1
|
Gul O, Khalid M, Gul S. Role of Exogenous Neuregulin-1 as a Therapeutic Agent in Focal Epilepsy [Letter]. Neuropsychiatr Dis Treat 2024; 20:1117-1118. [PMID: 38774253 PMCID: PMC11108068 DOI: 10.2147/ndt.s477140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/24/2024] Open
Affiliation(s)
- Owais Gul
- Department of Internal Medicine, United Health Services Wilson Medical Center, Johnson City, NY, USA
| | - Maria Khalid
- Department of Internal Medicine, United Health Services Wilson Medical Center, Johnson City, NY, USA
| | - Saqib Gul
- Department of Medicine, Hamdard University, Karachi, Pakistan
| |
Collapse
|
2
|
Yoo JY, Kim HB, Lee YJ, Kim YJ, Yoo SY, Choi Y, Lee MJ, Kim IS, Baik TK, Lee JH, Woo RS. Neuregulin-1 reverses anxiety-like behavior and social behavior deficits induced by unilateral micro-injection of CoCl 2 into the ventral hippocampus (vHPC). Neurobiol Dis 2023; 177:105982. [PMID: 36592864 DOI: 10.1016/j.nbd.2022.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Neuregulin-1 (NRG1) is an epidermal growth factor family member with essential roles in the developing and adult nervous systems. In recent years, establishing evidence has collectively suggested that NRG1 is a new modulator of central nervous system (CNS) injury and disease, with multifaceted roles in neuroprotection, remyelination, neuroinflammation, and other repair mechanisms. NRG1 signaling exerts its effects via the tyrosine kinase receptors ErbB2-ErbB4. The NRG1/ErbB network in CNS pathology and repair has evolved, primarily in recent years. In the present study, we demonstrated that a unilateral microinjection of CoCl2 into the ventral hippocampus (vHPC) induced hypoxic insult and led to anxiety-related behaviors and deficit sociability in mice. NRG1 treatment significantly alleviated the CoCl2-induced increase of hypoxic-related molecules and behavioral abnormalities. Furthermore, NRG1 reduced the CoCl2-induced neuroinflammation and neuronal deficits in the vHPC or primary hippocampal neurons in mice. Collectively, these results suggest that NRG1 ameliorates hypoxia by alleviating synaptic deficits and behavioral abnormalities of the CoCl2-induced vHPC hypoxic model.
Collapse
Affiliation(s)
- Ji-Young Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Han-Byeol Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Ye-Ji Lee
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Yu-Jin Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Seung-Yeon Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Yoori Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Mi-Jo Lee
- Department of Radiation Oncology, Eulji University Hospital, Daejeon 35233, Republic of Korea
| | - In-Sik Kim
- Department of Biomedical Laboratory Science, School of Medicine and Department of Senior Healthcare, Graduate School, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Tai-Kyoung Baik
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea
| | - Jun-Ho Lee
- Department of Emergency Medical Technology, Daejeon University, Daejeon 34520, Republic of Korea.
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 34824, Republic of Korea.
| |
Collapse
|
3
|
Cysteine Donor-Based Brain-Targeting Prodrug: Opportunities and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4834117. [PMID: 35251474 PMCID: PMC8894025 DOI: 10.1155/2022/4834117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022]
Abstract
Overcoming blood-brain barrier (BBB) to improve brain bioavailability of therapeutic drug remains an ongoing concern. Prodrug is one of the most reliable approaches for delivering agents with low-level BBB permeability into the brain. The well-known antioxidant capacities of cysteine (Cys) and its vital role in glutathione (GSH) synthesis indicate that Cys-based prodrug could potentiate therapeutic drugs against oxidative stress-related neurodegenerative disorders. Moreover, prodrug with Cys moiety could be recognized by the excitatory amino acid transporter 3 (EAAT3) that is highly expressed at the BBB and transports drug into the brain. In this review, we summarized the strategies of crossing BBB, properties of EAAT3 and its natural substrates, Cys and its donors, and Cys donor-based brain-targeting prodrugs by referring to recent investigations. Moreover, the challenges that we are faced with and future research orientations were also addressed and proposed. It is hoped that present review will provide evidence for the pursuit of novel Cys donor-based brain-targeting prodrug.
Collapse
|
4
|
Peterson AR, Garcia TA, Ford BD, Binder DK. Regulation of NRG-1-ErbB4 signaling and neuroprotection by exogenous neuregulin-1 in a mouse model of epilepsy. Neurobiol Dis 2021; 161:105545. [PMID: 34742879 DOI: 10.1016/j.nbd.2021.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/27/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy. Dysregulation of glutamate transporters has been a common finding across animal models of epilepsy and in patients with TLE. In this study, we investigate NRG-1/ErbB4 signaling in epileptogenesis and the neuroprotective effects of NRG-1 treatment in a mouse model of temporal lobe epilepsy. Using immunohistochemistry, we report the first evidence for NRG-1/ErbB4-dependent selective upregulation of glutamate transporter EAAC1 and bihemispheric neuroprotection by exogeneous NRG-1 in the intrahippocampal kainic acid (IHKA) model of TLE. Our findings provide evidence that dysregulation of glutamate transporter EAAC1 contributes to the development of epilepsy and can be therapeutically targeted to reduce neuronal death following IHKA-induced status epilepticus (SE).
Collapse
Affiliation(s)
- Allison R Peterson
- Division of Biomedical Sciences, School of Medicine, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA
| | - Terese A Garcia
- Division of Biomedical Sciences, School of Medicine, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA
| | - Byron D Ford
- Division of Biomedical Sciences, School of Medicine, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, Center for Glial-Neuronal Interactions, University of California, Riverside, CA, USA.
| |
Collapse
|
5
|
Kim HB, Yoo JY, Yoo SY, Lee JH, Chang W, Kim HS, Baik TK, Woo RS. Neuregulin-1 inhibits CoCl 2-induced upregulation of excitatory amino acid carrier 1 expression and oxidative stress in SH-SY5Y cells and the hippocampus of mice. Mol Brain 2020; 13:153. [PMID: 33187547 PMCID: PMC7664014 DOI: 10.1186/s13041-020-00686-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/09/2020] [Indexed: 11/10/2022] Open
Abstract
Excitatory amino acid carrier 1 (EAAC1) is an important subtype of excitatory amino acid transporters (EAATs) and is the route for neuronal cysteine uptake. CoCl2 is not only a hypoxia-mimetic reagent but also an oxidative stress inducer. Here, we found that CoCl2 induced significant EAAC1 overexpression in SH-SY5Y cells and the hippocampus of mice. Transient transfection of EAAC1 reduced CoCl2-induced cytotoxicity in SH-SY5Y cells. Based on this result, upregulation of EAAC1 expression by CoCl2 is thought to represent a compensatory response against oxidative stress in an acute hypoxic state. We further demonstrated that pretreatment with Neuregulin-1 (NRG1) rescued CoCl2-induced upregulation of EAAC1 and tau expression. NRG1 plays a protective role in the CoCl2-induced accumulation of reactive oxygen species (ROS) and reduction in antioxidative enzyme (SOD and GPx) activity. Moreover, NRG1 attenuated CoCl2-induced apoptosis and cell death. NRG1 inhibited the CoCl2-induced release of cleaved caspase-3 and reduction in Bcl-XL levels. Our novel finding suggests that NRG1 may play a protective role in hypoxia through the inhibition of oxidative stress and thereby maintain normal EAAC1 expression levels.
Collapse
Affiliation(s)
- Han-Byeol Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5Jung-Gu, Yongdu-Dong, Daejeon, 301-746, Republic of Korea
| | - Ji-Young Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5Jung-Gu, Yongdu-Dong, Daejeon, 301-746, Republic of Korea
| | - Seung-Yeon Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5Jung-Gu, Yongdu-Dong, Daejeon, 301-746, Republic of Korea
| | - Jun-Ho Lee
- Department of Emergency Medical Technology, Daejeon University, Daejeon, 34520, Republic of Korea
| | - Wonseok Chang
- Department of Physiology, College of Medicine, Eulji University, Daejeon, 301-746, Republic of Korea
| | - Hye-Sun Kim
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, 110-799, Korea.,Seoul National University College of Medicine, Bundang Hospital, Sungnam, 13620, Republic of Korea
| | - Tai-Kyoung Baik
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5Jung-Gu, Yongdu-Dong, Daejeon, 301-746, Republic of Korea.
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5Jung-Gu, Yongdu-Dong, Daejeon, 301-746, Republic of Korea.
| |
Collapse
|
6
|
Szechtman H, Harvey BH, Woody EZ, Hoffman KL. The Psychopharmacology of Obsessive-Compulsive Disorder: A Preclinical Roadmap. Pharmacol Rev 2020; 72:80-151. [PMID: 31826934 DOI: 10.1124/pr.119.017772] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review evaluates current knowledge about obsessive-compulsive disorder (OCD), with the goal of providing a roadmap for future directions in research on the psychopharmacology of the disorder. It first addresses issues in the description and diagnosis of OCD, including the structure, measurement, and appropriate description of the disorder and issues of differential diagnosis. Current pharmacotherapies for OCD are then reviewed, including monotherapy with serotonin reuptake inhibitors and augmentation with antipsychotic medication and with psychologic treatment. Neuromodulatory therapies for OCD are also described, including psychosurgery, deep brain stimulation, and noninvasive brain stimulation. Psychotherapies for OCD are then reviewed, focusing on behavior therapy, including exposure and response prevention and cognitive therapy, and the efficacy of these interventions is discussed, touching on issues such as the timing of sessions, the adjunctive role of pharmacotherapy, and the underlying mechanisms. Next, current research on the neurobiology of OCD is examined, including work probing the role of various neurotransmitters and other endogenous processes and etiology as clues to the neurobiological fault that may underlie OCD. A new perspective on preclinical research is advanced, using the Research Domain Criteria to propose an adaptationist viewpoint that regards OCD as the dysfunction of a normal motivational system. A systems-design approach introduces the security motivation system (SMS) theory of OCD as a framework for research. Finally, a new perspective on psychopharmacological research for OCD is advanced, exploring three approaches: boosting infrastructure facilities of the brain, facilitating psychotherapeutic relearning, and targeting specific pathways of the SMS network to fix deficient SMS shut-down processes. SIGNIFICANCE STATEMENT: A significant proportion of patients with obsessive-compulsive disorder (OCD) do not achieve remission with current treatments, indicating the need for innovations in psychopharmacology for the disorder. OCD may be conceptualized as the dysfunction of a normal, special motivation system that evolved to manage the prospect of potential danger. This perspective, together with a wide-ranging review of the literature, suggests novel directions for psychopharmacological research, including boosting support systems of the brain, facilitating relearning that occurs in psychotherapy, and targeting specific pathways in the brain that provide deficient stopping processes in OCD.
Collapse
Affiliation(s)
- Henry Szechtman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Brian H Harvey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Erik Z Woody
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Kurt Leroy Hoffman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| |
Collapse
|
7
|
Kim HB, Yoo JY, Yoo SY, Suh SW, Lee S, Park JH, Lee JH, Baik TK, Kim HS, Woo RS. Early-life stress induces EAAC1 expression reduction and attention-deficit and depressive behaviors in adolescent rats. Cell Death Discov 2020; 6:73. [PMID: 32818073 PMCID: PMC7415155 DOI: 10.1038/s41420-020-00308-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 01/18/2023] Open
Abstract
Neonatal maternal separation (NMS), as an early-life stress (ELS), is a risk factor to develop emotional disorders. However, the exact mechanisms remain to be defined. In the present study, we investigated the mechanisms involved in developing emotional disorders caused by NMS. First, we confirmed that NMS provoked impulsive behavior, orienting and nonselective attention-deficit, abnormal grooming, and depressive-like behaviors in adolescence. Excitatory amino acid carrier 1 (EAAC1) is an excitatory amino acid transporter expressed specifically by neurons and is the route for the neuronal uptake of glutamate/aspartate/cysteine. Compared with that in the normal control group, EAAC1 expression was remarkably reduced in the ventral hippocampus and cerebral cortex in the NMS group. Additionally, EAAC1 expression was reduced in parvalbumin-positive hippocampal GABAergic neurons in the NMS group. We also found that EAAC1-knockout (EAAC1-/-) mice exhibited impulsive-like, nonselective attention-deficit, and depressive-like behaviors compared with WT mice in adolescence, characteristics similar to those of the NMS behavior phenotype. Taken together, our results revealed that ELS induced a reduction in EAAC1 expression, suggesting that reduced EAAC1 expression is involved in the pathophysiology of attention-deficit and depressive behaviors in adolescence caused by NMS.
Collapse
Affiliation(s)
- Han-Byeol Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824 Republic of Korea
| | - Ji-Young Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824 Republic of Korea
| | - Seung-Yeon Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824 Republic of Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Seoul Lee
- Department of Pharmacology and Brain Research Institute, College of Medicine, Wonkwang University, Jeonbuk, 54538 Republic of Korea
| | - Ji Hye Park
- Department of Pharmacology and Brain Research Institute, College of Medicine, Wonkwang University, Jeonbuk, 54538 Republic of Korea
| | - Jun-Ho Lee
- Department of Emergency Medical Technology, Daejeon University, Daejeon, 34520 Republic of Korea
| | - Tai-Kyoung Baik
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824 Republic of Korea
| | - Hye-Sun Kim
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, 110-799 Korea
- Seoul National University College of Medicine, Bundang Hospital, Sungnam, 13620 Republic of Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824 Republic of Korea
| |
Collapse
|
8
|
Yoo JY, Kim HB, Yoo SY, Yoo HI, Song DY, Baik TK, Lee JH, Woo RS. Neuregulin 1/ErbB4 signaling attenuates neuronal cell damage under oxygen-glucose deprivation in primary hippocampal neurons. Anat Cell Biol 2019; 52:462-468. [PMID: 31949986 PMCID: PMC6952697 DOI: 10.5115/acb.19.210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022] Open
Abstract
The hippocampus is one of the most important brain areas of cognition. This region is particularly sensitive to hypoxia and ischemia. Neuregulin-1 (NRG1) has been shown to be able to protect against focal cerebral ischemia. The aim of the present study was to investigate the neuroprotective effect of NRG1 in primary hippocampal neurons and its underlying mechanism. Our data showed oxygen-glucose deprivation (OGD)-induced cytotoxicity and overexpression of ErbB4 in primary hippocampal neurons. Moreover, pretreatment with NRG1 could inhibit OGD-induced overexpression of ErbB4. In addition, NRG1 significantly attenuated neuronal death induced by OGD. The neuroprotective effect of NRG1 was blocked in ischemic neurons after pretreatment with AG1478, an inhibitor of ErbB4, but not after pretreatment with AG879, an inhibitor of ErbB2. These results indicate an important role of ErbB4 in NRG1-mediated neuroprotection, suggesting that endogenous ErbB4 might serve as a valuable therapeutic target for treating global cerebral ischemia.
Collapse
Affiliation(s)
- Ji-Young Yoo
- Department of Anatomy and Neuroscience, Eulji University College of Medicine, Daejeon, Korea
| | - Han-Byeol Kim
- Department of Anatomy and Neuroscience, Eulji University College of Medicine, Daejeon, Korea
| | - Seung-Yeon Yoo
- Department of Anatomy and Neuroscience, Eulji University College of Medicine, Daejeon, Korea
| | - Hong-Il Yoo
- Department of Anatomy and Neuroscience, Eulji University College of Medicine, Daejeon, Korea
| | - Dae-Yong Song
- Department of Anatomy and Neuroscience, Eulji University College of Medicine, Daejeon, Korea
| | - Tai-Kyoung Baik
- Department of Anatomy and Neuroscience, Eulji University College of Medicine, Daejeon, Korea
| | - Jun-Ho Lee
- Department of Emergency Medical Technology, Daejeon University, Daejeon, Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, Eulji University College of Medicine, Daejeon, Korea
| |
Collapse
|
9
|
Neuregulin-1 Protects Neuronal Cells Against Damage due to CoCl2-Induced Hypoxia by Suppressing Hypoxia-Inducible Factor-1α and P53 in SH-SY5Y Cells. Int Neurourol J 2019; 23:S111-118. [PMID: 31795610 PMCID: PMC6905208 DOI: 10.5213/inj.1938190.095] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose Hypoxia-mediated neurotoxicity contributes to various neurodegenerative disorders, including Alzheimer disease. Neuregulin-1 (NRG1) plays an important role in the development and plasticity of the brain. The aim of the present study was to investigate the neuroprotective effect and the regulating hypoxic inducible factor of NRG1 in cobalt chloride (CoCl2) induced hypoxia. Methods Hypoxia was induced in SH-SY5Y cells by CoCl2 treatment. SH-SY5Y cells were pretreated with NRG1 and then treated with CoCl2. Western blotting, immunocytochemistry, and lactate dehydrogenase (LDH) release assays were performed to examine neuroprotective properties of NRG1 in SH-SY5Y cells. Results Our data showed that CoCl2 induced cytotoxicity and changes of hypoxia-inducible factor-1α (HIF-1α) and p53 expression in SH-SY5Y cells. However, pretreatment with NRG1 inhibited CoCl2-induced accumulation of HIF-1α and p53 stability. In addition, NRG1 significantly attenuated cell death of SH-SY5Y induced by CoCl2. Conclusions NRG1 can regulate HIF-1α and p53 to protect neurons against hypoxic damage.
Collapse
|
10
|
Malik AR, Willnow TE. Excitatory Amino Acid Transporters in Physiology and Disorders of the Central Nervous System. Int J Mol Sci 2019; 20:ijms20225671. [PMID: 31726793 PMCID: PMC6888459 DOI: 10.3390/ijms20225671] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) encompass a class of five transporters with distinct expression in neurons and glia of the central nervous system (CNS). EAATs are mainly recognized for their role in uptake of the amino acid glutamate, the major excitatory neurotransmitter. EAATs-mediated clearance of glutamate released by neurons is vital to maintain proper glutamatergic signalling and to prevent toxic accumulation of this amino acid in the extracellular space. In addition, some EAATs also act as chloride channels or mediate the uptake of cysteine, required to produce the reactive oxygen speciesscavenger glutathione. Given their central role in glutamate homeostasis in the brain, as well as their additional activities, it comes as no surprise that EAAT dysfunctions have been implicated in numerous acute or chronic diseases of the CNS, including ischemic stroke and epilepsy, cerebellar ataxias, amyotrophic lateral sclerosis, Alzheimer’s disease and Huntington’s disease. Here we review the studies in cellular and animal models, as well as in humans that highlight the roles of EAATs in the pathogenesis of these devastating disorders. We also discuss the mechanisms regulating EAATs expression and intracellular trafficking and new exciting possibilities to modulate EAATs and to provide neuroprotection in course of pathologies affecting the CNS.
Collapse
Affiliation(s)
- Anna R. Malik
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
- Correspondence:
| | | |
Collapse
|
11
|
Lee G, Zhou Y. NMDAR Hypofunction Animal Models of Schizophrenia. Front Mol Neurosci 2019; 12:185. [PMID: 31417356 PMCID: PMC6685005 DOI: 10.3389/fnmol.2019.00185] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis has been proposed to help understand the etiology and pathophysiology of schizophrenia. This hypothesis was based on early observations that NMDAR antagonists could induce a full range of symptoms of schizophrenia in normal human subjects. Accumulating evidence in humans and animal studies points to NMDAR hypofunctionality as a convergence point for various symptoms of schizophrenia. Here we review animal models of NMDAR hypofunction generated by pharmacological and genetic approaches, and how they relate to the pathophysiology of schizophrenia. In addition, we discuss the limitations of animal models of NMDAR hypofunction and their potential utility for therapeutic applications.
Collapse
Affiliation(s)
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
12
|
Altered mRNA expressions for N-methyl-D-aspartate receptor-related genes in WBC of patients with major depressive disorder. J Affect Disord 2019; 245:1119-1125. [PMID: 30699855 DOI: 10.1016/j.jad.2018.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/27/2018] [Accepted: 12/08/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Major depressive disorder (MDD) is a complex mental disorder. The lack of well-established biomarkers hinders its diagnosis, treatment, and new-drug development. N-methyl-D-aspartate receptor (NMDAR) dysfunction has been implicated in the pathogenesis of MDD. This study examined whether expressions of the NMDAR-related genes are characteristic of MDD. METHODS Expressions of NMDAR-related genes including SRR, SHMT2, PSAT1, GCAT, GAD1, SLC1A4, NRG1 and COMT in peripheral WBCs of 110 patients with MDD (25 drug-naïve, 21 drug-free, and 64 medicated patients) and 125 healthy individuals were measured using quantitative PCR. RESULTS The mRNA expression levels of SRR, PSAT1, GCAT, GAD1, NRG1 and COMT were significantly different among the four groups (all p < 0.05). For drug-naïve patients, the ΔΔCT values of SRR, PSAT1, GCAT, GAD1, and NRG1 mRNA expressions were significantly different from those in healthy individuals (all p < 0.05). The ROC analysis of the ΔΔCT values of the target genes for differentiating drug-naïve patients from healthy controls showed an excellent sensitivity (0.960) and modest specificity (0.640) (AUC = 0.889). Drug-free and medicated patients obtained less favorable AUC values while compared to healthy controls. The results for the age- and sex-matched cohort were similar to those of the unmatched cohort. CONCLUSIONS This is the first study demonstrating that the peripheral mRNA expression levels of NMDAR-related genes may be altered in patients with MDD, especially drug-naïve individuals. The finding supports the NMDAR hypothesis of depression. Whether mRNA expresssion of NMDAR-related genes could serve as a potential biomarker of MDD deserves further investigations.
Collapse
|
13
|
Lee JH, Yoo JY, Kim HB, Yoo HI, Song DY, Min SS, Baik TK, Woo RS. Neuregulin1 Attenuates H 2O 2-Induced Reductions in EAAC1 Protein Levels and Reduces H 2O 2-Induced Oxidative Stress. Neurotox Res 2018; 35:401-409. [PMID: 30328584 PMCID: PMC6331506 DOI: 10.1007/s12640-018-9965-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 11/30/2022]
Abstract
Neuregulin 1 (NRG1) exhibits potent neuroprotective properties. The aim of the present study was to investigate the antioxidative effects and underlying mechanisms of NRG1 against H2O2-induced oxidative stress in primary rat cortical neurons. The expression level of the excitatory amino acid carrier 1 (EAAC1) protein was measured by Western blotting and immunocytochemistry. The levels of lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) generation, superoxide dismutase (SOD) activity, GPx activity, and mitochondrial membrane potential (∆ψm) were determined to examine cell death and the antioxidant properties of NRG1 in primary rat cortical neurons. H2O2 reduced the expression of EAAC1 in a dose-dependent manner. We found that pretreatment with NRG1 attenuated the H2O2-induced reduction in EAAC1 expression. Moreover, NRG1 reduced the cell death and oxidative stress induced by H2O2. In addition, NRG1 attenuated H2O2-induced reductions in antioxidant enzyme activity and ∆ψm. Our data indicate a role for NRG1 in protecting against oxidative stress via the regulation of EAAC1. These observations may provide novel insights into the mechanisms of NRG1 activity during oxidative stress and may reveal new therapeutic targets for regulating the oxidative stress associated with various neurological diseases.
Collapse
Affiliation(s)
- Jun-Ho Lee
- Department of Emergency Medical Technology, Daejeon University, Daejeon, 34520, Republic of Korea
| | - Ji-Young Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea
| | - Han-Byeol Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea
| | - Hong-Il Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea
| | - Dae-Yong Song
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea
| | - Sun Seek Min
- Department of Physiology and Biophysics, College of Medicine, Eulji University, Daejeon, 34824, Republic of Korea
| | - Tai-Kyoung Baik
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea.
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5, Yongdu-Dong, Jung-Gu, Daejeon, 34824, Republic of Korea.
| |
Collapse
|
14
|
Ledonne A, Mercuri NB. mGluR1-Dependent Long Term Depression in Rodent Midbrain Dopamine Neurons Is Regulated by Neuregulin 1/ErbB Signaling. Front Mol Neurosci 2018; 11:346. [PMID: 30327588 PMCID: PMC6174199 DOI: 10.3389/fnmol.2018.00346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/04/2018] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence demonstrates that the neurotrophic factor Neuregulin 1 (NRG1) and its receptors, ErbB tyrosine kinases, modulate midbrain dopamine (DA) transmission. We have previously reported that NRG1/ErbB signaling is essential for proper metabotropic glutamate receptors 1 (mGluR1) functioning in midbrain DA neurons, thus the functional interaction between ErbB receptors and mGluR1 regulates neuronal excitation and in vivo striatal DA release. While it is widely recognized that mGluR1 play a pivotal role in long-term modifications of synaptic transmission in several brain areas, specific mGluR1-dependent forms of synaptic plasticity in substantia nigra pars compacta (SNpc) DA neurons have not been described yet. Here, first we aimed to detect and characterize mGluR1-dependent glutamatergic long-term depression (LTD) in SNpc DA neurons. Second, we tested the hypothesis that endogenous ErbB signaling, by affecting mGluR1, fine-tunes glutamatergic synaptic plasticity in DA cells. We found that either pharmacological or synaptic activation of mGluR1 causes an LTD of AMPAR-mediated transmission in SNpc DA neurons from mice and rat slices, which is reliant on endogenous NRG1/ErbB signaling. Indeed, LTD is counteracted by a broad spectrum ErbB inhibitor. Moreover, the intracellular injection of pan-ErbB- or ErbB2 inhibitors inside DA neurons reduces mGluR1-dependent LTD, suggesting an involvement of ErbB2/ErbB4-containing receptors. Interestingly, exogenous NRG1 fosters LTD expression during minimal mGluRI activation. These results enlarge our cognizance on mGluR1 relevance in the induction of a novel form of long-term synaptic plasticity in SNpc DA neurons and describe a new NRG1/ErbB-dependent mechanism shaping glutamatergic transmission in DA cells. This might have important implications either in DA-dependent behaviors and learning/memory processes or in DA-linked diseases.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
15
|
Kim YJ, Yoo JY, Kim OS, Kim HB, Ryu J, Kim HS, Lee JH, Yoo HI, Song DY, Baik TK, Woo RS. Neuregulin 1 regulates amyloid precursor protein cell surface expression and non-amyloidogenic processing. J Pharmacol Sci 2018; 137:146-153. [DOI: 10.1016/j.jphs.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/06/2018] [Accepted: 05/17/2018] [Indexed: 01/11/2023] Open
|
16
|
Schrier MS, Trivedi MS, Deth RC. Redox-Related Epigenetic Mechanisms in Glioblastoma: Nuclear Factor (Erythroid-Derived 2)-Like 2, Cobalamin, and Dopamine Receptor Subtype 4. Front Oncol 2017; 7:46. [PMID: 28424758 PMCID: PMC5371596 DOI: 10.3389/fonc.2017.00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/06/2017] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is an exceptionally difficult cancer to treat. Cancer is universally marked by epigenetic changes, which play key roles in sustaining a malignant phenotype, in addition to disease progression and patient survival. Studies have shown strong links between the cellular redox state and epigenetics. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a redox-sensitive transcription factor that upregulates endogenous antioxidant production, and is aberrantly expressed in many cancers, including glioblastoma. Methylation of DNA and histones provides a mode of epigenetic regulation, and cobalamin-dependent reactions link the redox state to methylation. Antagonists of dopamine receptor subtype 4 (D4 receptor) were recently shown to restrict glioblastoma stem cell growth by downregulating trophic signaling, resulting in inhibition of functional autophagy. In addition to stimulating glioblastoma stem cell growth, D4 receptors have the unique ability to catalyze cobalamin-dependent phospholipid methylation. Therefore, D4 receptors represent an important node in a molecular reflex pathway involving Nrf2 and cobalamin, operating in conjunction with redox status and methyl group donor availability. In this article, we describe the redox-related effects of Nrf2, cobalamin metabolism, and the D4 receptor on the regulation of the epigenetic state in glioblastoma.
Collapse
Affiliation(s)
- Matthew Scott Schrier
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Malav Suchin Trivedi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Richard Carlton Deth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
17
|
Epilepsy-causing sequence variations in SIK1 disrupt synaptic activity response gene expression and affect neuronal morphology. Eur J Hum Genet 2016; 25:216-221. [PMID: 27966542 DOI: 10.1038/ejhg.2016.145] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022] Open
Abstract
SIK1 syndrome is a newly described developmental epilepsy disorder caused by heterozygous mutations in the salt-inducible kinase SIK1. To better understand the pathophysiology of SIK1 syndrome, we studied the effects of SIK1 pathogenic sequence variations in human neurons. Primary human fetal cortical neurons were transfected with a lentiviral vector to overexpress wild-type and mutant SIK1 protein. We evaluated the transcriptional activity of known downstream gene targets in neurons expressing mutant SIK1 compared with wild type. We then assayed neuronal morphology by measuring neurite length, number and branching. Truncating SIK1 sequence variations were associated with abnormal MEF2C transcriptional activity and decreased MEF2C protein levels. Epilepsy-causing SIK1 sequence variations were associated with significantly decreased expression of ARC (activity-regulated cytoskeletal-associated) and other synaptic activity response element genes. Assay of mRNA levels for other MEF2C target genes NR4A1 (Nur77) and NRG1, found significantly, decreased the expression of these genes as well. The missense p.(Pro287Thr) SIK1 sequence variation was associated with abnormal neuronal morphology, with significant decreases in mean neurite length, mean number of neurites and a significant increase in proximal branches compared with wild type. Epilepsy-causing SIK1 sequence variations resulted in abnormalities in the MEF2C-ARC pathway of neuronal development and synapse activity response. This work provides the first insights into the mechanisms of pathogenesis in SIK1 syndrome, and extends the ARX-MEF2C pathway in the pathogenesis of developmental epilepsy.
Collapse
|
18
|
Baik TK, Kim YJ, Kang SM, Song DY, Min SS, Woo RS. Blocking the phosphatidylinositol 3-kinase pathway inhibits neuregulin-1-mediated rescue of neurotoxicity induced by Aβ1-42. ACTA ACUST UNITED AC 2016; 68:1021-9. [PMID: 27230708 DOI: 10.1111/jphp.12563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/29/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Neuregulin-1 (NRG1) has an important role in both the development and the plasticity of the brain as well as neuroprotective properties. In this study, we investigated the downstream pathways of NRG1 signalling and their role in the prevention of Aβ1-42 -induced neurotoxicity. METHODS Lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) generation, superoxide dismutase (SOD) activity and TUNEL staining were assayed to examine the neuroprotective properties in primary rat cortical neurons. KEY FINDINGS The inhibition of PI3K/Akt activation abolished the ability of NRG1 to prevent Aβ1-42 -induced LDH release and increased TUNEL-positive cell count and reactive oxygen species accumulation in primary cortical neurons. CONCLUSIONS Our results demonstrate that NRG1 signalling exerts a neuroprotective effect against Aβ1-42 -induced neurotoxicity via activation of the PI3K/Akt pathway. Furthermore, this suggests that NRG1 has neuroprotective potential for the treatment of AD.
Collapse
Affiliation(s)
- Tai-Kyoung Baik
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, Korea
| | - Young-Jung Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, Korea
| | - Se-Mi Kang
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, Korea
| | - Dae-Yong Song
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, Korea
| | - Sun Seek Min
- Department of Physiology and Biophysics, College of Medicine, Eulji University, Daejeon, Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, Korea
| |
Collapse
|
19
|
Bjørn-Yoshimoto WE, Underhill SM. The importance of the excitatory amino acid transporter 3 (EAAT3). Neurochem Int 2016; 98:4-18. [PMID: 27233497 DOI: 10.1016/j.neuint.2016.05.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022]
Abstract
The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post-synaptic localization can buffer nearby glutamate receptors and modulate excitatory neurotransmission and synaptic plasticity. It is also the main neuronal cysteine uptake system acting as the rate-limiting factor for the synthesis of glutathione, a potent antioxidant, in EAAT3 expressing neurons, while on GABAergic neurons, it is important in supplying glutamate as a precursor for GABA synthesis. Several diseases implicate EAAT3, and modulation of this transporter could prove a useful therapeutic approach. Regulation of EAAT3 could be targeted at several points for functional modulation, including the level of transcription, trafficking and direct pharmacological modulation, and indeed, compounds and experimental treatments have been identified that regulate EAAT3 function at different stages, which together with observations of EAAT3 regulation in patients is giving us insight into the endogenous function of this transporter, as well as the consequences of altered function. This review summarizes work done on elucidating the role and regulation of EAAT3.
Collapse
Affiliation(s)
- Walden E Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 København Ø, Denmark
| | - Suzanne M Underhill
- National Institute of Mental Health, National Institutes of Health, 35 Convent Drive Room 3A: 210 MSC3742, Bethesda, MD 20892-3742, USA.
| |
Collapse
|
20
|
Neuregulin 1 Promotes Glutathione-Dependent Neuronal Cobalamin Metabolism by Stimulating Cysteine Uptake. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3849087. [PMID: 27057274 PMCID: PMC4709767 DOI: 10.1155/2016/3849087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/10/2015] [Accepted: 10/12/2015] [Indexed: 01/12/2023]
Abstract
Neuregulin 1 (NRG-1) is a key neurotrophic factor involved in energy homeostasis and CNS development, and impaired NRG-1 signaling is associated with neurological disorders. Cobalamin (Cbl), also known as vitamin B12, is an essential micronutrient which mammals must acquire through diet, and neurologic dysfunction is a primary clinical manifestation of Cbl deficiency. Here we show that NRG-1 stimulates synthesis of the two bioactive Cbl species adenosylcobalamin (AdoCbl) and methylcobalamin (MeCbl) in human neuroblastoma cells by both promoting conversion of inactive to active Cbl species and increasing neuronal Cbl uptake. Formation of active Cbls is glutathione- (GSH-) dependent and the NRG-1-initiated increase is dependent upon its stimulation of cysteine uptake by excitatory amino acid transporter 3 (EAAT3), leading to increased GSH. The stimulatory effect of NRG-1 on cellular Cbl uptake is associated with increased expression of megalin, which is known to facilitate Cbl transport in ileum and kidney. MeCbl is a required cofactor for methionine synthase (MS) and we demonstrate the ability of NRG-1 to increase MS activity, and affect levels of methionine methylation cycle metabolites. Our results identify novel neuroprotective roles of NRG-1 including stimulating antioxidant synthesis and promoting active Cbl formation.
Collapse
|