little sequence similarity with each other. Therefore, the common guiding principle that governs the sequence-to-structure paradigm in the mechanism of action of these PFPs/PFTs still remains an enigma. In this article, we discuss this notion using the examples of diverse groups of membrane-damaging PFPs/PFTs.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Pratima Verma
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Kusum Lata
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Mahendra Singh
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Shamaita Chatterjee
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli, Mohali, Punjab, 140306, India.
| |
Collapse
|
10
|
|
11
|
Mondal AK, Chattopadhyay K. Taking Toll on Membranes: Curious Cases of Bacterial β-Barrel Pore-Forming Toxins. Biochemistry 2019; 59:163-170. [DOI: 10.1021/acs.biochem.9b00783] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Anish Kumar Mondal
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manauli, Mohali, Punjab 140306, India
| |
Collapse
|
12
|
Revisiting the role of cholesterol in regulating the pore-formation mechanism of Vibrio cholerae cytolysin, a membrane-damaging β-barrel pore-forming toxin. Biochem J 2018; 475:3039-3055. [DOI: 10.1042/bcj20180387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/03/2018] [Accepted: 09/10/2018] [Indexed: 11/17/2022]
Abstract
Vibrio cholerae cytolysin (VCC) is a β-barrel pore-forming toxin with potent membrane-damaging cell-killing activity. Previous studies employing the model membranes of lipid vesicles (liposomes) have shown that pore formation by VCC requires the presence of cholesterol in the liposome membranes. However, the exact role of cholesterol in the mode of action of VCC still remains unclear. Most importantly, implication of cholesterol, if any, in regulating the pore-formation mechanism of VCC in the biomembranes of eukaryotic cells remains unexplored. Here, we show that the presence of cholesterol promotes the interaction of VCC with the membrane lipid bilayer, when non-lipid-dependent interactions are absent. However, in the case of biomembranes of human erythrocytes, where accessory interactions are available, cholesterol appears to play a less critical role in the binding step. Nevertheless, in the absence of an optimal level of membrane cholesterol in the human erythrocytes, membrane-bound fraction of the toxin remains trapped in the form of abortive oligomeric assembly, devoid of functional pore-forming activity. Our study also shows that VCC exhibits a prominent propensity to associate with the cholesterol-rich membrane micro-domains of human erythrocytes. Interestingly, mutation of the cholesterol-binding ability of VCC does not block association with the cholesterol-rich membrane micro-domains on human erythrocytes. Based on these results, we propose that the specific cholesterol-binding ability of VCC does not appear to dictate its association with the cholesterol-rich micro-domains on human erythrocytes. Rather, targeting of VCC toward the membrane micro-domains of human erythrocytes possibly acts to facilitate the cholesterol-dependent pore-formation mechanism of the toxin.
Collapse
|
13
|
Liu J, Fu K, Wu C, Qin K, Li F, Zhou L. "In-Group" Communication in Marine Vibrio: A Review of N-Acyl Homoserine Lactones-Driven Quorum Sensing. Front Cell Infect Microbiol 2018; 8:139. [PMID: 29868495 PMCID: PMC5952220 DOI: 10.3389/fcimb.2018.00139] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
N-Acyl Homoserine Lactones (N-AHLs) are an important group of small quorum-sensing molecules generated and released into the surroundings by Gram-negative bacteria. N-AHLs play a crucial role in various infection-related biological processes of marine Vibrio species, including survival, colonization, invasion, and pathogenesis. With the increasing problem of antibiotic abuse and subsequently the emergence of drug-resistant bacteria, studies on AHLs are therefore expected to bring potential new breakthroughs for the prevention and treatment of Vibrio infections. This article starts from AHLs generation in marine Vibrio, and then discusses the advantages, disadvantages, and trends in the future development of various detection methods for AHLs characterization. In addition to a detailed classification of the various marine Vibrio-derived AHL types that have been reported over the years, the regulatory mechanisms of AHLs and their roles in marine Vibrio biofilms, pathogenicity and interaction with host cells are also highlighted. Intervention measures for AHLs in different stages are systematically reviewed, and the prospects of their future development and application are examined.
Collapse
Affiliation(s)
- Jianfei Liu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Kaifei Fu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Chenglin Wu
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Kewei Qin
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Fei Li
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Lijun Zhou
- Central Laboratory, Navy General Hospital of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
14
|
Kathuria R, Chattopadhyay K. Vibrio choleraecytolysin: Multiple facets of the membrane interaction mechanism of aβ-barrel pore-forming toxin. IUBMB Life 2018; 70:260-266. [DOI: 10.1002/iub.1725] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Reema Kathuria
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences; Indian Institute of Science Education and Research Mohali; Manauli, Mohali Punjab India
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences; Indian Institute of Science Education and Research Mohali; Manauli, Mohali Punjab India
| |
Collapse
|
15
|
Rai AK, Chattopadhyay K. Revisiting the oligomerization mechanism of Vibrio cholerae cytolysin, a beta-barrel pore-forming toxin. Biochem Biophys Res Commun 2016; 474:421-427. [DOI: 10.1016/j.bbrc.2016.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/01/2016] [Indexed: 01/10/2023]
|
16
|
Peraro MD, van der Goot FG. Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol 2015; 14:77-92. [DOI: 10.1038/nrmicro.2015.3] [Citation(s) in RCA: 476] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Khilwani B, Chattopadhyay K. Signaling beyond Punching Holes: Modulation of Cellular Responses by Vibrio cholerae Cytolysin. Toxins (Basel) 2015; 7:3344-58. [PMID: 26308054 PMCID: PMC4549754 DOI: 10.3390/toxins7083344] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 01/20/2023] Open
Abstract
Pore-forming toxins (PFTs) are a distinct class of membrane-damaging cytolytic proteins that contribute significantly towards the virulence processes employed by various pathogenic bacteria. Vibrio cholerae cytolysin (VCC) is a prominent member of the beta-barrel PFT (beta-PFT) family. It is secreted by most of the pathogenic strains of the intestinal pathogen V. cholerae. Owing to its potent membrane-damaging cell-killing activity, VCC is believed to play critical roles in V. cholerae pathogenesis, particularly in those strains that lack the cholera toxin. Large numbers of studies have explored the mechanistic basis of the cell-killing activity of VCC. Consistent with the beta-PFT mode of action, VCC has been shown to act on the target cells by forming transmembrane oligomeric beta-barrel pores, thereby leading to permeabilization of the target cell membranes. Apart from the pore-formation-induced direct cell-killing action, VCC exhibits the potential to initiate a plethora of signal transduction pathways that may lead to apoptosis, or may act to enhance the cell survival/activation responses, depending on the type of target cells. In this review, we will present a concise view of our current understanding regarding the multiple aspects of these cellular responses, and their underlying signaling mechanisms, evoked by VCC.
Collapse
Affiliation(s)
- Barkha Khilwani
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences Indian Institute of Science Education and Research Mohali Sector 81, S. A. S. Nagar, Manauli PO 140306, Punjab, India.
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences Indian Institute of Science Education and Research Mohali Sector 81, S. A. S. Nagar, Manauli PO 140306, Punjab, India.
| |
Collapse
|
18
|
Physicochemical constraints of elevated pH affect efficient membrane interaction and arrest an abortive membrane-bound oligomeric intermediate of the beta-barrel pore-forming toxin Vibrio cholerae cytolysin. Arch Biochem Biophys 2015; 583:9-17. [PMID: 26235489 DOI: 10.1016/j.abb.2015.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/24/2015] [Accepted: 07/24/2015] [Indexed: 11/21/2022]
Abstract
Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging cytotoxic protein. VCC causes permeabilization of the target cell membranes by forming transmembrane oligomeric beta-barrel pores. Membrane pore formation by VCC involves following key steps: (i) membrane binding, (ii) formation of a pre-pore oligomeric intermediate, (iii) membrane insertion of the pore-forming motifs, and (iv) formation of the functional transmembrane pore. Membrane binding, oligomerization, and subsequent pore-formation process of VCC appear to be facilitated by multiple regulatory mechanisms that are only partly understood. Here, we have explored the role(s) of the physicochemical constraints, specifically imposed by the elevated pH conditions, on the membrane pore-formation mechanism of VCC. Elevated pH abrogates efficient interaction of VCC with the target membranes, and blocks its pore-forming activity. Under the elevated pH conditions, membrane-bound fractions of VCC remain trapped in the form of abortive oligomeric species that fail to generate the functional transmembrane pores. Such an abortive oligomeric assembly appears to represent a distinct, more advanced intermediate state than the pre-pore state. The present study offers critical insights regarding the implications of the physicochemical constraints for regulating the efficient membrane interaction and pore formation by VCC.
Collapse
|
19
|
Rai AK, Chattopadhyay K. Revisiting the membrane interaction mechanism of a membrane-damaging β-barrel pore-forming toxinVibrio choleraecytolysin. Mol Microbiol 2015; 97:1051-62. [DOI: 10.1111/mmi.13084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Anand Kumar Rai
- Centre for Protein Science, Design and Engineering; Department of Biological Sciences; Indian Institute of Science Education and Research (IISER) Mohali; Sector 81, SAS Nagar, Manauli Mohali Punjab 140306 India
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering; Department of Biological Sciences; Indian Institute of Science Education and Research (IISER) Mohali; Sector 81, SAS Nagar, Manauli Mohali Punjab 140306 India
| |
Collapse
|
20
|
Transmembrane oligomeric form of Vibrio cholerae cytolysin triggers TLR2/TLR6–dependent proinflammatory responses in monocytes and macrophages. Biochem J 2015; 466:147-61. [DOI: 10.1042/bj20140718] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We show that the transmembrane oligomeric form of VCC evokes potent proinflammatory responses in the monocytes and macrophages of the innate immune system. VCC oligomer-induced proinflammatory responses depend critically on the TLR2/TLR6-dependent signalling pathways.
Collapse
|
21
|
Vibrio cholerae Cytolysin: Structure–Function Mechanism of an Atypical β-Barrel Pore-Forming Toxin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 842:109-25. [DOI: 10.1007/978-3-319-11280-0_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|