1
|
Pal S, Biswas P, Ghosh R, Dam S. Unraveling the interaction between a glycolytic regulator protein EhPpdk and an anaphase promoting complex protein EhApc10: yeast two hybrid screening, in vitro binding assays and molecular simulation study. Protein J 2024; 43:1104-1119. [PMID: 39487362 DOI: 10.1007/s10930-024-10238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
The anaphase promoting complex (APC or cyclosome) is a major ubiquitin ligase that coordinates mitotic and G1 progression, acting as a major regulator of chromosome segregation. While the human APC contains fourteen subunits, it is yet to be explored in the pathogen Entamoeba histolytica. Our study reveals the existence of a single functional Apc10 homolog in E. histolytica, which acts as a processivity factor of ubiquitin ligase activity in human. A cDNA library generated from HM1:IMSS strain of E. histolytica was screened for interaction partners of EhApc10 in yeast two hybrid study. The novel interactor, a glycolytic enzyme, pyruvate phosphate dikinase (Ppdk) was found to interact with EhApc10 and further validated by in vitro assay. A comprehensive in silico study has emphasized the structural and functional aspects, encompassing physicochemical traits, predictive 3D structure modelling, validation of EhApc10-EhPpdk interaction through molecular docking and simulation. The interplay between a cell cycle protein and a glycolytic enzyme highlights the connection between cellular metabolism and the cell cycle regulatory mechanism. The study serves as the groundwork for future research on the non-mitotic role of APC beyond cell cycle.
Collapse
Affiliation(s)
- Suchetana Pal
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Pinaki Biswas
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Raktim Ghosh
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
2
|
Sun R, Liu J, Yu M, Xia M, Zhang Y, Sun X, Xu Y, Cui X. Paeoniflorin Ameliorates BiPN by Reducing IL6 Levels and Regulating PARKIN-Mediated Mitochondrial Autophagy. Drug Des Devel Ther 2022; 16:2241-2259. [PMID: 35860525 PMCID: PMC9289176 DOI: 10.2147/dddt.s369111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Bortezomib-induced peripheral neuropathy (BiPN) is a common complication of multiple myeloma (MM) treatment that seriously affects the quality of life of patients. The purpose of the present study was to explore the therapeutic effect of paeoniflorin on BiPN and its possible mechanism. Methods ELISA was used to measure the level of interleukin-6 (IL6) in the plasma of MM patients, and bioinformatics analysis was used to predict the mechanism underlying the effect of paeoniflorin on peripheral neuropathy. Cell and animal models of BiPN were constructed to evaluate mitochondrial function by measuring cell viability and mitochondrial quality and labeling mitochondria with MitoTracker Green. Nerve injury in mice with BiPN was assessed by behavioral tests, evaluation of motor nerve conduction velocity, hematoxylin-eosin (HE) staining, electron microscopy and analysis of the levels of reactive oxygen species (ROS). Western blotting and immunohistochemistry (IHC) were used to assess the expression of autophagy-related proteins. Results In MM patients, IL6 levels were positively correlated with the degree of PN. The results of bioinformatics analysis suggested that paeoniflorin ameliorated PN by altering inflammation levels and mitochondrial autophagy. Paeoniflorin increased PC12 cell viability and mitochondrial autophagy levels, alleviated mitochondrial damage, and reduced IL6 levels. In addition, paeoniflorin effectively improved the behavior of mice with BiPN, relieved sciatic nerve injury in mice, increased the expression of LC3II/I, beclin-1, and Parkin in sciatic nerve cells, and increased the expression of LC3B and Parkin in the nerve tissue. Conclusion The present study confirmed that paeoniflorin significantly ameliorated peripheral neuropathy (PN) caused by bortezomib, possibly by reducing IL6 levels to regulate PARKIN-mediated mitochondrial autophagy and mitochondrial damage.
Collapse
Affiliation(s)
- Runjie Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Jiang Liu
- Department of Foreign Affairs Office, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Manya Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Mengting Xia
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Yanyu Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Xiaoqi Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| | - Yunsheng Xu
- Second School of Clinical Medicine, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, People’s Republic of China
- Correspondence: Yunsheng Xu; Xing Cui, Second School of Clinical Medicine, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 1 Jingba Road, Jinan, 250001, People’s Republic of China, Email ;
| | - Xing Cui
- Second School of Clinical Medicine, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250001, People’s Republic of China
| |
Collapse
|
3
|
Bishola Tshitenge T, Reichert L, Liu B, Clayton C. Several different sequences are implicated in bloodstream-form-specific gene expression in Trypanosoma brucei. PLoS Negl Trop Dis 2022; 16:e0010030. [PMID: 35312693 PMCID: PMC8982893 DOI: 10.1371/journal.pntd.0010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/05/2022] [Accepted: 03/03/2022] [Indexed: 12/30/2022] Open
Abstract
The parasite Trypanosoma brucei grows as bloodstream forms in mammalian hosts, and as procyclic forms in tsetse flies. In trypanosomes, gene expression regulation depends heavily on post-transcriptional mechanisms. Both the RNA-binding protein RBP10 and glycosomal phosphoglycerate kinase PGKC are expressed only in mammalian-infective forms. RBP10 targets procyclic-specific mRNAs for destruction, while PGKC is required for bloodstream-form glycolysis. Developmental regulation of both is essential: expression of either RBP10 or PGKC in procyclic forms inhibits their proliferation. We show that the 3’-untranslated region of the RBP10 mRNA is extraordinarily long—7.3kb—and were able to identify six different sequences, scattered across the untranslated region, which can independently cause bloodstream-form-specific expression. The 3’-untranslated region of the PGKC mRNA, although much shorter, still contains two different regions, of 125 and 153nt, that independently gave developmental regulation. No short consensus sequences were identified that were enriched either within these regulatory regions, or when compared with other mRNAs with similar regulation, suggesting that more than one regulatory RNA-binding protein is important for repression of mRNAs in procyclic forms. We also identified regions, including an AU repeat, that increased expression in bloodstream forms, or suppressed it in both forms. Trypanosome mRNAs that encode RNA-binding proteins often have extremely extended 3’-untranslated regions. We suggest that one function of this might be to act as a fail-safe mechanism to ensure correct regulation even if mRNA processing or expression of trans regulators is defective. The parasite Trypanosoma brucei causes sleeping sickness in humans, and nagana in cattle, and is transmitted by Tsetse flies. It grows in the bloodstream and tissue fluids of mammalian hosts, as "bloodstream forms", and as "procyclic forms" in the midgut of tsetse flies. Several hundred proteins are expressed in a stage-specific fashion, and this is essential for parasite survival in the different environments. RBP10 is an RNA-binding protein that is expressed only in bloodstream forms. It binds to procyclic-specific mRNAs, and causes their destruction. PGKC is an enzyme that is also specifically expressed in bloodstream forms. Developmental regulation of both is essential: expression of either RBP10 or PGKC in procyclic forms prevents their growth. The mRNAs encoding both proteins are very unstable in procyclic forms, and the sequences responsible are in an "untranslated region" of the mRNA—sequences that follow the part that codes for protein. We here show that the mRNA encoding PGKC has two regions that independently cause developmental regulation, and that the very long untranslated region of the RBP10 mRNA has no fewer than six regulatory regions, but there were no obvious similarities between them. We suggest that the presence of several different regulatory sequences in trypanosome mRNAs might be a fail-safe mechanism to ensure correct regulation.
Collapse
Affiliation(s)
| | - Lena Reichert
- Heidelberg University Center for Molecular Biology (ZMBH), Heidelberg, Germany
| | - Bin Liu
- Heidelberg University Center for Molecular Biology (ZMBH), Heidelberg, Germany
| | - Christine Clayton
- Heidelberg University Center for Molecular Biology (ZMBH), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
4
|
Allmann S, Wargnies M, Plazolles N, Cahoreau E, Biran M, Morand P, Pineda E, Kulyk H, Asencio C, Villafraz O, Rivière L, Tetaud E, Rotureau B, Mourier A, Portais JC, Bringaud F. Glycerol suppresses glucose consumption in trypanosomes through metabolic contest. PLoS Biol 2021; 19:e3001359. [PMID: 34388147 PMCID: PMC8386887 DOI: 10.1371/journal.pbio.3001359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/25/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Microorganisms must make the right choice for nutrient consumption to adapt to their changing environment. As a consequence, bacteria and yeasts have developed regulatory mechanisms involving nutrient sensing and signaling, known as "catabolite repression," allowing redirection of cell metabolism to maximize the consumption of an energy-efficient carbon source. Here, we report a new mechanism named "metabolic contest" for regulating the use of carbon sources without nutrient sensing and signaling. Trypanosoma brucei is a unicellular eukaryote transmitted by tsetse flies and causing human African trypanosomiasis, or sleeping sickness. We showed that, in contrast to most microorganisms, the insect stages of this parasite developed a preference for glycerol over glucose, with glucose consumption beginning after the depletion of glycerol present in the medium. This "metabolic contest" depends on the combination of 3 conditions: (i) the sequestration of both metabolic pathways in the same subcellular compartment, here in the peroxisomal-related organelles named glycosomes; (ii) the competition for the same substrate, here ATP, with the first enzymatic step of the glycerol and glucose metabolic pathways both being ATP-dependent (glycerol kinase and hexokinase, respectively); and (iii) an unbalanced activity between the competing enzymes, here the glycerol kinase activity being approximately 80-fold higher than the hexokinase activity. As predicted by our model, an approximately 50-fold down-regulation of the GK expression abolished the preference for glycerol over glucose, with glucose and glycerol being metabolized concomitantly. In theory, a metabolic contest could be found in any organism provided that the 3 conditions listed above are met.
Collapse
Affiliation(s)
- Stefan Allmann
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux University, CNRS, Bordeaux, France
| | - Marion Wargnies
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux University, CNRS, Bordeaux, France
| | - Nicolas Plazolles
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Edern Cahoreau
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul–MetaboHUB, Toulouse, France
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux University, CNRS, Bordeaux, France
| | - Pauline Morand
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux University, CNRS, Bordeaux, France
| | - Erika Pineda
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Hanna Kulyk
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul–MetaboHUB, Toulouse, France
| | - Corinne Asencio
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Oriana Villafraz
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Loïc Rivière
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Emmanuel Tetaud
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Arnaud Mourier
- Institute of Biochemistry and Genetics of the Cell (IBGC), CNRS, Bordeaux University, Bordeaux, France
| | - Jean-Charles Portais
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul–MetaboHUB, Toulouse, France
- STROMALab, Université de Toulouse, INSERM U1031, EFS, INP-ENVT, UPS, Toulouse, France
| | - Frédéric Bringaud
- Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux University, CNRS, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Bordeaux University, CNRS, Bordeaux, France
- * E-mail:
| |
Collapse
|
5
|
Steketee PC, Dickie EA, Iremonger J, Crouch K, Paxton E, Jayaraman S, Alfituri OA, Awuah-Mensah G, Ritchie R, Schnaufer A, Rowan T, de Koning HP, Gadelha C, Wickstead B, Barrett MP, Morrison LJ. Divergent metabolism between Trypanosoma congolense and Trypanosoma brucei results in differential sensitivity to metabolic inhibition. PLoS Pathog 2021; 17:e1009734. [PMID: 34310651 PMCID: PMC8384185 DOI: 10.1371/journal.ppat.1009734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/24/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022] Open
Abstract
Animal African Trypanosomiasis (AAT) is a debilitating livestock disease prevalent across sub-Saharan Africa, a main cause of which is the protozoan parasite Trypanosoma congolense. In comparison to the well-studied T. brucei, there is a major paucity of knowledge regarding the biology of T. congolense. Here, we use a combination of omics technologies and novel genetic tools to characterise core metabolism in T. congolense mammalian-infective bloodstream-form parasites, and test whether metabolic differences compared to T. brucei impact upon sensitivity to metabolic inhibition. Like the bloodstream stage of T. brucei, glycolysis plays a major part in T. congolense energy metabolism. However, the rate of glucose uptake is significantly lower in bloodstream stage T. congolense, with cells remaining viable when cultured in concentrations as low as 2 mM. Instead of pyruvate, the primary glycolytic endpoints are succinate, malate and acetate. Transcriptomics analysis showed higher levels of transcripts associated with the mitochondrial pyruvate dehydrogenase complex, acetate generation, and the glycosomal succinate shunt in T. congolense, compared to T. brucei. Stable-isotope labelling of glucose enabled the comparison of carbon usage between T. brucei and T. congolense, highlighting differences in nucleotide and saturated fatty acid metabolism. To validate the metabolic similarities and differences, both species were treated with metabolic inhibitors, confirming that electron transport chain activity is not essential in T. congolense. However, the parasite exhibits increased sensitivity to inhibition of mitochondrial pyruvate import, compared to T. brucei. Strikingly, T. congolense exhibited significant resistance to inhibitors of fatty acid synthesis, including a 780-fold higher EC50 for the lipase and fatty acid synthase inhibitor Orlistat, compared to T. brucei. These data highlight that bloodstream form T. congolense diverges from T. brucei in key areas of metabolism, with several features that are intermediate between bloodstream- and insect-stage T. brucei. These results have implications for drug development, mechanisms of drug resistance and host-pathogen interactions.
Collapse
Affiliation(s)
- Pieter C Steketee
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily A Dickie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - James Iremonger
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kathryn Crouch
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Edith Paxton
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharth Jayaraman
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Omar A Alfituri
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ryan Ritchie
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Tim Rowan
- Global Alliance for Livestock Veterinary Medicines, Edinburgh, United Kingdom
| | - Harry P de Koning
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Liam J Morrison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
The Trypanosome UDP-Glucose Pyrophosphorylase Is Imported by Piggybacking into Glycosomes, Where Unconventional Sugar Nucleotide Synthesis Takes Place. mBio 2021; 12:e0037521. [PMID: 34044588 PMCID: PMC8262884 DOI: 10.1128/mbio.00375-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glycosomes are peroxisome-related organelles of trypanosomatid parasites containing metabolic pathways, such as glycolysis and biosynthesis of sugar nucleotides, usually present in the cytosol of other eukaryotes. UDP-glucose pyrophosphorylase (UGP), the enzyme responsible for the synthesis of the sugar nucleotide UDP-glucose, is localized in the cytosol and glycosomes of the bloodstream and procyclic trypanosomes, despite the absence of any known peroxisome-targeting signal (PTS1 and PTS2). The questions that we address here are (i) is the unusual glycosomal biosynthetic pathway of sugar nucleotides functional and (ii) how is the PTS-free UGP imported into glycosomes? We showed that UGP is imported into glycosomes by piggybacking on the glycosomal PTS1-containing phosphoenolpyruvate carboxykinase (PEPCK) and identified the domains involved in the UGP/PEPCK interaction. Proximity ligation assays revealed that this interaction occurs in 3 to 10% of glycosomes, suggesting that these correspond to organelles competent for protein import. We also showed that UGP is essential for the growth of trypanosomes and that both the glycosomal and cytosolic metabolic pathways involving UGP are functional, since the lethality of the knockdown UGP mutant cell line (RNAiUGP, where RNAi indicates RNA interference) was rescued by expressing a recoded UGP (rUGP) in the organelle (RNAiUGP/EXPrUGP-GPDH, where GPDH is glycerol-3-phosphate dehydrogenase). Our conclusion was supported by targeted metabolomic analyses (ion chromatography–high-resolution mass spectrometry [IC-HRMS]) showing that UDP-glucose is no longer detectable in the RNAiUGP mutant, while it is still produced in cells expressing UGP exclusively in the cytosol (PEPCK null mutant) or glycosomes (RNAiUGP/EXPrUGP-GPDH). Trypanosomatids are the only known organisms to have selected functional peroxisomal (glycosomal) sugar nucleotide biosynthetic pathways in addition to the canonical cytosolic ones.
Collapse
|
7
|
Koendjbiharie JG, van Kranenburg R, Kengen SWM. The PEP-pyruvate-oxaloacetate node: variation at the heart of metabolism. FEMS Microbiol Rev 2021; 45:fuaa061. [PMID: 33289792 PMCID: PMC8100219 DOI: 10.1093/femsre/fuaa061] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
At the junction between the glycolysis and the tricarboxylic acid cycle-as well as various other metabolic pathways-lies the phosphoenolpyruvate (PEP)-pyruvate-oxaloacetate node (PPO-node). These three metabolites form the core of a network involving at least eleven different types of enzymes, each with numerous subtypes. Obviously, no single organism maintains each of these eleven enzymes; instead, different organisms possess different subsets in their PPO-node, which results in a remarkable degree of variation, despite connecting such deeply conserved metabolic pathways as the glycolysis and the tricarboxylic acid cycle. The PPO-node enzymes play a crucial role in cellular energetics, with most of them involved in (de)phosphorylation of nucleotide phosphates, while those responsible for malate conversion are important redox enzymes. Variations in PPO-node therefore reflect the different energetic niches that organisms can occupy. In this review, we give an overview of the biochemistry of these eleven PPO-node enzymes. We attempt to highlight the variation that exists, both in PPO-node compositions, as well as in the roles that the enzymes can have within those different settings, through various recent discoveries in both bacteria and archaea that reveal deviations from canonical functions.
Collapse
Affiliation(s)
- Jeroen G Koendjbiharie
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
- Corbion, Arkelsedijk 46, 4206 AC Gorinchem, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
8
|
Michels PAM, Villafraz O, Pineda E, Alencar MB, Cáceres AJ, Silber AM, Bringaud F. Carbohydrate metabolism in trypanosomatids: New insights revealing novel complexity, diversity and species-unique features. Exp Parasitol 2021; 224:108102. [PMID: 33775649 DOI: 10.1016/j.exppara.2021.108102] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
The human pathogenic trypanosomatid species collectively called the "TriTryp parasites" - Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. - have complex life cycles, with each of these parasitic protists residing in a different niche during their successive developmental stages where they encounter diverse nutrients. Consequently, they adapt their metabolic network accordingly. Yet, throughout the life cycles, carbohydrate metabolism - involving the glycolytic, gluconeogenic and pentose-phosphate pathways - always plays a central role in the biology of these parasites, whether the available carbon and free energy sources are saccharides, amino acids or lipids. In this paper, we provide an updated review of the carbohydrate metabolism of the TriTryps, highlighting new data about this metabolic network, the interconnection of its pathways and the compartmentalisation of its enzymes within glycosomes, cytosol and mitochondrion. Differences in the expression of the branches of the metabolic network between the successive life-cycle stages of each of these parasitic trypanosomatids are discussed, as well as differences between them. Recent structural and kinetic studies have revealed unique regulatory mechanisms for some of the network's key enzymes with important species-specific variations. Furthermore, reports of multiple post-translational modifications of trypanosomal glycolytic enzymes suggest that additional mechanisms for stage- and/or environmental cues that regulate activity are operational in the parasites. The detailed comparison of the carbohydrate metabolism of the TriTryps has thus revealed multiple differences and a greater complexity, including for the reduced metabolic network in bloodstream-form T. brucei, than previously appreciated. Although these parasites are related, share many cytological and metabolic features and are grouped within a single taxonomic family, the differences highlighted in this review reflect their separate evolutionary tracks from a common ancestor to the extant organisms. These differences are indicative of their adaptation to the different insect vectors and niches occupied in their mammalian hosts.
Collapse
Affiliation(s)
- Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom.
| | - Oriana Villafraz
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Erika Pineda
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Mayke B Alencar
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela.
| | - Ariel M Silber
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil.
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France.
| |
Collapse
|
9
|
Schenk R, Bachmaier S, Bringaud F, Boshart M. Efficient flavinylation of glycosomal fumarate reductase by its own ApbE domain in Trypanosoma brucei. FEBS J 2021; 288:5430-5445. [PMID: 33755328 DOI: 10.1111/febs.15812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 03/09/2021] [Indexed: 01/26/2023]
Abstract
A subset of flavoproteins has a covalently attached flavin prosthetic group enzymatically attached via phosphoester bonding. In prokaryotes, this is catalysed by alternative pyrimidine biosynthesis E (ApbE) flavin transferases. ApbE-like domains are present in few eukaryotic taxa, for example the N-terminal domain of fumarate reductase (FRD) of Trypanosoma, a parasitic protist known as a tropical pathogen causing African sleeping sickness. We use the versatile reverse genetic tools available for Trypanosoma to investigate the flavinylation of glycosomal FRD (FRDg) in vivo in the physiological and organellar context. Using direct in-gel fluorescence detection of covalently attached flavin as proxy for activity, we show that the ApbE-like domain of FRDg has flavin transferase activity in vivo. The ApbE domain is preceded by a consensus flavinylation target motif at the extreme N terminus of FRDg, and serine 9 in this motif is essential as flavin acceptor. The preferred mode of flavinylation in the glycosome was addressed by stoichiometric expression and comparison of native and catalytically inactive ApbE domains. In addition to the trans-flavinylation activity, the ApbE domain catalyses the intramolecular cis-flavinylation with at least fivefold higher efficiency. We discuss how the higher efficiency due to unusual fusion of the ApbE domain to its substrate protein FRD may provide a selective advantage by faster FRD biogenesis during rapid metabolic adaptation of trypanosomes. The first 37 amino acids of FRDg, including the consensus motif, are sufficient as flavinylation target upon fusion to other proteins. We propose FRDg(1-37) as 4-kDa heat-stable, detergent-resistant fluorescent protein tag and suggest its use as a new tool to study glycosomal protein import.
Collapse
Affiliation(s)
- Robin Schenk
- Biozentrum, Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München (LMU), Martinsried, Germany
| | - Sabine Bachmaier
- Biozentrum, Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München (LMU), Martinsried, Germany
| | - Frédéric Bringaud
- CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Université de Bordeaux, France
| | - Michael Boshart
- Biozentrum, Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München (LMU), Martinsried, Germany
| |
Collapse
|
10
|
Wargnies M, Plazolles N, Schenk R, Villafraz O, Dupuy JW, Biran M, Bachmaier S, Baudouin H, Clayton C, Boshart M, Bringaud F. Metabolic selection of a homologous recombination-mediated gene loss protects Trypanosoma brucei from ROS production by glycosomal fumarate reductase. J Biol Chem 2021; 296:100548. [PMID: 33741344 PMCID: PMC8065229 DOI: 10.1016/j.jbc.2021.100548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
The genome of trypanosomatids rearranges by using repeated sequences as platforms for amplification or deletion of genomic segments. These stochastic recombination events have a direct impact on gene dosage and foster the selection of adaptive traits in response to environmental pressure. We provide here such an example by showing that the phosphoenolpyruvate carboxykinase (PEPCK) gene knockout (Δpepck) leads to the selection of a deletion event between two tandemly arranged fumarate reductase (FRDg and FRDm2) genes to produce a chimeric FRDg-m2 gene in the Δpepck∗ cell line. FRDg is expressed in peroxisome-related organelles, named glycosomes, expression of FRDm2 has not been detected to date, and FRDg-m2 is nonfunctional and cytosolic. Re-expression of FRDg significantly impaired growth of the Δpepck∗ cells, but FRD enzyme activity was not required for this negative effect. Instead, glycosomal localization as well as the covalent flavinylation motif of FRD is required to confer growth retardation and intracellular accumulation of reactive oxygen species (ROS). The data suggest that FRDg, similar to Escherichia coli FRD, can generate ROS in a flavin-dependent process by transfer of electrons from NADH to molecular oxygen instead of fumarate when the latter is unavailable, as in the Δpepck background. Hence, growth retardation is interpreted as a consequence of increased production of ROS, and rearrangement of the FRD locus liberates Δpepck∗ cells from this obstacle. Interestingly, intracellular production of ROS has been shown to be required to complete the parasitic cycle in the insect vector, suggesting that FRDg may play a role in this process.
Collapse
Affiliation(s)
- Marion Wargnies
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France; Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
| | - Nicolas Plazolles
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | - Robin Schenk
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Oriana Villafraz
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France
| | | | - Marc Biran
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
| | - Sabine Bachmaier
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Hélène Baudouin
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France; Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France
| | - Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZBMH), Universität Heidelberg, Heidelberg, Germany
| | - Michael Boshart
- Fakultät für Biologie, Genetik, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| | - Frédéric Bringaud
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234, Bordeaux, France; Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques (CRMSB), UMR 5536, Bordeaux, France.
| |
Collapse
|
11
|
Mondal DK, Pal DS, Abbasi M, Datta R. Functional partnership between carbonic anhydrase and malic enzyme in promoting gluconeogenesis in
Leishmania major. FEBS J 2021; 288:4129-4152. [DOI: 10.1111/febs.15720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/29/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Dipon Kumar Mondal
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Dhiman Sankar Pal
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Mazharul Abbasi
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Rupak Datta
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| |
Collapse
|
12
|
Hysteresis of pyruvate phosphate dikinase from Trypanosoma cruzi. Parasitol Res 2020; 120:1421-1428. [PMID: 33098461 DOI: 10.1007/s00436-020-06934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
Trypanosoma cruzi, the causative agent of Chagas' disease, belongs to the Trypanosomatidae family. The parasite undergoes multiple morphological and metabolic changes during its life cycle, in which it can use both glucose and amino acids as carbon and energy sources. The glycolytic pathway is peculiar in that its first six or seven steps are compartmentalized in glycosomes, and has a two-branched auxiliary glycosomal system functioning beyond the intermediate phosphoenolpyruvate (PEP) that is also used in the cytosol as substrate by pyruvate kinase. The pyruvate phosphate dikinase (PPDK) is the first enzyme of one branch, converting PEP, PPi, and AMP into pyruvate, Pi, and ATP. Here we present a kinetic study of PPDK from T. cruzi that reveals its hysteretic behavior. The length of the lag phase, and therefore the time for reaching higher specific activity values is affected by the concentration of the enzyme, the presence of hydrogen ions and the concentrations of the enzyme's substrates. Additionally, the formation of a more active PPDK with more complex structure is promoted by it substrates and the cation ammonium, indicating that this enzyme equilibrates between the monomeric (less active) and a more complex (more active) form depending on the medium. These results confirm the hysteretic behavior of PPDK and are suggestive for its functioning as a regulatory mechanism of this auxiliary pathway. Such a regulation could serve to distribute the glycolytic flux over the two auxiliary branches as a response to the different environments that the parasite encounters during its life cycle.
Collapse
|
13
|
Zoltner M, Campagnaro GD, Taleva G, Burrell A, Cerone M, Leung KF, Achcar F, Horn D, Vaughan S, Gadelha C, Zíková A, Barrett MP, de Koning HP, Field MC. Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes. J Biol Chem 2020; 295:8331-8347. [PMID: 32354742 PMCID: PMC7294092 DOI: 10.1074/jbc.ra120.012355] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/21/2020] [Indexed: 12/27/2022] Open
Abstract
Introduced about a century ago, suramin remains a frontline drug for the management of early-stage East African trypanosomiasis (sleeping sickness). Cellular entry into the causative agent, the protozoan parasite Trypanosoma brucei, occurs through receptor-mediated endocytosis involving the parasite's invariant surface glycoprotein 75 (ISG75), followed by transport into the cytosol via a lysosomal transporter. The molecular basis of the trypanocidal activity of suramin remains unclear, but some evidence suggests broad, but specific, impacts on trypanosome metabolism (i.e. polypharmacology). Here we observed that suramin is rapidly accumulated in trypanosome cells proportionally to ISG75 abundance. Although we found little evidence that suramin disrupts glycolytic or glycosomal pathways, we noted increased mitochondrial ATP production, but a net decrease in cellular ATP levels. Metabolomics highlighted additional impacts on mitochondrial metabolism, including partial Krebs' cycle activation and significant accumulation of pyruvate, corroborated by increased expression of mitochondrial enzymes and transporters. Significantly, the vast majority of suramin-induced proteins were normally more abundant in the insect forms compared with the blood stage of the parasite, including several proteins associated with differentiation. We conclude that suramin has multiple and complex effects on trypanosomes, but unexpectedly partially activates mitochondrial ATP-generating activity. We propose that despite apparent compensatory mechanisms in drug-challenged cells, the suramin-induced collapse of cellular ATP ultimately leads to trypanosome cell death.
Collapse
Affiliation(s)
- Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Gustavo D Campagnaro
- Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gergana Taleva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Alana Burrell
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Michela Cerone
- Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ka-Fai Leung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology and Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - David Horn
- School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Michael P Barrett
- Wellcome Centre for Integrative Parasitology and Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- Institute for Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom .,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
14
|
Usai G, Cirrincione S, Re A, Manfredi M, Pagnani A, Pessione E, Mazzoli R. Clostridium cellulovorans metabolism of cellulose as studied by comparative proteomic approach. J Proteomics 2020; 216:103667. [DOI: 10.1016/j.jprot.2020.103667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/31/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
|
15
|
Kashif M, Hira SK, Upadhyaya A, Gupta U, Singh R, Paladhi A, Khan FI, Rub A, Manna PP. In silico studies and evaluation of antiparasitic role of a novel pyruvate phosphate dikinase inhibitor in Leishmania donovani infected macrophages. Int J Antimicrob Agents 2019; 53:508-514. [DOI: 10.1016/j.ijantimicag.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/10/2018] [Accepted: 12/22/2018] [Indexed: 01/08/2023]
|
16
|
Gluconeogenesis is essential for trypanosome development in the tsetse fly vector. PLoS Pathog 2018; 14:e1007502. [PMID: 30557412 PMCID: PMC6312356 DOI: 10.1371/journal.ppat.1007502] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/31/2018] [Accepted: 12/04/2018] [Indexed: 11/19/2022] Open
Abstract
In the glucose-free environment that is the midgut of the tsetse fly vector, the procyclic form of Trypanosoma brucei primarily uses proline to feed its central carbon and energy metabolism. In these conditions, the parasite needs to produce glucose 6-phosphate (G6P) through gluconeogenesis from metabolism of non-glycolytic carbon source(s). We showed here that two phosphoenolpyruvate-producing enzymes, PEP carboxykinase (PEPCK) and pyruvate phosphate dikinase (PPDK) have a redundant function for the essential gluconeogenesis from proline. Indeed, incorporation of 13C-enriched proline into G6P was abolished in the PEPCK/PPDK null double mutant (Δppdk/Δpepck), but not in the single Δppdk and Δpepck mutant cell lines. The procyclic trypanosome also uses the glycerol conversion pathway to feed gluconeogenesis, since the death of the Δppdk/Δpepck double null mutant in glucose-free conditions is only observed after RNAi-mediated down-regulation of the expression of the glycerol kinase, the first enzyme of the glycerol conversion pathways. Deletion of the gene encoding fructose-1,6-bisphosphatase (Δfbpase), a key gluconeogenic enzyme irreversibly producing fructose 6-phosphate from fructose 1,6-bisphosphate, considerably reduced, but not abolished, incorporation of 13C-enriched proline into G6P. In addition, the Δfbpase cell line is viable in glucose-free conditions, suggesting that an alternative pathway can be used for G6P production in vitro. However, FBPase is essential in vivo, as shown by the incapacity of the Δfbpase null mutant to colonise the fly vector salivary glands, while the parental phenotype is restored in the Δfbpase rescued cell line re-expressing FBPase. The essential role of FBPase for the development of T. brucei in the tsetse was confirmed by taking advantage of an in vitro differentiation assay based on the RNA-binding protein 6 over-expression, in which the procyclic forms differentiate into epimastigote forms but not into mammalian-infective metacyclic parasites. In total, morphology, immunofluorescence and cytometry analyses showed that the differentiation of the epimastigote stages into the metacyclic forms is abolished in the Δfbpase mutant.
Collapse
|
17
|
Villafraz O, Rondón-Mercado R, Cáceres AJ, Concepción JL, Quiñones W. Molecular and biochemical characterization of natural and recombinant phosphoglycerate kinase B from Trypanosoma rangeli. Exp Parasitol 2018. [PMID: 29526574 DOI: 10.1016/j.exppara.2018.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
T. rangeli epimastigotes contain only a single detectable phosphoglycerate kinase (PGK) enzyme in their cytosol. Analysis of this parasite's recently sequenced genome showed a gene predicted to code for a PGK with the same molecular mass as the natural enzyme, and with a cytosolic localization as well. In this work, we have partially purified the natural PGK from T. rangeli epimastigotes. Furthermore, we cloned the predicted PGK gene and expressed it as a recombinant active enzyme. Both purified enzymes were kinetically characterized and displayed similar substrate affinities, with KmATP values of 0.13 mM and 0.5 mM, and Km3PGA values of 0.28 mM and 0.71 mM, for the natural and recombinant enzyme, respectively. The optimal pH for activity of both enzymes was in the range of 8-10. Like other PGKs, TrPGK is monomeric with a molecular mass of approximately 44 kDa. The enzyme's kinetic characteristics are comparable with those of cytosolic PGK isoforms from related trypanosomatid species, indicating that, most likely, this enzyme is equivalent with the PGKB that is responsible for generating ATP in the cytosol of other trypanosomatids. This is the first report of a glycolytic enzyme characterization from T. rangeli.
Collapse
Affiliation(s)
- O Villafraz
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - R Rondón-Mercado
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - A J Cáceres
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - J L Concepción
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - W Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela.
| |
Collapse
|
18
|
Rondón-Mercado R, Acosta H, Cáceres AJ, Quiñones W, Concepción JL. Subcellular localization of glycolytic enzymes and characterization of intermediary metabolism of Trypanosoma rangeli. Mol Biochem Parasitol 2017. [PMID: 28645481 DOI: 10.1016/j.molbiopara.2017.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Trypanosoma rangeli is a hemoflagellate protist that infects wild and domestic mammals as well as humans in Central and South America. Although this parasite is not pathogenic for human, it is being studied because it shares with Trypanosoma cruzi, the etiological agent of Chagas' disease, biological characteristics, geographic distribution, vectors and vertebrate hosts. Several metabolic studies have been performed with T. cruzi epimastigotes, however little is known about the metabolism of T. rangeli. In this work we present the subcellular distribution of the T. rangeli enzymes responsible for the conversion of glucose to pyruvate, as determined by epifluorescense immunomicroscopy and subcellular fractionation involving either selective membrane permeabilization with digitonin or differential and isopycnic centrifugation. We found that in T. rangeli epimastigotes the first six enzymes of the glycolytic pathway, involved in the conversion of glucose to 1,3-bisphosphoglycerate are located within glycosomes, while the last four steps occur in the cytosol. In contrast with T. cruzi, where three isoenzymes (one cytosolic and two glycosomal) of phosphoglycerate kinase are expressed simultaneously, only one enzyme with this activity is detected in T. rangeli epimastigotes, in the cytosol. Consistent with this latter result, we found enzymes involved in auxiliary pathways to glycolysis needed to maintain adenine nucleotide and redox balances within glycosomes such as phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, pyruvate phosphate dikinase and glycerol-3-phosphate dehydrogenase. Glucokinase, galactokinase and the first enzyme of the pentose-phosphate pathway, glucose-6-phosphate dehydrogenase, were also located inside glycosomes. Furthermore, we demonstrate that T. rangeli epimastigotes growing in LIT medium only consume glucose and do not excrete ammonium; moreover, they are unable to survive in partially-depleted glucose medium. The velocity of glucose consumption is about 40% higher than that of procyclic Trypanosoma brucei, and four times faster than by T. cruzi epimastigotes under the same culture conditions.
Collapse
Affiliation(s)
- Rocío Rondón-Mercado
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela.
| |
Collapse
|
19
|
Catharina L, Lima CR, Franca A, Guimarães ACR, Alves-Ferreira M, Tuffery P, Derreumaux P, Carels N. A Computational Methodology to Overcome the Challenges Associated With the Search for Specific Enzyme Targets to Develop Drugs Against Leishmania major. Bioinform Biol Insights 2017. [PMID: 28638238 PMCID: PMC5470852 DOI: 10.1177/1177932217712471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We present an approach for detecting enzymes that are specific of Leishmania major compared with Homo sapiens and provide targets that may assist research in drug development. This approach is based on traditional techniques of sequence homology comparison by similarity search and Markov modeling; it integrates the characterization of enzymatic functionality, secondary and tertiary protein structures, protein domain architecture, and metabolic environment. From 67 enzymes represented by 42 enzymatic activities classified by AnEnPi (Analogous Enzymes Pipeline) as specific for L major compared with H sapiens, only 40 (23 Enzyme Commission [EC] numbers) could actually be considered as strictly specific of L major and 27 enzymes (19 EC numbers) were disregarded for having ambiguous homologies or analogies with H sapiens. Among the 40 strictly specific enzymes, we identified sterol 24-C-methyltransferase, pyruvate phosphate dikinase, trypanothione synthetase, and RNA-editing ligase as 4 essential enzymes for L major that may serve as targets for drug development.
Collapse
Affiliation(s)
- Larissa Catharina
- Laboratório de Modelagem de Sistemas Biológicos, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas (INCT-IDPN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Carlyle Ribeiro Lima
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (UPR 9080), Centre National de la Recherche Scientifique (CNRS), Université Paris 7, Paris, France.,Molécules Thérapeutiques in silico (UMR-S 973), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alexander Franca
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Carolina Ramos Guimarães
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Marcelo Alves-Ferreira
- Laboratório de Modelagem de Sistemas Biológicos, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas (INCT-IDPN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Pierre Tuffery
- Molécules Thérapeutiques in silico (UMR-S 973), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (UPR 9080), Centre National de la Recherche Scientifique (CNRS), Université Paris 7, Paris, France
| | - Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas (INCT-IDPN), Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Abstract
Cellular metabolic activity is a highly complex, dynamic, regulated process that is influenced by numerous factors, including extracellular environmental signals, nutrient availability and the physiological and developmental status of the cell. The causative agent of sleeping sickness,
Trypanosoma brucei, is an exclusively extracellular protozoan parasite that encounters very different extracellular environments during its life cycle within the mammalian host and tsetse fly insect vector. In order to meet these challenges, there are significant alterations in the major energetic and metabolic pathways of these highly adaptable parasites. This review highlights some of these metabolic changes in this early divergent eukaryotic model organism.
Collapse
Affiliation(s)
- Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, Fife, UK
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234 CNRS, Université de Bordeaux, Bordeaux, France
| | - Derek P Nolan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
21
|
Abstract
Cellular metabolic activity is a highly complex, dynamic, regulated process that is influenced by numerous factors, including extracellular environmental signals, nutrient availability and the physiological and developmental status of the cell. The causative agent of sleeping sickness, Trypanosoma brucei, is an exclusively extracellular protozoan parasite that encounters very different extracellular environments during its life cycle within the mammalian host and tsetse fly insect vector. In order to meet these challenges, there are significant alterations in the major energetic and metabolic pathways of these highly adaptable parasites. This review highlights some of these metabolic changes in this early divergent eukaryotic model organism.
Collapse
Affiliation(s)
- Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, Fife, UK
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), UMR 5234 CNRS, Université de Bordeaux, Bordeaux, France
| | - Derek P Nolan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
22
|
Allmann S, Bringaud F. Glycosomes: A comprehensive view of their metabolic roles in T. brucei. Int J Biochem Cell Biol 2017; 85:85-90. [PMID: 28179189 DOI: 10.1016/j.biocel.2017.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/27/2017] [Accepted: 01/29/2017] [Indexed: 11/28/2022]
Abstract
Peroxisomes are single-membrane cellular organelles, present in most eukaryotic cells and organisms from human to yeast, fulfilling essential metabolic functions in lipid metabolism, free radical detoxification, differentiation, development, morphogenesis, etc. Interestingly, the protozoan parasite species Trypanosoma contains peroxisome-like organelles named glycosomes, which lack hallmark peroxisomal pathways and enzymes, such as catalase. Glycosomes are the only peroxisome-like organelles containing most enzymatic steps of the glycolytic pathway as well as enzymes of pyrimidine biosynthesis, purine salvage and biosynthesis of nucleotide sugars. We present here an overview of the glycosomal metabolic peculiarities together with the current view of the raison d'être of this unique metabolic peroxisomal sequestration.
Collapse
Affiliation(s)
- Stefan Allmann
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, Bordeaux, France.
| |
Collapse
|
23
|
Harijan RK, Mazet M, Kiema TR, Bouyssou G, Alexson SEH, Bergmann U, Moreau P, Michels PAM, Bringaud F, Wierenga RK. The SCP2-thiolase-like protein (SLP) of Trypanosoma brucei is an enzyme involved in lipid metabolism. Proteins 2016; 84:1075-96. [PMID: 27093562 DOI: 10.1002/prot.25054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 04/03/2016] [Accepted: 04/08/2016] [Indexed: 11/06/2022]
Abstract
Bioinformatics studies have shown that the genomes of trypanosomatid species each encode one SCP2-thiolase-like protein (SLP), which is characterized by having the YDCF thiolase sequence fingerprint of the Cβ2-Cα2 loop. SLPs are only encoded by the genomes of these parasitic protists and not by those of mammals, including human. Deletion of the Trypanosoma brucei SLP gene (TbSLP) increases the doubling time of procyclic T. brucei and causes a 5-fold reduction of de novo sterol biosynthesis from glucose- and acetate-derived acetyl-CoA. Fluorescence analyses of EGFP-tagged TbSLP expressed in the parasite located the TbSLP in the mitochondrion. The crystal structure of TbSLP (refined at 1.75 Å resolution) confirms that TbSLP has the canonical dimeric thiolase fold. In addition, the structures of the TbSLP-acetoacetyl-CoA (1.90 Å) and TbSLP-malonyl-CoA (2.30 Å) complexes reveal that the two oxyanion holes of the thiolase active site are preserved. TbSLP binds malonyl-CoA tightly (Kd 90 µM), acetoacetyl-CoA moderately (Kd 0.9 mM) and acetyl-CoA and CoA very weakly. TbSLP possesses low malonyl-CoA decarboxylase activity. Altogether, the data show that TbSLP is a mitochondrial enzyme involved in lipid metabolism. Proteins 2016; 84:1075-1096. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajesh K Harijan
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland.,Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Muriel Mazet
- Centre De Résonance Magnétique Des Systèmes Biologiques (RMSB), UMR5536, Université De Bordeaux, CNRS, 146 Rue Léo Saignat, Bordeaux, 33076, France.,Laboratoire De Microbiologie Fondamentale Et Pathogénicité (MFP), UMR5234, Université De Bordeaux, CNRS, 146 Rue Léo Saignat, Bordeaux, 33076, France
| | - Tiila R Kiema
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland
| | - Guillaume Bouyssou
- Laboratoire De Biogenèse Membranaire, UMR-5200, Université De Bordeaux, CNRS, Bâtiment A3 - 1er Étage, INRA Bordeaux Aquitaine BP81, 71 Avenue Edouard Bourlaux, Villenave D'Ornon Cedex, 33883, France
| | - Stefan E H Alexson
- Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, Stockholm, SE 141 86, Sweden
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland
| | - Patrick Moreau
- Laboratoire De Biogenèse Membranaire, UMR-5200, Université De Bordeaux, CNRS, Bâtiment A3 - 1er Étage, INRA Bordeaux Aquitaine BP81, 71 Avenue Edouard Bourlaux, Villenave D'Ornon Cedex, 33883, France
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, the King's Buildings, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, United Kingdom
| | - Frédéric Bringaud
- Centre De Résonance Magnétique Des Systèmes Biologiques (RMSB), UMR5536, Université De Bordeaux, CNRS, 146 Rue Léo Saignat, Bordeaux, 33076, France.,Laboratoire De Microbiologie Fondamentale Et Pathogénicité (MFP), UMR5234, Université De Bordeaux, CNRS, 146 Rue Léo Saignat, Bordeaux, 33076, France
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, FIN-90014, Finland
| |
Collapse
|
24
|
González-Marcano E, Acosta H, Mijares A, Concepción JL. Kinetic and molecular characterization of the pyruvate phosphate dikinase from Trypanosoma cruzi. Exp Parasitol 2016; 165:81-7. [PMID: 27003459 DOI: 10.1016/j.exppara.2016.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 11/18/2022]
Abstract
Trypanosoma cruzi, like other trypanosomatids analyzed so far, can use both glucose and amino acids as carbon and energy source. In these parasites, glycolysis is compartmentalized in glycosomes, authentic but specialized peroxisomes. The major part of this pathway, as well as a two-branched glycolytic auxiliary system, are present in these organelles. The first enzyme of one branch of this auxiliary system is the PPi-dependent pyruvate phosphate dikinase (PPDK) that converts phosphoenolpyruvate (PEP), inorganic pyrophosphate (PPi) and AMP into pyruvate, inorganic phosphate (Pi) and ATP, thus contributing to the ATP/ADP balance within the glycosomes. In this work we cloned, expressed and purified the T. cruzi PPDK. It kinetic parameters were determined, finding KM values for PEP, PPi and AMP of 320, 70 and 17 μM, respectively. Using molecular exclusion chromatography, two native forms of the enzyme were found with estimated molecular weights of 200 and 100 kDa, corresponding to a homodimer and monomer, respectively. It was established that T. cruzi PPDK's specific activity can be enhanced up to 2.6 times by the presence of ammonium in the assay mixture. During growth of epimastigotes in batch culture an apparent decrease in the specific activity of PPDK was observed. However, when its activity is normalized for the presence of ammonium in the medium, no significant modification of the enzyme activity per cell in time was found.
Collapse
Affiliation(s)
- Eglys González-Marcano
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, La Hechicera, Mérida 5101, Venezuela.
| | - Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, La Hechicera, Mérida 5101, Venezuela.
| | - Alfredo Mijares
- Laboratorio de Fisiología de Parásitos, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas 1020-A, Venezuela.
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, La Hechicera, Mérida 5101, Venezuela.
| |
Collapse
|
25
|
Trypanosoma evansi contains two auxiliary enzymes of glycolytic metabolism: Phosphoenolpyruvate carboxykinase and pyruvate phosphate dikinase. Exp Parasitol 2016; 165:7-15. [PMID: 26968775 DOI: 10.1016/j.exppara.2016.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/11/2016] [Accepted: 03/03/2016] [Indexed: 11/22/2022]
Abstract
Trypanosoma evansi is a monomorphic protist that can infect horses and other animal species of economic importance for man. Like the bloodstream form of the closely related species Trypanosoma brucei, T. evansi depends exclusively on glycolysis for its free-energy generation. In T. evansi as in other kinetoplastid organisms, the enzymes of the major part of the glycolytic pathway are present within organelles called glycosomes, which are authentic but specialized peroxisomes. Since T. evansi does not undergo stage-dependent differentiations, it occurs only as bloodstream forms, it has been assumed that the metabolic pattern of this parasite is identical to that of the bloodstream form of T. brucei. However, we report here the presence of two additional enzymes, phosphoenolpyruvate carboxykinase and PPi-dependent pyruvate phosphate dikinase in T. evansi glycosomes. Their colocalization with glycolytic enzymes within the glycosomes of this parasite has not been reported before. Both enzymes can make use of PEP for contributing to the production of ATP within the organelles. The activity of these enzymes in T. evansi glycosomes drastically changes the model assumed for the oxidation of glucose by this parasite.
Collapse
|
26
|
Haanstra JR, González-Marcano EB, Gualdrón-López M, Michels PAM. Biogenesis, maintenance and dynamics of glycosomes in trypanosomatid parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1038-48. [PMID: 26384872 DOI: 10.1016/j.bbamcr.2015.09.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/31/2022]
Abstract
Peroxisomes of organisms belonging to the protist group Kinetoplastea, which include trypanosomatid parasites of the genera Trypanosoma and Leishmania, are unique in playing a crucial role in glycolysis and other parts of intermediary metabolism. They sequester the majority of the glycolytic enzymes and hence are called glycosomes. Their glycosomal enzyme content can vary strongly, particularly quantitatively, between different trypanosomatid species, and within each species during its life cycle. Turnover of glycosomes by autophagy of redundant ones and biogenesis of a new population of organelles play a pivotal role in the efficient adaptation of the glycosomal metabolic repertoire to the sudden, major nutritional changes encountered during the transitions in their life cycle. The overall mechanism of glycosome biogenesis is similar to that of peroxisomes in other organisms, but the homologous peroxins involved display low sequence conservation as well as variations in motifs mediating crucial protein-protein interactions in the process. The correct compartmentalisation of enzymes is essential for the regulation of the trypanosomatids' metabolism and consequently for their viability. For Trypanosoma brucei it was shown that glycosomes also play a crucial role in its life-cycle regulation: a crucial developmental control switch involves the translocation of a protein phosphatase from the cytosol into the organelles. Many glycosomal proteins are differentially phosphorylated in different life-cycle stages, possibly indicative of regulation of enzyme activities as an additional means to adapt the metabolic network to the different environmental conditions encountered.
Collapse
Affiliation(s)
- Jurgen R Haanstra
- Systems Bioinformatics, Vrije Universiteit Amsterdam, The Netherlands
| | - Eglys B González-Marcano
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Melisa Gualdrón-López
- Federal University of Minas Gerais, Laboratory of Immunoregulation of Infectious Diseases, Department of Biochemistry and Immunology, Institute for Biological Sciences, Belo Horizonte, Brazil
| | - Paul A M Michels
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela; Centre for Translational and Chemical Biology, Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
27
|
Auger C, Appanna ND, Alhasawi A, Appanna VD. Deciphering metabolic networks by blue native polyacrylamide gel electrophoresis: A functional proteomic exploration. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Bringaud F, Biran M, Millerioux Y, Wargnies M, Allmann S, Mazet M. Combining reverse genetics and nuclear magnetic resonance-based metabolomics unravels trypanosome-specific metabolic pathways. Mol Microbiol 2015; 96:917-26. [PMID: 25753950 DOI: 10.1111/mmi.12990] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 01/20/2023]
Abstract
Numerous eukaryotes have developed specific metabolic traits that are not present in extensively studied model organisms. For instance, the procyclic insect form of Trypanosoma brucei, a parasite responsible for sleeping sickness in its mammalian-specific bloodstream form, metabolizes glucose into excreted succinate and acetate through pathways with unique features. Succinate is primarily produced from glucose-derived phosphoenolpyruvate in peroxisome-like organelles, also known as glycosomes, by a soluble NADH-dependent fumarate reductase only described in trypanosomes so far. Acetate is produced in the mitochondrion of the parasite from acetyl-CoA by a CoA-transferase, which forms an ATP-producing cycle with succinyl-CoA synthetase. The role of this cycle in ATP production was recently demonstrated in procyclic trypanosomes and has only been proposed so far for anaerobic organisms, in addition to trypanosomatids. We review how nuclear magnetic resonance spectrometry can be used to analyze the metabolic network perturbed by deletion (knockout) or downregulation (RNAi) of the candidate genes involved in these two particular metabolic pathways of procyclic trypanosomes. The role of succinate and acetate production in trypanosomes is discussed, as well as the connections between the succinate and acetate branches, which increase the metabolic flexibility probably required by the parasite to deal with environmental changes such as oxidative stress.
Collapse
Affiliation(s)
- Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Marc Biran
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Yoann Millerioux
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Marion Wargnies
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Stefan Allmann
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Muriel Mazet
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR-5536 Université de Bordeaux, CNRS, 146 rue Léo Saignat, 33076, Bordeaux, France
| |
Collapse
|
29
|
Szöör B, Haanstra JR, Gualdrón-López M, Michels PAM. Evolution, dynamics and specialized functions of glycosomes in metabolism and development of trypanosomatids. Curr Opin Microbiol 2014; 22:79-87. [DOI: 10.1016/j.mib.2014.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/03/2014] [Accepted: 09/12/2014] [Indexed: 01/24/2023]
|
30
|
Haanstra JR, Bakker BM, Michels PA. In or out? On the tightness of glycosomal compartmentalization of metabolites and enzymes in Trypanosoma brucei. Mol Biochem Parasitol 2014; 198:18-28. [DOI: 10.1016/j.molbiopara.2014.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/10/2014] [Accepted: 11/20/2014] [Indexed: 11/16/2022]
|