1
|
Sunilkumar S, Dennis MD. REDD1 Is a Promising Therapeutic Target to Combat the Development of Diabetes Complications: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2024; 73:1553-1562. [PMID: 38976480 PMCID: PMC11417436 DOI: 10.2337/dbi24-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
The stress response protein regulated in development and DNA damage response 1 (REDD1) has emerged as a key player in the pathogenesis of diabetes. Diabetes upregulates REDD1 in a variety of insulin-sensitive tissues, where the protein acts to inhibit signal transduction downstream of the insulin receptor. REDD1 functions as a cytosolic redox sensor that suppresses Akt/mTORC1 signaling to reduce energy expenditure in response to cellular stress. Whereas a transient increase in REDD1 contributes to an adaptive cellular response, chronically elevated REDD1 levels are implicated in disease progression. Recent studies highlight the remarkable benefits of both whole-body and tissue-specific REDD1 deletion in preclinical models of type 1 and type 2 diabetes. In particular, REDD1 is necessary for the development of glucose intolerance and the consequent rise in oxidative stress and inflammation. Here, we review studies that support a role for chronically elevated REDD1 levels in the development of diabetes complications, reflect on limitations of prior therapeutic approaches targeting REDD1 in patients, and discuss potential opportunities for future interventions to improve the lives of people living with diabetes. This article is part of a series of Perspectives that report on research funded by the American Diabetes Association Pathway to Stop Diabetes program. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
2
|
Amici DR, Alhayek S, Klein AT, Wang YZ, Wilen AP, Song W, Zhu P, Thakkar A, King MA, Steffeck AW, Alasady MJ, Peek C, Savas JN, Mendillo ML. Tight regulation of a nuclear HAPSTR1-HUWE1 pathway essential for mammalian life. Life Sci Alliance 2024; 7:e202302370. [PMID: 38453366 PMCID: PMC10921065 DOI: 10.26508/lsa.202302370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
The recently discovered HAPSTR1 protein broadly oversees cellular stress responses. This function requires HUWE1, a ubiquitin ligase that paradoxically marks HAPSTR1 for degradation, but much about this pathway remains unclear. Here, leveraging multiplexed proteomics, we find that HAPSTR1 enables nuclear localization of HUWE1 with implications for nuclear protein quality control. We show that HAPSTR1 is tightly regulated and identify ubiquitin ligase TRIP12 and deubiquitinase USP7 as upstream regulators titrating HAPSTR1 stability. Finally, we generate conditional Hapstr1 knockout mice, finding that Hapstr1-null mice are perinatal lethal, adult mice depleted of Hapstr1 have reduced fitness, and primary cells explanted from Hapstr1-null animals falter in culture coincident with HUWE1 mislocalization and broadly remodeled signaling. Notably, although HAPSTR1 potently suppresses p53, we find that Hapstr1 is essential for life even in mice lacking p53. Altogether, we identify novel components and functional insights into the conserved HAPSTR1-HUWE1 pathway and demonstrate its requirement for mammalian life.
Collapse
Affiliation(s)
- David R Amici
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sammy Alhayek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Austin T Klein
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yi-Zhi Wang
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anika P Wilen
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Weimin Song
- Comprehensive Metabolic Core, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Abhishek Thakkar
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - McKenzi A King
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Adam Wt Steffeck
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Milad J Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Clara Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
3
|
Monda JK, Ge X, Hunkeler M, Donovan KA, Ma MW, Jin CY, Leonard M, Fischer ES, Bennett EJ. HAPSTR1 localizes HUWE1 to the nucleus to limit stress signaling pathways. Cell Rep 2023; 42:112496. [PMID: 37167062 DOI: 10.1016/j.celrep.2023.112496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
HUWE1 is a large, enigmatic HECT-domain ubiquitin ligase implicated in the regulation of diverse pathways, including DNA repair, apoptosis, and differentiation. How HUWE1 engages its structurally diverse substrates and how HUWE1 activity is regulated are unknown. Using unbiased quantitative proteomics, we find that HUWE1 targets substrates in a largely cell-type-specific manner. However, we identify C16orf72/HAPSTR1 as a robust HUWE1 substrate in multiple cell lines. Previously established physical and genetic interactions between HUWE1 and HAPSTR1 suggest that HAPSTR1 positively regulates HUWE1 function. Here, we show that HAPSTR1 is required for HUWE1 nuclear localization and nuclear substrate targeting. Nuclear HUWE1 is required for both cell proliferation and modulation of stress signaling pathways, including p53 and nuclear factor κB (NF-κB)-mediated signaling. Combined, our results define a role for HAPSTR1 in gating critical nuclear HUWE1 functions.
Collapse
Affiliation(s)
- Julie K Monda
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xuezhen Ge
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Moritz Hunkeler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Michelle W Ma
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Cyrus Y Jin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marilyn Leonard
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Eric J Bennett
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Yalçin Z, Koot D, Bezstarosti K, Salas-Lloret D, Bleijerveld OB, Boersma V, Falcone M, González-Prieto R, Altelaar M, Demmers JAA, Jacobs JJL. Ubiquitinome profiling reveals in vivo UBE2D3 targets and implicates UBE2D3 in protein quality control. Mol Cell Proteomics 2023; 22:100548. [PMID: 37059365 DOI: 10.1016/j.mcpro.2023.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023] Open
Abstract
Ubiquitination has crucial roles in many cellular processes and dysregulation of ubiquitin machinery enzymes can result in various forms of pathogenesis. Cells only have a limited set of ubiquitin-conjugating (E2) enzymes to support the ubiquitination of many cellular targets. As individual E2 enzymes have many different substrates and interactions between E2 enzymes and their substrates can be transient, it is challenging to define all in vivo substrates of an individual E2 and the cellular processes it affects. Particularly challenging in this respect is UBE2D3, an E2 enzyme with promiscuous activity in vitro but less defined roles in vivo. Here, we set out to identify in vivo targets of UBE2D3 by using SILAC-based and label-free quantitative ubiquitin diGly proteomics to study global proteome and ubiquitinome changes associated with UBE2D3 depletion. UBE2D3 depletion changed the global proteome, with the levels of proteins from metabolic pathways, in particular retinol metabolism, being the most affected. However, the impact of UBE2D3 depletion on the ubiquitinome was much more prominent. Interestingly, molecular pathways related to mRNA translation were the most affected. Indeed, we find that ubiquitination of the ribosomal proteins RPS10 and RPS20, critical for ribosome-associated protein quality control (RQC), is dependent on UBE2D3. We show by TULIP2 methodology that RPS10 and RPS20 are direct targets of UBE2D3 and demonstrate that UBE2D3's catalytic activity is required to ubiquitinate RPS10 in vivo. In addition, our data suggest that UBE2D3 acts at multiple levels in autophagic protein quality control (PQC). Collectively, our findings show that depletion of an E2 enzyme in combination with quantitative diGly-based ubiquitinome profiling is a powerful tool to identify new in vivo E2 substrates, as we have done here for UBE2D3. Our work provides an important resource for further studies on the in vivo functions of UBE2D3.
Collapse
Affiliation(s)
- Zeliha Yalçin
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniëlle Koot
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Daniel Salas-Lloret
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Onno B Bleijerveld
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vera Boersma
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mattia Falcone
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands; Genome Proteomics Laboratory, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Seville, Spain; Department of Cell Biology, University of Seville, Seville, Spain
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, and Netherlands Proteomics Center, Utrecht, The Netherlands
| | | | - Jacqueline J L Jacobs
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Scinicariello S, Soderholm A, Schäfer M, Shulkina A, Schwartz I, Hacker K, Gogova R, Kalis R, Froussios K, Budroni V, Bestehorn A, Clausen T, Kovarik P, Zuber J, Versteeg GA. HUWE1 controls tristetraprolin proteasomal degradation by regulating its phosphorylation. eLife 2023; 12:e83159. [PMID: 36961408 PMCID: PMC10038661 DOI: 10.7554/elife.83159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/26/2023] [Indexed: 03/25/2023] Open
Abstract
Tristetraprolin (TTP) is a critical negative immune regulator. It binds AU-rich elements in the untranslated-regions of many mRNAs encoding pro-inflammatory mediators, thereby accelerating their decay. A key but poorly understood mechanism of TTP regulation is its timely proteolytic removal: TTP is degraded by the proteasome through yet unidentified phosphorylation-controlled drivers. In this study, we set out to identify factors controlling TTP stability. Cellular assays showed that TTP is strongly lysine-ubiquitinated, which is required for its turnover. A genetic screen identified the ubiquitin E3 ligase HUWE1 as a strong regulator of TTP proteasomal degradation, which we found to control TTP stability indirectly by regulating its phosphorylation. Pharmacological assessment of multiple kinases revealed that HUWE1-regulated TTP phosphorylation and stability was independent of the previously characterized effects of MAPK-mediated S52/S178 phosphorylation. HUWE1 function was dependent on phosphatase and E3 ligase binding sites identified in the TTP C-terminus. Our findings indicate that while phosphorylation of S52/S178 is critical for TTP stabilization at earlier times after pro-inflammatory stimulation, phosphorylation of the TTP C-terminus controls its stability at later stages.
Collapse
Affiliation(s)
- Sara Scinicariello
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Adrian Soderholm
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Markus Schäfer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Alexandra Shulkina
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Irene Schwartz
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Kathrin Hacker
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Rebeca Gogova
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Robert Kalis
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Kimon Froussios
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Valentina Budroni
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Annika Bestehorn
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
- Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Pavel Kovarik
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
- Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Gijs A Versteeg
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
6
|
Miller WP, Sha CM, Sunilkumar S, Toro AL, VanCleave AM, Kimball SR, Dokholyan NV, Dennis MD. Activation of Disulfide Redox Switch in REDD1 Promotes Oxidative Stress Under Hyperglycemic Conditions. Diabetes 2022; 71:2764-2776. [PMID: 36170669 PMCID: PMC9750946 DOI: 10.2337/db22-0355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/21/2022] [Indexed: 02/03/2023]
Abstract
The stress response protein regulated in development and DNA damage response 1 (REDD1) has been implicated in visual deficits in patients with diabetes. The aim here was to investigate the mechanism responsible for the increase in retinal REDD1 protein content that is observed with diabetes. We found that REDD1 protein expression was increased in the retina of streptozotocin-induced diabetic mice in the absence of a change in REDD1 mRNA abundance or ribosome association. Oral antioxidant supplementation reduced retinal oxidative stress and suppressed REDD1 protein expression in the retina of diabetic mice. In human retinal Müller cell cultures, hyperglycemic conditions increased oxidative stress, enhanced REDD1 expression, and inhibited REDD1 degradation independently of the proteasome. Hyperglycemic conditions promoted a redox-sensitive cross-strand disulfide bond in REDD1 at C150/C157 that was required for reduced REDD1 degradation. Discrete molecular dynamics simulations of REDD1 structure revealed allosteric regulation of a degron upon formation of the disulfide bond that disrupted lysosomal proteolysis of REDD1. REDD1 acetylation at K129 was required for REDD1 recognition by the cytosolic chaperone HSC70 and degradation by chaperone-mediated autophagy. Disruption of REDD1 allostery upon C150/C157 disulfide bond formation prevented the suppressive effect of hyperglycemic conditions on REDD1 degradation and reduced oxidative stress in cells exposed to hyperglycemic conditions. The results reveal redox regulation of REDD1 and demonstrate the role of a REDD1 disulfide switch in development of oxidative stress.
Collapse
Affiliation(s)
- William P. Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Congzhou M. Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Allyson L. Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Ashley M. VanCleave
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
7
|
Winkler R, Mägdefrau AS, Piskor EM, Kleemann M, Beyer M, Linke K, Hansen L, Schaffer AM, Hoffmann ME, Poepsel S, Heyd F, Beli P, Möröy T, Mahboobi S, Krämer OH, Kosan C. Targeting the MYC interaction network in B-cell lymphoma via histone deacetylase 6 inhibition. Oncogene 2022; 41:4560-4572. [PMID: 36068335 PMCID: PMC9525236 DOI: 10.1038/s41388-022-02450-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022]
Abstract
Overexpression of MYC is a genuine cancer driver in lymphomas and related to poor prognosis. However, therapeutic targeting of the transcription factor MYC remains challenging. Here, we show that inhibition of the histone deacetylase 6 (HDAC6) using the HDAC6 inhibitor Marbostat-100 (M-100) reduces oncogenic MYC levels and prevents lymphomagenesis in a mouse model of MYC-induced aggressive B-cell lymphoma. M-100 specifically alters protein-protein interactions by switching the acetylation state of HDAC6 substrates, such as tubulin. Tubulin facilitates nuclear import of MYC, and MYC-dependent B-cell lymphoma cells rely on continuous import of MYC due to its high turn-over. Acetylation of tubulin impairs this mechanism and enables proteasomal degradation of MYC. M-100 targets almost exclusively B-cell lymphoma cells with high levels of MYC whereas non-tumor cells are not affected. M-100 induces massive apoptosis in human and murine MYC-overexpressing B-cell lymphoma cells. We identified the heat-shock protein DNAJA3 as an interactor of tubulin in an acetylation-dependent manner and overexpression of DNAJA3 resulted in a pronounced degradation of MYC. We propose a mechanism by which DNAJA3 associates with hyperacetylated tubulin in the cytoplasm to control MYC turnover. Taken together, our data demonstrate a beneficial role of HDAC6 inhibition in MYC-dependent B-cell lymphoma.
Collapse
Affiliation(s)
- René Winkler
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany.,Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Badalona, 08916, Spain
| | - Ann-Sophie Mägdefrau
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | - Eva-Maria Piskor
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | - Markus Kleemann
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | - Mandy Beyer
- Institute of Toxicology, University Medical Center Mainz, Mainz, 55131, Germany
| | - Kevin Linke
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | - Lisa Hansen
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | - Anna-Maria Schaffer
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | | | - Simon Poepsel
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany
| | - Florian Heyd
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, 14195, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Siavosh Mahboobi
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, Regensburg, 93040, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center Mainz, Mainz, 55131, Germany
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany.
| |
Collapse
|
8
|
Wu Y, Jiao H, Yue Y, He K, Jin Y, Zhang J, Zhang J, Wei Y, Luo H, Hao Z, Zhao X, Xia Q, Zhong Q, Zhang J. Ubiquitin ligase E3 HUWE1/MULE targets transferrin receptor for degradation and suppresses ferroptosis in acute liver injury. Cell Death Differ 2022; 29:1705-1718. [PMID: 35260822 PMCID: PMC9433446 DOI: 10.1038/s41418-022-00957-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatic ischemia followed by reperfusion (I/R), a major clinical problem during liver surgical procedures, can induce liver injury with severe cell death including ferroptosis which is characterized by iron-dependent accumulation of lipid peroxidation. The HECT domain-containing ubiquitin E3 ligase HUWE1 (also known as MULE) was initially shown to promote apoptosis. However, our preliminary study demonstrates that high expression of HUWE1 in the liver donors corelates with less injury and better hepatic function after liver transplantation in patients. Thus, we investigate the role of HUWE1 in acute liver injury, and identify HUWE1 as a negative ferroptosis modulator through transferrin receptor 1(TfR1). Deficiency of Huwe1 in mice hepatocytes (HKO) exacerbated I/R and CCl4-induced liver injury with more ferroptosis occurrence. Moreover, Suppression of Huwe1 remarkably enhances cellular sensitivity to ferroptosis in primary hepatocytes and mouse embryonic fibroblasts. Mechanistically, HUWE1 specifically targets TfR1 for ubiquitination and proteasomal degradation, thereby regulates iron metabolism. Importantly, chemical and genetic inhibition of TfR1 dramatically diminishes the ferroptotic cell death in Huwe1 KO cells and Huwe1 HKO mice. Therefore, HUWE1 is a potential protective factor to antagonize both aberrant iron accumulation and ferroptosis thereby mitigating acute liver injury. These findings may provide clinical implications for patients with the high-expression Huwe1 alleles.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huike Jiao
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yangbo Yue
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Kang He
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yuting Jin
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jiang Zhang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jing Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuehan Wei
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Hanyan Luo
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhenyue Hao
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Xuyun Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jing Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
9
|
Qi L, Xu X, Qi X. The giant E3 ligase HUWE1 is linked to tumorigenesis, spermatogenesis, intellectual disability, and inflammatory diseases. Front Cell Infect Microbiol 2022; 12:905906. [PMID: 35937685 PMCID: PMC9355080 DOI: 10.3389/fcimb.2022.905906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
E3 ubiquitin ligases determine the substrate specificity and catalyze the ubiquitination of lysine residues. HUWE1 is a catalytic HECT domain-containing giant E3 ligase that contains a substrate-binding ring structure, and mediates the ubiquitination of more than 40 diverse substrates. HUWE1 serves as a central node in cellular stress responses, cell growth and death, signal transduction, etc. The expanding atlas of HUWE1 substrates presents a major challenge for the potential therapeutic application of HUWE1 in a particular disease. In addition, HUWE1 has been demonstrated to play contradictory roles in certain aspects of tumor progression in either an oncogenic or a tumor-suppressive manner. We recently defined novel roles of HUWE1 in promoting the activation of multiple inflammasomes. Inflammasome activation-mediated immune responses might lead to multifunctional effects on tumor therapy, inflammation, and autoimmune diseases. In this review, we summarize the known substrates and pleiotropic functions of HUWE1 in different types of cells and models, including its involvement in development, cancer, neuronal disorder and infectious disease. We also discuss the advances in cryo-EM-structural analysis for a functional-mechanistic understanding of HUWE1 in modulating the multitudinous diverse substrates, and introduce the possibility of revisiting the comprehensive roles of HUWE1 in multiple aspects within one microenvironment, which will shed light on the potential therapeutic application of targeting giant E3 ligases like HUWE1.
Collapse
Affiliation(s)
- Lu Qi
- Department of Orthopedics, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoqing Xu
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaopeng Qi
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Clinical Laboratory/Qilu Hospital, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xiaopeng Qi,
| |
Collapse
|
10
|
Steger M, Karayel Ö, Demichev V. Ubiquitinomics: history, methods and applications in basic research and drug discovery. Proteomics 2022; 22:e2200074. [PMID: 35353442 DOI: 10.1002/pmic.202200074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/08/2022]
Abstract
The ubiquitin-proteasome system (UPS) was discovered about 40 years ago and is known to regulate a multitude of cellular processes including protein homeostasis. ubiquitylated proteins are recognized by downstream effectors, resulting in alterations of protein abundance, activity, or localization. Not surprisingly, the ubiquitylation machinery is dysregulated in numerous diseases, including cancers and neurodegeneration. Mass spectrometry (MS)-based proteomics has emerged as a transformative technology for characterizing protein ubiquitylation in an unbiased fashion. Here, we provide an overview of the different MS-based approaches for studying protein ubiquitylation. We review various methods for enriching and quantifying ubiquitin modifications at the peptide or protein level, outline MS acquisition and data processing approaches and discuss key challenges. Finally, we examine how MS-based ubiquitinomics can aid both basic biology and drug discovery research. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Martin Steger
- Evotec München GmbH, Martinsried, 82152, Germany.,Present address: Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Özge Karayel
- Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.,Current address: Department of Physiological Chemistry, Genentech, South San Francisco, CA, 94080, USA
| | - Vadim Demichev
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Berlin, Germany
| |
Collapse
|
11
|
The emerging role of mass spectrometry-based proteomics in drug discovery. Nat Rev Drug Discov 2022; 21:637-654. [PMID: 35351998 DOI: 10.1038/s41573-022-00409-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Proteins are the main targets of most drugs; however, system-wide methods to monitor protein activity and function are still underused in drug discovery. Novel biochemical approaches, in combination with recent developments in mass spectrometry-based proteomics instrumentation and data analysis pipelines, have now enabled the dissection of disease phenotypes and their modulation by bioactive molecules at unprecedented resolution and dimensionality. In this Review, we describe proteomics and chemoproteomics approaches for target identification and validation, as well as for identification of safety hazards. We discuss innovative strategies in early-stage drug discovery in which proteomics approaches generate unique insights, such as targeted protein degradation and the use of reactive fragments, and provide guidance for experimental strategies crucial for success.
Collapse
|
12
|
Insights in Post-Translational Modifications: Ubiquitin and SUMO. Int J Mol Sci 2022; 23:ijms23063281. [PMID: 35328702 PMCID: PMC8952880 DOI: 10.3390/ijms23063281] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/23/2022] Open
Abstract
Both ubiquitination and SUMOylation are dynamic post-translational modifications that regulate thousands of target proteins to control virtually every cellular process. Unfortunately, the detailed mechanisms of how all these cellular processes are regulated by both modifications remain unclear. Target proteins can be modified by one or several moieties, giving rise to polymers of different morphology. The conjugation cascades of both modifications comprise a few activating and conjugating enzymes but close to thousands of ligating enzymes (E3s) in the case of ubiquitination. As a result, these E3s give substrate specificity and can form polymers on a target protein. Polymers can be quickly modified forming branches or cleaving chains leading the target protein to its cellular fate. The recent development of mass spectrometry(MS) -based approaches has increased the understanding of ubiquitination and SUMOylation by finding essential modified targets in particular signaling pathways. Here, we perform a concise overview comprising from the basic mechanisms of both ubiquitination and SUMOylation to recent MS-based approaches aimed to find specific targets for particular E3 enzymes.
Collapse
|
13
|
Abstract
p53, the guardian of the genome, is a short-lived protein that is tightly controlled at low levels by constant ubiquitination and proteasomal degradation in higher organisms. p53 stabilization and activation are early crucial events to cope with external stimuli in cells. However, the role of p53 ubiquitination and its relevant molecular mechanisms have not been addressed in invertebrates. In this study, our findings revealed that both HUWE1 (HECT, UBA, and WWE domain-containing E3 ubiquitin-protein ligase 1) and TRAF6 (tumor necrosis factor receptor-associated factor 6) could serve as E3 ubiquitin ligases for p53 in mud crabs (Scylla paramamosain). Moreover, the expression of HUWE1 and TRAF6 was significantly downregulated during white spot syndrome virus (WSSV) infection, and therefore the ubiquitination of p53 was interrupted, leading to the activation of apoptosis and reactive oxygen species (ROS) signals through p53 accumulation, which eventually suppressed viral invasion in the mud crabs. To the best of our knowledge, this is the first study to reveal the p53 ubiquitination simultaneously induced by two E3 ligases in arthropods, which provides a novel molecular mechanism of invertebrates for resistance to viral infection. IMPORTANCE p53, which is a well-known tumor suppressor that has been widely studied in higher animals, has been reported to be tightly controlled at low levels by ubiquitin-dependent proteasomal degradation. However, recent p53 ubiquitination-relevant research mainly involved an individual E3 ubiquitin ligase, but not whether there exist other mechanisms that need to be explored. The results of this study show that HUWE1 and TRAF6 could serve as p53 E3 ubiquitin ligases and synchronously mediate p53 ubiquitination in mud crabs (Scylla paramamosain), which confirmed the diversity of the p53 ubiquitination regulatory pathway. In addition, the effects of p53 ubiquitination are mainly focused on tumorigenesis, but a few are focused on the host immune defense in invertebrates. Our findings reveal that p53 ubiquitination could affect ROS and apoptosis signals to cope with WSSV infection in mud crabs, which is the first clarification of the immunologic functions and mechanisms of p53 ubiquitination in invertebrates.
Collapse
|
14
|
Wilson P, Abdelmoti L, Norcross R, Jang ER, Palayam M, Galperin E. The role of USP7 in the Shoc2-ERK1/2 signaling axis and Noonan-like syndrome with loose anagen hair. J Cell Sci 2021; 134:272259. [PMID: 34553755 DOI: 10.1242/jcs.258922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
The ERK1/2 (also known as MAPK3 and MAPK1, respectively) signaling pathway is critical in organismal development and tissue morphogenesis. Deregulation of this pathway leads to congenital abnormalities with severe developmental dysmorphisms. The core ERK1/2 cascade relies on scaffold proteins, such as Shoc2 to guide and fine-tune its signals. Mutations in SHOC2 lead to the development of the pathology termed Noonan-like Syndrome with Loose Anagen Hair (NSLAH). However, the mechanisms underlying the functions of Shoc2 and its contributions to disease progression remain unclear. Here, we show that ERK1/2 pathway activation triggers the interaction of Shoc2 with the ubiquitin-specific protease USP7. We reveal that, in the Shoc2 module, USP7 functions as a molecular 'switch' that controls the E3 ligase HUWE1 and the HUWE1-induced regulatory feedback loop. We also demonstrate that disruption of Shoc2-USP7 binding leads to aberrant activation of the Shoc2-ERK1/2 axis. Importantly, our studies reveal a possible role for USP7 in the pathogenic mechanisms underlying NSLAH, thereby extending our understanding of how ubiquitin-specific proteases regulate intracellular signaling.
Collapse
Affiliation(s)
- Patricia Wilson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Lina Abdelmoti
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Rebecca Norcross
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Eun Ryoung Jang
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Malathy Palayam
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Emilia Galperin
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
15
|
Hunkeler M, Jin CY, Ma MW, Monda JK, Overwijn D, Bennett EJ, Fischer ES. Solenoid architecture of HUWE1 contributes to ligase activity and substrate recognition. Mol Cell 2021; 81:3468-3480.e7. [PMID: 34314700 PMCID: PMC8476073 DOI: 10.1016/j.molcel.2021.06.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 05/19/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
HECT ubiquitin ligases play essential roles in metazoan development and physiology. The HECT ligase HUWE1 is central to the cellular stress response by mediating degradation of key death or survival factors, including Mcl1, p53, DDIT4, and Myc. Although mutations in HUWE1 and related HECT ligases are widely implicated in human disease, our molecular understanding remains limited. Here we present a comprehensive investigation of full-length HUWE1, deepening our understanding of this class of enzymes. The N-terminal ~3,900 amino acids of HUWE1 are indispensable for proper ligase function, and our cryo-EM structures of HUWE1 offer a complete molecular picture of this large HECT ubiquitin ligase. HUWE1 forms an alpha solenoid-shaped assembly with a central pore decorated with protein interaction modules. Structures of HUWE1 variants linked to neurodevelopmental disorders as well as of HUWE1 bound to a model substrate link the functions of this essential enzyme to its three-dimensional organization. Hunkeler et al. present the cryo-EM structure of HUWE1, a large HECT E3 ligase that forms a modular ring-shaped assembly with flexibly attached accessory domains. The influence of mutations associated with intellectual disabilities on HUWE1 activity and substrate recognition by HUWE1 is dissected biochemically and structurally.
Collapse
Affiliation(s)
- Moritz Hunkeler
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Cyrus Y Jin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Michelle W Ma
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Julie K Monda
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daan Overwijn
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Eric J Bennett
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Benslimane Y, Sánchez‐Osuna M, Coulombe‐Huntington J, Bertomeu T, Henry D, Huard C, Bonneil É, Thibault P, Tyers M, Harrington L. A novel p53 regulator, C16ORF72/TAPR1, buffers against telomerase inhibition. Aging Cell 2021; 20:e13331. [PMID: 33660365 PMCID: PMC8045932 DOI: 10.1111/acel.13331] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 12/28/2022] Open
Abstract
Telomere erosion in cells with insufficient levels of the telomerase reverse transcriptase (TERT), contributes to age-associated tissue dysfunction and senescence, and p53 plays a crucial role in this response. We undertook a genome-wide CRISPR screen to identify gene deletions that sensitized p53-positive human cells to telomerase inhibition. We uncovered a previously unannotated gene, C16ORF72, which we term Telomere Attrition and p53 Response 1 (TAPR1), that exhibited a synthetic-sick relationship with TERT loss. A subsequent genome-wide CRISPR screen in TAPR1-disrupted cells reciprocally identified TERT as a sensitizing gene deletion. Cells lacking TAPR1 or TERT possessed elevated p53 levels and transcriptional signatures consistent with p53 upregulation. The elevated p53 response in TERT- or TAPR1-deficient cells was exacerbated by treatment with the MDM2 inhibitor and p53 stabilizer nutlin-3a and coincided with a further reduction in cell fitness. Importantly, the sensitivity to treatment with nutlin-3a in TERT- or TAPR1-deficient cells was rescued by loss of p53. These data suggest that TAPR1 buffers against the deleterious consequences of telomere erosion or DNA damage by constraining p53. These findings identify C16ORF72/TAPR1 as new regulator at the nexus of telomere integrity and p53 regulation.
Collapse
Affiliation(s)
- Yahya Benslimane
- Institute for Research in Immunology and CancerUniversité de MontréalMontréalQCCanada
| | - María Sánchez‐Osuna
- Institute for Research in Immunology and CancerUniversité de MontréalMontréalQCCanada
| | | | - Thierry Bertomeu
- Institute for Research in Immunology and CancerUniversité de MontréalMontréalQCCanada
| | - Danielle Henry
- Institute for Research in Immunology and CancerUniversité de MontréalMontréalQCCanada
| | - Caroline Huard
- Institute for Research in Immunology and CancerUniversité de MontréalMontréalQCCanada
| | - Éric Bonneil
- Institute for Research in Immunology and CancerUniversité de MontréalMontréalQCCanada
| | - Pierre Thibault
- Institute for Research in Immunology and CancerUniversité de MontréalMontréalQCCanada
- Department of ChemistryUniversité de MontréalMontréalQCCanada
| | - Mike Tyers
- Institute for Research in Immunology and CancerUniversité de MontréalMontréalQCCanada
- Department of MedicineUniversité de MontréalMontréalQCCanada
| | - Lea Harrington
- Institute for Research in Immunology and CancerUniversité de MontréalMontréalQCCanada
- Department of MedicineUniversité de MontréalMontréalQCCanada
| |
Collapse
|
17
|
Li X, Wang L, Wang M, Zhang Z, Ma C, Ma X, Na X, Liang W. Global analysis of protein succinylation modification of Nostoc flagelliforme in response to dehydration. J Proteomics 2021; 237:104149. [PMID: 33588108 DOI: 10.1016/j.jprot.2021.104149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 11/29/2022]
Abstract
Nostoc flagelliforme is a type of terrestrial cyanobacteria that is distributed in arid or semi-arid steppes in China. To research the molecular mechanisms underlying the adaptation of N. flagelliforme to drought stress, the succinylated expression profile and changes in N. flagelliforme that resulted as a response to dehydration were analyzed by label-free proteomics. A total of 1149 succinylated sites, 1128 succinylated peptides, and 396 succinylated proteins were identified. Succinylated proteins were differentially involved in photosynthesis and energy metabolism, as well as in reactive oxygen species (ROS) scavenging. Motif-X analysis of succinylated sites determined a succinylation motif [KxxG]. N. flagelliforme adapts to dehydration by increasing glucose metabolism and pentose phosphate pathway flux, and decreasing photosynthetic rate, which some of the key proteins were succinylated. ROS scavenging was mainly involved in the regulation of the enzyme antioxidant defense system and non-enzymatic antioxidant defense system through succinylation modification, thus eliminating excessive ROS. Protein succinylation of N. flagelliforme may play an important regulatory role in response to dehydration. The results are foundational, as they can inform future research into the mechanisms involved in the succinylation regulation mechanism of N. flagelliforme in response to dehydration. SIGNIFICANCE: The global succinylation network involved in response to dehydration in N. flagelliforme has been established. We found that many succinylated proteins were involved in photosynthesis, glucose metabolism and antioxidation. The global survey of succinylated proteins and the changes of succinylated levels in response to dehydration provided effective information for the drought tolerance mechanism in N. flagelliforme.
Collapse
Affiliation(s)
- Xiaoxu Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Lingxia Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Meng Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Zheng Zhang
- School of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Caixia Ma
- School of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Xiaorong Ma
- School of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Xiaofan Na
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
| | - Wenyu Liang
- School of Life Sciences, Ningxia University, Yinchuan 750021, PR China.
| |
Collapse
|
18
|
Miao ZF, Sun JX, Adkins-Threats M, Pang MJ, Zhao JH, Wang X, Tang KW, Wang ZN, Mills JC. DDIT4 Licenses Only Healthy Cells to Proliferate During Injury-induced Metaplasia. Gastroenterology 2021; 160:260-271.e10. [PMID: 32956680 PMCID: PMC7857017 DOI: 10.1053/j.gastro.2020.09.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS In stomach, metaplasia can arise from differentiated chief cells that become mitotic via paligenosis, a stepwise program. In paligenosis, mitosis initiation requires reactivation of the cellular energy hub mTORC1 after initial mTORC1 suppression by DNA damage induced transcript 4 (DDIT4 aka REDD1). Here, we use DDIT4-deficient mice and human cells to study how metaplasia increases tumorigenesis risk. METHODS A tissue microarray of human gastric tissue specimens was analyzed by immunohistochemistry for DDIT4. C57BL/6 mice were administered combinations of intraperitoneal injections of high-dose tamoxifen (TAM) to induce spasmolytic polypeptide-expressing metaplasia (SPEM) and rapamycin to block mTORC1 activity, and N-methyl-N-nitrosourea (MNU) in drinking water to induce spontaneous gastric tumors. Stomachs were analyzed for proliferation, DNA damage, and tumor formation. CRISPR/Cas9-generated DDIT4-/- and control human gastric cells were analyzed for growth in vitro and in xenografts with and without 5-fluorouracil (5-FU) treatment. RESULTS DDIT4 was expressed in normal gastric chief cells in mice and humans and decreased as chief cells became metaplastic. Paligenotic Ddit4-/- chief cells maintained constitutively high mTORC1, causing increased mitosis of metaplastic cells despite DNA damage. Lower DDIT4 expression correlated with longer survival of patients with gastric cancer. 5-FU-treated DDIT4-/- human gastric epithelial cells had significantly increased cells entering mitosis despite DNA damage and increased proliferation in vitro and in xenografts. MNU-treated Ddit4-/- mice had increased spontaneous tumorigenesis after multiple rounds of paligenosis induced by TAM. CONCLUSIONS During injury-induced metaplastic proliferation, failure of licensing mTORC1 reactivation correlates with increased proliferation of cells harboring DNA damage, as well as increased tumor formation and growth in mice and humans.
Collapse
Affiliation(s)
- Zhi-Feng Miao
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jing-Xu Sun
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Mahliyah Adkins-Threats
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Min-Jiao Pang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jun-Hua Zhao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xin Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Kai-Wen Tang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Jason C Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri; Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri.
| |
Collapse
|
19
|
Vere G, Kealy R, Kessler BM, Pinto-Fernandez A. Ubiquitomics: An Overview and Future. Biomolecules 2020; 10:E1453. [PMID: 33080838 PMCID: PMC7603029 DOI: 10.3390/biom10101453] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Covalent attachment of ubiquitin, a small globular polypeptide, to protein substrates is a key post-translational modification that determines the fate, function, and turnover of most cellular proteins. Ubiquitin modification exists as mono- or polyubiquitin chains involving multiple ways how ubiquitin C-termini are connected to lysine, perhaps other amino acid side chains, and N-termini of proteins, often including branching of the ubiquitin chains. Understanding this enormous complexity in protein ubiquitination, the so-called 'ubiquitin code', in combination with the ∼1000 enzymes involved in controlling ubiquitin recognition, conjugation, and deconjugation, calls for novel developments in analytical techniques. Here, we review different headways in the field mainly driven by mass spectrometry and chemical biology, referred to as "ubiquitomics", aiming to understand this system's biological diversity.
Collapse
Affiliation(s)
- George Vere
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; (G.V.); (B.M.K.)
| | - Rachel Kealy
- St Anne’s College, University of Oxford, Oxford OX2 6HS, UK;
| | - Benedikt M. Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; (G.V.); (B.M.K.)
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Sciences Oxford Institute (CAMS), Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; (G.V.); (B.M.K.)
| |
Collapse
|
20
|
Proteomics-Based Identification of DUB Substrates Using Selective Inhibitors. Cell Chem Biol 2020; 28:78-87.e3. [PMID: 33007217 DOI: 10.1016/j.chembiol.2020.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/16/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023]
Abstract
Deubiquitinating enzymes (DUBs) catalyze the removal of ubiquitin, thereby reversing the activity of E3 ubiquitin ligases and are central to the control of protein abundance and function. Despite the growing interest in DUBs as therapeutic targets, cellular functions for DUBs remain largely unknown and technical challenges often preclude the identification of DUB substrates in a comprehensive manner. Here, we demonstrate that treatment with potent DUB inhibitors coupled to mass spectrometry-based proteomics can identify DUB substrates at a proteome-wide scale. We applied this approach to USP7, a DUB widely investigated as a therapeutic target and identified many known substrates and additional targets. We demonstrate that USP7 substrates are enriched for DNA repair enzymes and E3 ubiquitin ligases. This work provides not only a comprehensive annotation of USP7 substrates, but a general protocol widely applicable to other DUBs, which is critical for translational development of DUB targeted agents.
Collapse
|
21
|
Britto FA, Dumas K, Giorgetti-Peraldi S, Ollendorff V, Favier FB. Is REDD1 a metabolic double agent? Lessons from physiology and pathology. Am J Physiol Cell Physiol 2020; 319:C807-C824. [PMID: 32877205 DOI: 10.1152/ajpcell.00340.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Akt/mechanistic target of rapamycin (mTOR) signaling pathway governs macromolecule synthesis, cell growth, and metabolism in response to nutrients and growth factors. Regulated in development and DNA damage response (REDD)1 is a conserved and ubiquitous protein, which is transiently induced in response to multiple stimuli. Acting like an endogenous inhibitor of the Akt/mTOR signaling pathway, REDD1 protein has been shown to regulate cell growth, mitochondrial function, oxidative stress, and apoptosis. Recent studies also indicate that timely REDD1 expression limits Akt/mTOR-dependent synthesis processes to spare energy during metabolic stresses, avoiding energy collapse and detrimental consequences. In contrast to this beneficial role for metabolic adaptation, REDD1 chronic expression appears involved in the pathogenesis of several diseases. Indeed, REDD1 expression is found as an early biomarker in many pathologies including inflammatory diseases, cancer, neurodegenerative disorders, depression, diabetes, and obesity. Moreover, prolonged REDD1 expression is associated with cell apoptosis, excessive reactive oxygen species (ROS) production, and inflammation activation leading to tissue damage. In this review, we decipher several mechanisms that make REDD1 a likely metabolic double agent depending on its duration of expression in different physiological and pathological contexts. We also discuss the role played by REDD1 in the cross talk between the Akt/mTOR signaling pathway and the energetic metabolism.
Collapse
Affiliation(s)
| | - Karine Dumas
- Université Cote d'Azur, INSERM, UMR1065, C3M, Nice, France
| | | | | | | |
Collapse
|
22
|
Ebner FA, Sailer C, Eichbichler D, Jansen J, Sladewska-Marquardt A, Stengel F, Scheffner M. A ubiquitin variant-based affinity approach selectively identifies substrates of the ubiquitin ligase E6AP in complex with HPV-11 E6 or HPV-16 E6. J Biol Chem 2020; 295:15070-15082. [PMID: 32855237 DOI: 10.1074/jbc.ra120.015603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 01/05/2023] Open
Abstract
The E6 protein of both mucosal high-risk human papillomaviruses (HPVs) such as HPV-16, which have been causally associated with malignant tumors, and low-risk HPVs such as HPV-11, which cause the development of benign tumors, interacts with the cellular E3 ubiquitin ligase E6-associated protein (E6AP). This indicates that both HPV types employ E6AP to organize the cellular proteome to viral needs. However, whereas several substrate proteins of the high-risk E6-E6AP complex are known, e.g. the tumor suppressor p53, potential substrates of the low-risk E6-E6AP complex remain largely elusive. Here, we report on an affinity-based enrichment approach that enables the targeted identification of potential substrate proteins of the different E6-E6AP complexes by a combination of E3-selective ubiquitination in whole-cell extracts and high-resolution MS. The basis for the selectivity of this approach is the use of a ubiquitin variant that is efficiently used by the E6-E6AP complexes for ubiquitination but not by E6AP alone. By this approach, we identified ∼190 potential substrate proteins for low-risk HPV-11 E6 and high-risk HPV-16 E6. Moreover, subsequent validation experiments in vitro and within cells with selected substrate proteins demonstrate the potential of our approach. In conclusion, our data represent a reliable repository for potential substrates of the HPV-16 and HPV-11 E6 proteins in complex with E6AP.
Collapse
Affiliation(s)
- Felix A Ebner
- Department of Biology, University of Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | - Carolin Sailer
- Department of Biology, University of Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | - Daniela Eichbichler
- Department of Biology, University of Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | - Jasmin Jansen
- Department of Biology, University of Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | - Anna Sladewska-Marquardt
- Department of Biology, University of Konstanz, Germany; Proteomics Center, University of Konstanz, Germany
| | - Florian Stengel
- Department of Biology, University of Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Germany.
| |
Collapse
|
23
|
The Ubiquitin System: a Regulatory Hub for Intellectual Disability and Autism Spectrum Disorder. Mol Neurobiol 2020; 57:2179-2193. [DOI: 10.1007/s12035-020-01881-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022]
|
24
|
Salas-Lloret D, Agabitini G, González-Prieto R. TULIP2: An Improved Method for the Identification of Ubiquitin E3-Specific Targets. Front Chem 2019; 7:802. [PMID: 31850303 PMCID: PMC6901917 DOI: 10.3389/fchem.2019.00802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/07/2019] [Indexed: 01/27/2023] Open
Abstract
Protein modification by Ubiquitin or Ubiquitin-like modifiers is mediated by an enzyme cascade composed of E1, E2, and E3 enzymes. E1s, or ubiquitin-activating enzymes, perform ubiquitin activation. Next, ubiquitin is transferred to ubiquitin-conjugating enzymes or E2s. Finally, ubiquitin ligases or E3s catalyze the transfer of ubiquitin to the acceptor proteins. E3 enzymes are responsible for determining the substrate specificity. Determining which E3 enzyme maps to which substrate is a major challenge that is greatly facilitated by the TULIP2 methodology. TULIP2 methodology is fast, precise, and cost-effective. Compared to the previous TULIP methodology protocol, TULIP2 methodology achieves a more than 50-fold improvement in the purification yield and two orders of magnitude improvement in the signal-to-background ratio after label free quantification by mass spectrometry analysis. The method includes the generation of TULIP2 cell lines, subsequent purification of TULIP2 conjugates, preparation, and analysis of samples by mass spectrometry.
Collapse
Affiliation(s)
- Daniel Salas-Lloret
- González-Prieto Laboratory, Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Giulia Agabitini
- González-Prieto Laboratory, Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Román González-Prieto
- González-Prieto Laboratory, Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
25
|
Genereux JC. Mass spectrometric approaches for profiling protein folding and stability. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 118:111-144. [PMID: 31928723 DOI: 10.1016/bs.apcsb.2019.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein stability reports on protein homeostasis, function, and binding interactions, such as to other proteins, metabolites and drugs. As such, there is a pressing need for technologies that can report on protein stability. The ideal technique could be applied in vitro or in vivo systems, proteome-wide, independently of matrix, under native conditions, with residue-level resolution, and on protein at endogenous levels. Mass spectrometry has rapidly become a preferred technology for identifying and quantifying proteins. As such, it has been increasingly incorporated into methodologies for interrogating protein stability and folding. Although no single technology can satisfy all desired applications, several emerging approaches have shown outstanding success at providing biological insight into the stability of the proteome. This chapter outlines some of these recent emerging technologies.
Collapse
Affiliation(s)
- Joseph C Genereux
- Department of Chemistry, University of California, Riverside, CA, United States
| |
Collapse
|
26
|
Melino G, Cecconi F, Pelicci PG, Mak TW, Bernassola F. Emerging roles of HECT-type E3 ubiquitin ligases in autophagy regulation. Mol Oncol 2019; 13:2033-2048. [PMID: 31441992 PMCID: PMC6763782 DOI: 10.1002/1878-0261.12567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a conserved self-eating process that delivers cytoplasmic material to the lysosome to allow degradation of intracellular components, including soluble, unfolded and aggregated proteins, damaged organelles, and invading microorganisms. Autophagy provides a homeostatic control mechanism and is essential for balancing sources of energy in response to nutrient stress. Autophagic dysfunction or dysregulation has been implicated in several human pathologies, including cancer and neurodegeneration, and its modulation has substantial potential as a therapeutic strategy. Given the relevant clinical and therapeutic implications of autophagy, there is emerging intense interest in the identification of the key factors regulating the components of the autophagic machinery. Various post-translational modifications, including ubiquitylation, have been implicated in autophagy control. The list of the E3 ubiquitin protein ligases involved in the regulation of several steps of the autophagic process is continuously growing. In this review, we will focus on recent advances in the understanding of the role of the homologous to the E6AP carboxyl terminus-type E3 ubiquitin ligases in autophagy control.
Collapse
Affiliation(s)
- Gerry Melino
- Department of Experimental MedicineTORUniversity of Rome “Tor Vergata”Italy
- Medical Research Council, Toxicology UnitUniversity of CambridgeUK
| | - Francesco Cecconi
- Cell Stress and Survival UnitDanish Cancer Society Research CenterCopenhagenDenmark
- Department of BiologyTor Vergata University of RomeItaly
- Department of Pediatric Hematology and OncologyIRCCS Bambino Gesù Children's HospitalRomeItaly
| | - Pier Giuseppe Pelicci
- Department of Experimental OncologyIEO, European Institute of Oncology IRCCSMilanItaly
- Department of Oncology and Haemato‐OncologyMilan UniversityItaly
| | - Tak Wah Mak
- The Campbell Family Institute for Breast Cancer ResearchOntario Cancer InstitutePrincess Margaret HospitalTorontoONCanada
| | - Francesca Bernassola
- Department of Experimental MedicineTORUniversity of Rome “Tor Vergata”Italy
- Department of Experimental OncologyIEO, European Institute of Oncology IRCCSMilanItaly
| |
Collapse
|
27
|
León-Navarro DA, Albasanz JL, Martín M. Functional Cross-Talk between Adenosine and Metabotropic Glutamate Receptors. Curr Neuropharmacol 2019; 17:422-437. [PMID: 29663888 PMCID: PMC6520591 DOI: 10.2174/1570159x16666180416093717] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/19/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Abstract: G-protein coupled receptors are transmembrane proteins widely expressed in cells and their transduction pathways are mediated by controlling second messenger levels through different G-protein interactions. Many of these receptors have been described as involved in the physiopathology of neurodegenerative diseases and even considered as potential targets for the design of novel therapeutic strategies. Endogenous and synthetic allosteric and orthosteric selective ligands are able to modulate GPCRs at both gene and protein expression levels and can also modify their physiological function. GPCRs that coexist in the same cells can homo- and heteromerize, therefore, modulating their function. Adenosine receptors are GPCRs which stimulate or inhibit adenylyl cyclase activity through Gi/Gs protein and are involved in the control of neurotransmitter release as glutamate. In turn, metabotropic glutamate receptors are also GPCRs which inhibit adenylyl cyclase or stimulate phospholipase C activities through Gi or Gq proteins, respectively. In recent years, evidence of crosstalk mechanisms be-tween different GPCRs have been described. The aim of the present review was to summarize the described mechanisms of interaction and crosstalking between adenosine and metabotropic glutamate receptors, mainly of group I, in both in vitro and in vivo systems, and their possible use for the design of novel ligands for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- David Agustín León-Navarro
- Departamento de Quimica Inorganica, Organica y Bioquimica. CRIB, Universidad de Castilla-La Mancha, Spain.,Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | - José Luis Albasanz
- Departamento de Quimica Inorganica, Organica y Bioquimica. CRIB, Universidad de Castilla-La Mancha, Spain.,Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain.,Facultad de Medicina de Ciudad Real, Camino Moledores s/n. 13071 Ciudad Real, Spain
| | - Mairena Martín
- Departamento de Quimica Inorganica, Organica y Bioquimica. CRIB, Universidad de Castilla-La Mancha, Spain.,Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain.,Facultad de Medicina de Ciudad Real, Camino Moledores s/n. 13071 Ciudad Real, Spain
| |
Collapse
|
28
|
Zhao Y, Lu X, Cheng Z, Tian M, Qiangba Y, Fu Q, Ren Z. Comparative proteomic analysis of Tibetan pig spermatozoa at high and low altitudes. BMC Genomics 2019; 20:569. [PMID: 31291894 PMCID: PMC6617692 DOI: 10.1186/s12864-019-5873-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Background To illuminate the mechanisms underlying the high-altitude tolerance of Tibetan pig spermatozoa, proteomes of spermatozoa from Tibetan pigs raised in high and low altitudes were compared using a tandem mass tag (TMT)-labeled quantitative proteomics approach. Results A total of 77 differentially expressed proteins (DEPs) were identified. Gene Ontology (GO) analysis revealed DEPs that were predominantly associated with the actin cytoskeleton, the tricarboxylic acid (TCA) cycle, and adenosine triphosphate (ATP) metabolism, and were from 12 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Three subnetworks were significantly enriched and 10 centric proteins were identified by protein-protein interaction (PPI) network analysis. Relative expression levels of the proteins (ATP5H, CYCS, MYH9 and FN1) were confirmed using Western blotting. Conclusions Our study is the first to use a tandem mass tag (TMT) approach to analyze Tibetan pig spermatozoa, and provides a foundation to understand the mechanisms underlying the reproductive adaptations of Tibetan pigs to high-altitude environments. Electronic supplementary material The online version of this article (10.1186/s12864-019-5873-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanling Zhao
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, 860000, People's Republic of China
| | - Xiaoli Lu
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, 860000, People's Republic of China
| | - Zhipeng Cheng
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, 860000, People's Republic of China
| | - Mengfang Tian
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, 860000, People's Republic of China
| | - Yangzong Qiangba
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, 860000, People's Republic of China.
| | - Qiang Fu
- State Key Laboratory of Subtropical Agro-Bioresource Conservation and Utilization, Guangxi University, Nanning, Guangxi Province, 530004, People's Republic of China.
| | - Zili Ren
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, 860000, People's Republic of China.
| |
Collapse
|
29
|
Qian S, Zhan X, Lu M, Li N, Long Y, Li X, Desiderio DM, Zhan X. Quantitative Analysis of Ubiquitinated Proteins in Human Pituitary and Pituitary Adenoma Tissues. Front Endocrinol (Lausanne) 2019; 10:328. [PMID: 31191455 PMCID: PMC6540463 DOI: 10.3389/fendo.2019.00328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/07/2019] [Indexed: 12/30/2022] Open
Abstract
Protein ubiquitination is an important post-translational modification that is associated with multiple diseases, including pituitary adenomas (PAs). Protein ubiquitination profiling in human pituitary and PAs remains unknown. Here, we performed the first ubiquitination analysis with an anti-ubiquitin antibody (specific to K-ε-GG)-based label-free quantitative proteomics method and bioinformatics to investigate protein ubiquitination profiling between PA and control tissues. A total of 158 ubiquitinated sites and 142 ubiquitinated peptides in 108 proteins were identified, and five ubiquitination motifs were found. KEGG pathway network analysis of 108 ubiquitinated proteins identified four statistically significant signaling pathways, including PI3K-AKT signaling pathway, hippo signaling pathway, ribosome, and nucleotide excision repair. R software Gene Ontology (GO) analysis of 108 ubiquitinated proteins revealed that protein ubiquitination was involved in multiple biological processes, cellular components, and molecule functions. The randomly selected ubiquitinated 14-3-3 zeta/delta protein was further analyzed with Western blot, and it was found that upregulated 14-3-3 zeta/delta protein in nonfunctional PAs might be derived from the significantly decreased level of its ubiquitination compared to control pituitaries, which indicated a contribution of 14-3-3 zeta/delta protein to pituitary tumorigenesis. These findings provided the first ubiquitinated proteomic profiling and ubiquitination-involved signaling pathway networks in human PAs. This study offers new scientific evidence and basic data to elucidate the biological functions of ubiquitination in PAs, insights into its novel molecular mechanisms of pituitary tumorigenesis, and discovery of novel biomarkers and therapeutic targets for effective treatment of PAs.
Collapse
Affiliation(s)
- Shehua Qian
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Miaolong Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Long
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Dominic M. Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha, China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
mTORC1-Regulated and HUWE1-Mediated WIPI2 Degradation Controls Autophagy Flux. Mol Cell 2019; 72:303-315.e6. [PMID: 30340022 DOI: 10.1016/j.molcel.2018.09.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 12/24/2022]
Abstract
mTORC1, the major homeostatic sensor and responder, regulates cell catabolism mainly by targeting autophagy. Here, we show that mTORC1 directly controls autophagosome formation via phosphorylation of WIPI2, a critical protein in isolation membrane growth and elongation. mTORC1 phosphorylates Ser395 of WIPI2, directing WIPI2 to interact specifically with the E3 ubiquitin ligase HUWE1 for ubiquitination and proteasomal degradation. Physiological or pharmacological inhibition of mTORC1 in cells promotes WIPI2 stabilization, autophagosome formation, and autophagic degradation. In mouse liver, fasting significantly increases the WIPI2 protein level, while silencing HUWE1 enhances autophagy, and introducing WIPI2 improves lipid clearance. Thus, regulation of the intracellular WIPI2 protein level by mTORC1 and HUWE1 is a key determinant of autophagy flux and may coordinate the initiation, progression, and completion of autophagy.
Collapse
|
31
|
GPRC5A: An Emerging Biomarker in Human Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1823726. [PMID: 30417009 PMCID: PMC6207857 DOI: 10.1155/2018/1823726] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022]
Abstract
Aberrant expression of G protein-coupled receptors (GPCRs) is frequently associated with tumorigenesis. G Protein-coupled receptor class C group 5 member A (GPRC5A) is a member of the GPCR superfamily, is expressed preferentially in lung tissues, and is regulated by various entities at multiple levels. GPRC5A exerts a tumor suppressive role in lung cancer and GPRC5A deletion promotes lung tumor initiation and progression. Recent advances have highlighted that GPRC5A dysregulation is found in various human cancers and is related to many tumor-associated signaling pathways, including the cyclic adenosine monophosphate (cAMP), nuclear factor (NF)-κB, signal transducer and activator of transcription (STAT) 3, and focal adhesion kinase (FAK)/Src signaling. This review aimed to summarize our updated view on the biology and regulation of GPRC5A, its expression in human cancers, and the linked signaling pathways. A better comprehension of the underlying cellular and molecular mechanisms of GPRC5A will provide novel insights into its potential diagnostic and therapeutic value.
Collapse
|
32
|
Brioschi M, Banfi C. The application of gene silencing in proteomics: from laboratory to clinic. Expert Rev Proteomics 2018; 15:717-732. [PMID: 30205712 DOI: 10.1080/14789450.2018.1521275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Since the completion of genome sequencing, gene silencing technologies have emerged as powerful tools to study gene functions in various biological processes, both in vivo and in vitro. Moreover, they have also been proposed as therapeutic agents to inhibit selected genes in a variety of pathological conditions, such as cancer, neurodegenerative, and cardiovascular diseases. Area covered: This review summarizes the mechanisms of action and applications of genome editing tools, from RNA interference to clustered regularly interspaced short palindromic repeats-based systems, in research and in clinics. We describe their essential role in high-throughput genetic screens and, in particular, in functional proteomics studies, to identify diagnostic markers and therapeutic targets. Indeed, gene silencing and proteomics have been extensively integrated to study global proteome changes, posttranslational modifications, and protein-protein interactions. Expert commentary: Functional proteomics approaches that leverage gene silencing tools have been successfully applied to examine the role of several genes in various contexts, leading to a deeper knowledge of biological pathways and disease mechanisms. Recent developments of gene silencing tools have improved their performance, also in terms of off-targets effects reduction, paving the way for a wider therapeutic application of these systems.
Collapse
Affiliation(s)
- Maura Brioschi
- a Unit of Proteomics , Centro Cardiologico Monzino IRCCS , Milano , Italy
| | - Cristina Banfi
- a Unit of Proteomics , Centro Cardiologico Monzino IRCCS , Milano , Italy
| |
Collapse
|
33
|
Avet C, Denoyelle C, L'Hôte D, Petit F, Guigon CJ, Cohen-Tannoudji J, Simon V. GnRH regulates the expression of its receptor accessory protein SET in pituitary gonadotropes. PLoS One 2018; 13:e0201494. [PMID: 30052687 PMCID: PMC6063425 DOI: 10.1371/journal.pone.0201494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/16/2018] [Indexed: 01/26/2023] Open
Abstract
Reproductive function is under the control of the neurohormone GnRH, which activates a G-protein-coupled receptor (GnRHR) expressed in pituitary gonadotrope cells. GnRHR activates a complex signaling network to regulate synthesis and secretion of the two gonadotropin hormones, luteinizing hormone and follicle-stimulating hormone, both regulating gametogenesis and steroidogenesis in gonads. Recently, in an attempt to identify the mechanisms underlying GnRHR signaling plasticity, we identified the first interacting partner of GnRHR, the proto-oncogene SET. We showed that SET binds to intracellular domains of GnRHR to enhance its coupling to cAMP pathway in αT3-1 gonadotrope cells. Here, we demonstrate that SET protein is rapidly regulated by GnRH, which increases SET phosphorylation state and decreases dose-dependently SET protein level. Our results highlight a post-translational regulation of SET protein involving the proteasome pathway. We determined that SET phosphorylation upon GnRH stimulation is mediated by PKC and that PKC mediates GnRH-induced SET down-regulation. Phosphorylation on serine 9 targets SET for degradation into the proteasome. Furthermore, a non-phosphorylatable SET mutant on serine 9 is resistant to GnRH-induced down-regulation. Altogether, these data suggest that GnRH-induced SET phosphorylation on serine 9 mediates SET protein down-regulation through the proteasome pathway. Noteworthy, SET down-regulation was also observed in response to pulsatile GnRH stimulation in LβT2 gonadotrope cells as well as in vivo in prepubertal female mice supporting its physiological relevance. In conclusion, this study highlights a regulation of SET protein by the neurohormone GnRH and identifies some of the mechanisms involved.
Collapse
Affiliation(s)
- Charlotte Avet
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS UMR 8251, INSERM U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris, France
| | - Chantal Denoyelle
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS UMR 8251, INSERM U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris, France
| | - David L'Hôte
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS UMR 8251, INSERM U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris, France
| | - Florence Petit
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS UMR 8251, INSERM U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris, France
| | - Céline J Guigon
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS UMR 8251, INSERM U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris, France
| | - Joëlle Cohen-Tannoudji
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS UMR 8251, INSERM U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris, France
| | - Violaine Simon
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS UMR 8251, INSERM U1133, Biologie Fonctionnelle et Adaptative, Physiologie de l'axe gonadotrope, Paris, France
| |
Collapse
|
34
|
Jin EJ, Ko HR, Hwang I, Kim BS, Choi JY, Park KW, Cho SW, Ahn JY. Akt regulates neurite growth by phosphorylation-dependent inhibition of radixin proteasomal degradation. Sci Rep 2018; 8:2557. [PMID: 29416050 PMCID: PMC5803261 DOI: 10.1038/s41598-018-20755-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022] Open
Abstract
Neurite growth is controlled by a complex molecular signaling network that regulates filamentous actin (F-actin) dynamics at the growth cone. The evolutionarily conserved ezrin, radixin, and moesin family of proteins tether F-actin to the cell membrane when phosphorylated at a conserved threonine residue and modulate neurite outgrowth. Here we show that Akt binds to and phosphorylates a threonine 573 residue on radixin. Akt-mediated phosphorylation protects radixin from ubiquitin-dependent proteasomal degradation, thereby enhancing radixin protein stability, which permits proper neurite outgrowth and growth cone formation. Conversely, the inhibition of Akt kinase or disruption of Akt-dependent phosphorylation reduces the binding affinity of radixin to F-actin as well as lowers radixin protein levels, resulting in decreased neurite outgrowth and growth cone formation. Our findings suggest that Akt signaling regulates neurite outgrowth by stabilizing radixin interactions with F-actin, thus facilitating local F-actin dynamics.
Collapse
Affiliation(s)
- Eun-Ju Jin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Hyo Rim Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Inwoo Hwang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Byeong-Seong Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Jeong-Yun Choi
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Jee-Yin Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea. .,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea. .,Samsung Medical Center, Seoul, 06351, Korea.
| |
Collapse
|
35
|
Fulzele A, Bennett EJ. Ubiquitin diGLY Proteomics as an Approach to Identify and Quantify the Ubiquitin-Modified Proteome. Methods Mol Biol 2018; 1844:363-384. [PMID: 30242721 PMCID: PMC6791129 DOI: 10.1007/978-1-4939-8706-1_23] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein ubiquitylation is one of the most prevalent posttranslational modifications (PTM) within cells. Ubiquitin modification of target lysine residues typically marks substrates for proteasome-dependent degradation. However, ubiquitylation can also alter protein function through modulation of protein complexes, localization, or activity, without impacting protein turnover. Taken together, ubiquitylation imparts critical regulatory control over nearly every cellular, physiological, and pathophysiological process. Affinity purification techniques coupled with quantitative mass spectrometry have been robust tools to identify PTMs on endogenous proteins. A peptide antibody-based affinity approach has been successfully utilized to enrich for and identify endogenously ubiquitylated proteins. These antibodies recognize the Lys-ϵ-Gly-Gly (diGLY) remnant that is generated following trypsin digestion of ubiquitylated proteins, and these peptides can then be identified by standard mass spectrometry approaches. This technique has led to the identification of >50,000 ubiquitylation sites in human cells and quantitative information about how many of these sites are altered upon exposure to diverse proteotoxic stressors. In addition, the diGLY proteomics approach has led to the identification of specific ubiquitin ligase targets. Here we provide a detailed method to interrogate the ubiquitin-modified proteome from any eukaryotic organism or tissue.
Collapse
Affiliation(s)
- Amit Fulzele
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Eric J Bennett
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
36
|
Abstract
The ubiquitin proteasome system can arguably affect all cellular proteins with few exceptions. In addition to regulating many pathways such as cell cycle progression, inflammation, gene expression, DNA repair, and vesicle trafficking-to just name a few-ubiquitination can occur to any nascent or newly translated protein that misfolds. In the past years, substantial progress has been achieved in advancing our global understanding of the ubiquitinome-the ensemble of ubiquitinated proteins within a cell-using mass spectrometry-based proteomics. Notably, over 50,000 conjugation sites have now been reported. In this review, we discuss recent proteomics methods used to expand our knowledge of the ubiquitin proteasome system through the identification of ubiquitination sites, poly-ubiquitin chain types, and E3 ubiquitin ligase substrates.
Collapse
Affiliation(s)
- Amalia Rose
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
37
|
Fok KL, Bose R, Sheng K, Chang CW, Katz-Egorov M, Culty M, Su S, Yang M, Ruan YC, Chan HC, Iavarone A, Lasorella A, Cencic R, Pelletier J, Nagano M, Xu W, Wing SS. Huwe1 Regulates the Establishment and Maintenance of Spermatogonia by Suppressing DNA Damage Response. Endocrinology 2017; 158:4000-4016. [PMID: 28938460 DOI: 10.1210/en.2017-00396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022]
Abstract
Spermatogenesis is sustained by a heterogeneous population of spermatogonia that includes the spermatogonial stem cells. However, the mechanisms underlying their establishment from gonocyte embryonic precursors and their maintenance thereafter remain largely unknown. In this study, we report that inactivation of the ubiquitin ligase Huwe1 in male germ cells in mice led to the degeneration of spermatogonia in neonates and resulted in a Sertoli cell-only phenotype in the adult. Huwe1 knockout gonocytes showed a decrease in mitotic re-entry, which inhibited their transition to spermatogonia. Inactivation of Huwe1 in primary spermatogonial culture or the C18-4 cell line resulted in cell degeneration. Degeneration of Huwe1 knockout spermatogonia was associated with an increased level of histone H2AX and an elevated DNA damage response that led to apparent mitotic catastrophe but not apoptosis or senescence. Blocking this increase in H2AX prevented the degeneration of Huwe1-depleted cells. Taken together, these results reveal a previously undefined role of Huwe1 in orchestrating the physiological DNA damage response in the male germline that contributes to the establishment and maintenance of spermatogonia.
Collapse
Affiliation(s)
- Kin Lam Fok
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec H4A 3J1, Canada
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Rohini Bose
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec H4A 3J1, Canada
| | - Kai Sheng
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec H4A 3J1, Canada
| | - Ching-Wen Chang
- Department of Obstetrics and Gynecology, McGill University and McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Mira Katz-Egorov
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec H4A 3J1, Canada
| | - Martine Culty
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec H4A 3J1, Canada
| | - Sicheng Su
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ming Yang
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ye Chun Ruan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Hsiao Chang Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Makoto Nagano
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec H4A 3J1, Canada
- Department of Obstetrics and Gynecology, McGill University and McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Wenming Xu
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Simon S Wing
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
38
|
Michel MA, Swatek KN, Hospenthal MK, Komander D. Ubiquitin Linkage-Specific Affimers Reveal Insights into K6-Linked Ubiquitin Signaling. Mol Cell 2017; 68:233-246.e5. [PMID: 28943312 PMCID: PMC5640506 DOI: 10.1016/j.molcel.2017.08.020] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/13/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022]
Abstract
Several ubiquitin chain types have remained unstudied, mainly because tools and techniques to detect these posttranslational modifications are scarce. Linkage-specific antibodies have shaped our understanding of the roles and dynamics of polyubiquitin signals but are available for only five out of eight linkage types. We here characterize K6- and K33-linkage-specific "affimer" reagents as high-affinity ubiquitin interactors. Crystal structures of affimers bound to their cognate chain types reveal mechanisms of specificity and a K11 cross-reactivity in the K33 affimer. Structure-guided improvements yield superior affinity reagents suitable for western blotting, confocal fluorescence microscopy and pull-down applications. This allowed us to identify RNF144A and RNF144B as E3 ligases that assemble K6-, K11-, and K48-linked polyubiquitin in vitro. A protocol to enrich K6-ubiquitinated proteins from cells identifies HUWE1 as a main E3 ligase for this chain type, and we show that mitofusin-2 is modified with K6-linked polyubiquitin in a HUWE1-dependent manner.
Collapse
Affiliation(s)
- Martin A Michel
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kirby N Swatek
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Manuela K Hospenthal
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Komander
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
39
|
Sap KA, Bezstarosti K, Dekkers DHW, Voets O, Demmers JAA. Quantitative Proteomics Reveals Extensive Changes in the Ubiquitinome after Perturbation of the Proteasome by Targeted dsRNA-Mediated Subunit Knockdown in Drosophila. J Proteome Res 2017; 16:2848-2862. [DOI: 10.1021/acs.jproteome.7b00156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Karen A. Sap
- Proteomics
Center, ‡Netherlands Proteomics Center, and §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics
Center, ‡Netherlands Proteomics Center, and §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Dick H. W. Dekkers
- Proteomics
Center, ‡Netherlands Proteomics Center, and §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Olaf Voets
- Proteomics
Center, ‡Netherlands Proteomics Center, and §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Jeroen A. A. Demmers
- Proteomics
Center, ‡Netherlands Proteomics Center, and §Department of Biochemistry, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
40
|
Systematic approaches to identify E3 ligase substrates. Biochem J 2017; 473:4083-4101. [PMID: 27834739 PMCID: PMC5103871 DOI: 10.1042/bcj20160719] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022]
Abstract
Protein ubiquitylation is a widespread post-translational modification, regulating cellular signalling with many outcomes, such as protein degradation, endocytosis, cell cycle progression, DNA repair and transcription. E3 ligases are a critical component of the ubiquitin proteasome system (UPS), determining the substrate specificity of the cascade by the covalent attachment of ubiquitin to substrate proteins. Currently, there are over 600 putative E3 ligases, but many are poorly characterized, particularly with respect to individual protein substrates. Here, we highlight systematic approaches to identify and validate UPS targets and discuss how they are underpinning rapid advances in our understanding of the biochemistry and biology of the UPS. The integration of novel tools, model systems and methods for target identification is driving significant interest in drug development, targeting various aspects of UPS function and advancing the understanding of a diverse range of disease processes.
Collapse
|
41
|
O'Connor HF, Huibregtse JM. Enzyme-substrate relationships in the ubiquitin system: approaches for identifying substrates of ubiquitin ligases. Cell Mol Life Sci 2017; 74:3363-3375. [PMID: 28455558 DOI: 10.1007/s00018-017-2529-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/05/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Protein ubiquitylation is an important post-translational modification, regulating aspects of virtually every biochemical pathway in eukaryotic cells. Hundreds of enzymes participate in the conjugation and deconjugation of ubiquitin, as well as the recognition, signaling functions, and degradation of ubiquitylated proteins. Regulation of ubiquitylation is most commonly at the level of recognition of substrates by E3 ubiquitin ligases. Characterization of the network of E3-substrate relationships is a major goal and challenge in the field, as this expected to yield fundamental biological insights and opportunities for drug development. There has been remarkable success in identifying substrates for some E3 ligases, in many instances using the standard protein-protein interaction techniques (e.g., two-hybrid screens and co-immunoprecipitations paired with mass spectrometry). However, some E3s have remained refractory to characterization, while others have simply not yet been studied due to the sheer number and diversity of E3s. This review will discuss the range of tools and techniques that can be used for substrate profiling of E3 ligases.
Collapse
Affiliation(s)
- Hazel F O'Connor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jon M Huibregtse
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
42
|
PML nuclear bodies contribute to the basal expression of the mTOR inhibitor DDIT4. Sci Rep 2017; 7:45038. [PMID: 28332630 PMCID: PMC5362932 DOI: 10.1038/srep45038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/20/2017] [Indexed: 11/16/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is an essential component of PML nuclear bodies (PML NBs) frequently lost in cancer. PML NBs coordinate chromosomal regions via modification of nuclear proteins that in turn may regulate genes in the vicinity of these bodies. However, few PML NB-associated genes have been identified. PML and PML NBs can also regulate mTOR and cell fate decisions in response to cellular stresses. We now demonstrate that PML depletion in U2OS cells or TERT-immortalized normal human diploid fibroblasts results in decreased expression of the mTOR inhibitor DDIT4 (REDD1). DNA and RNA immuno-FISH reveal that PML NBs are closely associated with actively transcribed DDIT4 loci, implicating these bodies in regulation of basal DDIT4 expression. Although PML silencing did reduce the sensitivity of U2OS cells to metabolic stress induced by metformin, PML loss did not inhibit the upregulation of DDIT4 in response to metformin, hypoxia-like (CoCl2) or genotoxic stress. Analysis of publicly available cancer data also revealed a significant correlation between PML and DDIT4 expression in several cancer types (e.g. lung, breast, prostate). Thus, these findings uncover a novel mechanism by which PML loss may contribute to mTOR activation and cancer progression via dysregulation of basal DDIT4 gene expression.
Collapse
|
43
|
Ginguay A, Cynober L, Curis E, Nicolis I. Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways. BIOLOGY 2017; 6:biology6010018. [PMID: 28272331 PMCID: PMC5372011 DOI: 10.3390/biology6010018] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023]
Abstract
Ornithine δ-aminotransferase (OAT, E.C. 2.6.1.13) catalyzes the transfer of the δ-amino group from ornithine (Orn) to α-ketoglutarate (aKG), yielding glutamate-5-semialdehyde and glutamate (Glu), and vice versa. In mammals, OAT is a mitochondrial enzyme, mainly located in the liver, intestine, brain, and kidney. In general, OAT serves to form glutamate from ornithine, with the notable exception of the intestine, where citrulline (Cit) or arginine (Arg) are end products. Its main function is to control the production of signaling molecules and mediators, such as Glu itself, Cit, GABA, and aliphatic polyamines. It is also involved in proline (Pro) synthesis. Deficiency in OAT causes gyrate atrophy, a rare but serious inherited disease, a further measure of the importance of this enzyme.
Collapse
Affiliation(s)
- Antonin Ginguay
- Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France.
- Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| | - Luc Cynober
- Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France.
- Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| | - Emmanuel Curis
- Laboratoire de biomathématiques, plateau iB², Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
- UMR 1144, INSERM, Université Paris Descartes, 75006 Paris, France.
- UMR 1144, Université Paris Descartes, 75006 Paris, France.
- Service de biostatistiques et d'informatique médicales, hôpital Saint-Louis, Assistance publique-hôpitaux de Paris, 75010 Paris, France.
| | - Ioannis Nicolis
- Laboratoire de biomathématiques, plateau iB², Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
- EA 4064 "Épidémiologie environnementale: Impact sanitaire des pollutions", Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| |
Collapse
|
44
|
Chen LJ, Xu WM, Yang M, Wang K, Chen Y, Huang XJ, Ma QH. HUWE1 plays important role in mouse preimplantation embryo development and the dysregulation is associated with poor embryo development in humans. Sci Rep 2016; 6:37928. [PMID: 27901130 PMCID: PMC5128802 DOI: 10.1038/srep37928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/02/2016] [Indexed: 11/15/2022] Open
Abstract
HUWE1 is a HECT domain containing ubiquitin ligase implicated in neurogenesis, spermatogenesis and cancer development. The purpose of the current study is to investigate the role of HUWE1 in early embryo development. Here we demonstrate that Huwe1 is expressed in both nucleus and cytoplasm of preimplantation mouse embryos as well as gametes. Hypoxia (5% O2) treatment could significantly increase Huwe1 expression during mouse embryo development process. HUWE1 knockdown inhibited normal embryonic development and reduced blastocyst formation, and increased apoptotic cell numbers were observed in the embryos of HUWE1 knockdown group. Human embryo staining result showed that reduced HUWE1 staining was observed in the poor-quality embryos. Furthermore, Western blot result showed that significantly reduced expression of HUWE1 was observed in the villi of miscarriage embryos compared with the normal control, indicating that reduced expression of HUWE1 is related to poor embryo development. Oxidative reagent, H2O2 inhibited HUWE1 expression in human sperm, indicating that HUWE1 expression in sperm is regulated by oxidative stress. In conclusion, these results suggest that HUWE1 protein could contribute to preimplantation embryo development and dysregulated expression of HUWE1 could be related to poor embryo development and miscarriage in IVF clinic.
Collapse
Affiliation(s)
- L J Chen
- Department of Obstetric and Gynecologic diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China.,SCU-CUHK Joint Laboratory of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (Sichuan University), West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - W M Xu
- Department of Obstetric and Gynecologic diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China.,SCU-CUHK Joint Laboratory of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (Sichuan University), West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - M Yang
- Department of Obstetric and Gynecologic diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China.,SCU-CUHK Joint Laboratory of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (Sichuan University), West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - K Wang
- Department of Obstetric and Gynecologic diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China.,SCU-CUHK Joint Laboratory of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (Sichuan University), West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Y Chen
- Department of Obstetric and Gynecologic diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China.,SCU-CUHK Joint Laboratory of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (Sichuan University), West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - X J Huang
- College of Animal Science &Technology, Nanjing Agriculture University, Nanjing, China
| | - Q H Ma
- Department of Obstetric and Gynecologic diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China.,SCU-CUHK Joint Laboratory of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, (Sichuan University), West China Second University Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
45
|
Xu Y, Anderson DE, Ye Y. The HECT domain ubiquitin ligase HUWE1 targets unassembled soluble proteins for degradation. Cell Discov 2016; 2:16040. [PMID: 27867533 PMCID: PMC5102030 DOI: 10.1038/celldisc.2016.40] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
In eukaryotes, many proteins function in multi-subunit complexes that require
proper assembly. To maintain complex stoichiometry, cells use the endoplasmic
reticulum-associated degradation system to degrade unassembled membrane
subunits, but how unassembled soluble proteins are eliminated is undefined. Here
we show that degradation of unassembled soluble proteins (referred to as
unassembled soluble protein degradation, USPD) requires the ubiquitin selective
chaperone p97, its co-factor nuclear protein localization protein 4 (Npl4), and
the proteasome. At the ubiquitin ligase level, the previously identified protein
quality control ligase UBR1 (ubiquitin protein ligase E3 component n-recognin 1)
and the related enzymes only process a subset of unassembled soluble proteins.
We identify the homologous to the E6-AP carboxyl terminus (homologous to the
E6-AP carboxyl terminus) domain-containing protein HUWE1 as a ubiquitin ligase
for substrates bearing unshielded, hydrophobic segments. We used a stable
isotope labeling with amino acids-based proteomic approach to identify
endogenous HUWE1 substrates. Interestingly, many HUWE1 substrates form
multi-protein complexes that function in the nucleus although HUWE1 itself is
cytoplasmically localized. Inhibition of nuclear entry enhances HUWE1-mediated
ubiquitination and degradation, suggesting that USPD occurs primarily in the
cytoplasm. Altogether, these findings establish a new branch of the cytosolic
protein quality control network, which removes surplus polypeptides to control
protein homeostasis and nuclear complex assembly.
Collapse
Affiliation(s)
- Yue Xu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD, USA
| | - D Eric Anderson
- Advanced Mass Spectrometry Core Facility, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
46
|
Sung MK, Porras-Yakushi TR, Reitsma JM, Huber FM, Sweredoski MJ, Hoelz A, Hess S, Deshaies RJ. A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins. eLife 2016; 5. [PMID: 27552055 PMCID: PMC5026473 DOI: 10.7554/elife.19105] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/19/2016] [Indexed: 12/17/2022] Open
Abstract
Overproduced yeast ribosomal protein (RP) Rpl26 fails to assemble into ribosomes and is degraded in the nucleus/nucleolus by a ubiquitin-proteasome system quality control pathway comprising the E2 enzymes Ubc4/Ubc5 and the ubiquitin ligase Tom1. tom1 cells show reduced ubiquitination of multiple RPs, exceptional accumulation of detergent-insoluble proteins including multiple RPs, and hypersensitivity to imbalances in production of RPs and rRNA, indicative of a profound perturbation to proteostasis. Tom1 directly ubiquitinates unassembled RPs primarily via residues that are concealed in mature ribosomes. Together, these data point to an important role for Tom1 in normal physiology and prompt us to refer to this pathway as ERISQ, for excess ribosomal protein quality control. A similar pathway, mediated by the Tom1 homolog Huwe1, restricts accumulation of overexpressed hRpl26 in human cells. We propose that ERISQ is a key element of the quality control machinery that sustains protein homeostasis and cellular fitness in eukaryotes.
Collapse
Affiliation(s)
- Min-Kyung Sung
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Tanya R Porras-Yakushi
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institue, California Institute of Technology, Pasadena, United States
| | - Justin M Reitsma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ferdinand M Huber
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institue, California Institute of Technology, Pasadena, United States
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Sonja Hess
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institue, California Institute of Technology, Pasadena, United States
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| |
Collapse
|
47
|
Heidelberger JB, Wagner SA, Beli P. Mass Spectrometry-Based Proteomics for Investigating DNA Damage-Associated Protein Ubiquitylation. Front Genet 2016; 7:109. [PMID: 27379159 PMCID: PMC4905943 DOI: 10.3389/fgene.2016.00109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/30/2016] [Indexed: 11/13/2022] Open
Abstract
Modification of proteins with the 76 amino acid protein ubiquitin plays essential roles in cellular signaling. Development of methods for specific enrichment of ubiquitin remnant peptides and advances in high-resolution mass spectrometry have enabled proteome-wide identification of endogenous ubiquitylation sites. Moreover, ubiquitin remnant profiling has emerged as a powerful approach for investigating changes in protein ubiquitylation in response to cellular perturbations, such as DNA damage, as well as for identification of substrates of ubiquitin-modifying enzymes. Despite these advances, interrogation of ubiquitin chain topologies on substrate proteins remains a challenging task. Here, we describe mass spectrometry-based approaches for quantitative analyses of site-specific protein ubiquitylation and highlight recent studies that employed these methods for investigation of ubiquitylation in the context of the cellular DNA damage response. Furthermore, we provide an overview of experimental strategies for probing ubiquitin chain topologies on proteins and discuss how these methods can be applied to analyze functions of ubiquitylation in the DNA damage response.
Collapse
Affiliation(s)
| | - Sebastian A Wagner
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Germany
| | - Petra Beli
- Institute of Molecular Biology Mainz, Germany
| |
Collapse
|
48
|
Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase-polyubiquitin-binding domain fusions (ligase traps). Nat Protoc 2016; 11:291-301. [PMID: 26766115 DOI: 10.1038/nprot.2016.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ubiquitination is an essential protein modification that influences eukaryotic processes ranging from substrate degradation to nonproteolytic pathway alterations, including DNA repair and endocytosis. Previous attempts to analyze substrates via physical association with their respective ubiquitin ligases have had some success. However, because of the transient nature of enzyme-substrate interactions and rapid protein degradation, detection of substrates remains a challenge. Ligase trapping is an affinity purification approach in which ubiquitin ligases are fused to a polyubiquitin-binding domain, which allows the isolation of ubiquitinated substrates. Immunoprecipitation is first used to enrich for proteins that are bound to the ligase trap. Subsequently, affinity purification is used under denaturing conditions to capture proteins conjugated with hexahistidine-tagged ubiquitin. By using this protocol, ubiquitinated substrates that are specific for a given ligase can be isolated for mass spectrometry or western blot analysis. After cells have been collected, the described protocol can be completed in 2-3 d.
Collapse
|
49
|
Abstract
Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), including phosphorylation. Flux through such pathways is dictated by the fractional stoichiometry of distinct modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events, illustrated with the PINK1/PARKIN pathway. A key feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems.
Collapse
Affiliation(s)
- Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christian Münch
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|