1
|
Céré C, Delord B, Kenfack Ymbe P, Vimbert L, Chapel JP, Stines-Chaumeil C. A Bacterial Myeloperoxidase with Antimicrobial Properties. BIOTECH 2023; 12:biotech12020033. [PMID: 37218750 DOI: 10.3390/biotech12020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
The four mammalian peroxidases (myeloperoxidase, eosinophilperoxidase, lactoperoxidase, and thyroid peroxidase) are widely studied in the literature. They catalyze the formation of antimicrobial compounds and participate in innate immunity. Owing to their properties, they are used in many biomedical, biotechnological, and agro-food applications. We decided to look for an enzyme that is easiest to produce and much more stable at 37 °C than mammalian peroxidases. To address this question, a peroxidase from Rhodopirellula baltica, identified by bioinformatics tools, was fully characterized in this study. In particular, a production and purification protocol including the study of heme reconstitution was developed. Several activity tests were also performed to validate the hypothesis that this peroxidase is a new homolog of mammalian myeloperoxidase. It has the same substrate specificities as the human one and accepts I-, SCN-, Br-, and Cl- as (pseudo-) halides. It also exhibits other auxiliary activities such as catalase and classical peroxidase activities, and it is very stable at 37 °C. Finally, this bacterial myeloperoxidase can kill the Escherichia coli strain ATCC25922, which is usually used to perform antibiograms.
Collapse
Affiliation(s)
- Claire Céré
- CNRS, University of Bordeaux, CRPP, UMR5031, 115 Avenue Schweitzer, F-33600 Pessac, France
| | - Brigitte Delord
- CNRS, University of Bordeaux, CRPP, UMR5031, 115 Avenue Schweitzer, F-33600 Pessac, France
| | - Parfait Kenfack Ymbe
- CNRS, University of Bordeaux, CRPP, UMR5031, 115 Avenue Schweitzer, F-33600 Pessac, France
| | - Léa Vimbert
- CNRS, University of Bordeaux, CRPP, UMR5031, 115 Avenue Schweitzer, F-33600 Pessac, France
| | - Jean-Paul Chapel
- CNRS, University of Bordeaux, CRPP, UMR5031, 115 Avenue Schweitzer, F-33600 Pessac, France
| | - Claire Stines-Chaumeil
- CNRS, University of Bordeaux, CRPP, UMR5031, 115 Avenue Schweitzer, F-33600 Pessac, France
| |
Collapse
|
2
|
Feng Y, Liu XC, Li L, Gao SQ, Wen GB, Lin YW. Naturally Occurring I81N Mutation in Human Cytochrome c Regulates Both Inherent Peroxidase Activity and Interactions with Neuroglobin. ACS OMEGA 2022; 7:11510-11518. [PMID: 35415373 PMCID: PMC8992277 DOI: 10.1021/acsomega.2c01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 05/24/2023]
Abstract
Human cytochrome c (hCyt c) is a crucial heme protein and plays an indispensable role in energy conversion and intrinsic apoptosis pathways. The sequence and structure of Cyt c were evolutionarily conserved and only a few naturally occurring mutants were detected in humans. Among those variable sites, position 81 was proposed to act as a peroxidase switch in the initiation stages of apoptosis. In this study, we show that Ile81 not only suppresses the intrinsic peroxidase activity but also is essential for Cyt c to interact with neuroglobin (Ngb), a potential protein partner. The kinetic assays showed that the peroxidase activity of the naturally occurring variant I81N was enhanced up to threefold under pH 5. The local stability of the Ω-loop D (residues 70-85) in the I81N variant was decreased. Moreover, the Alphafold2 program predicted that Ile81 forms stable contact with human Ngb. Meanwhile, the Ile81 to Asn81 missense mutation abolishes the interaction interface, resulting in a ∼40-fold decrease in binding affinity. These observations provide an insight into the structure-function relationship of the conserved Ile81 in vertebrate Cyt c.
Collapse
Affiliation(s)
- Yu Feng
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xi-Chun Liu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Lianzhi Li
- School
of Chemistry and Chemical Engineering, Liaocheng
University, Liaocheng 252059, China
| | - Shu-Qin Gao
- Key
Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Key
Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
- Key
Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
3
|
Kosmachevskaya OV, Nasybullina EI, Topunov AF. Peroxidase Activity of Leghemoglobin of Bean (Vicia faba L.) Nodules in Relation to Tert-Butyl Hydroperoxide. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Liu C, Yuan H, Liao F, Wei CW, Du KJ, Gao SQ, Tan X, Lin YW. Unique Tyr-heme double cross-links in F43Y/T67R myoglobin: an artificial enzyme with a peroxidase activity comparable to that of native peroxidases. Chem Commun (Camb) 2019; 55:6610-6613. [PMID: 31119219 DOI: 10.1039/c9cc02714a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The X-ray crystal structure of F43Y/T67R myoglobin revealed unique Tyr-heme double cross-links between Tyr43 and the heme 4-vinyl group, which represents a novel post-translational modification of heme proteins. Moreover, with the feature of a distal His-Arg pair, the designed artificial enzyme exhibited a peroxidase activity comparable to that of native peroxidases, such as the most efficient horseradish peroxidase.
Collapse
Affiliation(s)
- Can Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Hong Yuan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Fei Liao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Ke-Jie Du
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China. and Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
5
|
Jennings GK, Hsu MH, Shock LS, Johnson EF, Hackett JC. Noncovalent interactions dominate dynamic heme distortion in cytochrome P450 4B1. J Biol Chem 2018; 293:11433-11446. [PMID: 29858244 PMCID: PMC6065186 DOI: 10.1074/jbc.ra118.004044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/31/2018] [Indexed: 01/07/2023] Open
Abstract
Cytochrome P450 4B1 (4B1) functions in both xenobiotic and endobiotic metabolism. An ester linkage between Glu-310 in 4B1 and the 5-methyl group of heme facilitates preferential hydroxylation of terminal (ω) methyl groups of hydrocarbons (HCs) and fatty acids compared with ω-1 sites bearing weaker C-H bonds. This preference is retained albeit diminished 4-fold for the E310A mutant, but the reason for this is unclear. Here, a crystal structure of the E310A-octane complex disclosed that noncovalent interactions maintain heme deformation in the absence of the ester linkage. Consistent with the lower symmetry of the heme, resonance Raman (RR) spectroscopy revealed large enhancements of RR peaks for high-spin HC complexes of 4B1 and the E310A mutant relative to P450 3A4. Whereas these enhancements were diminished in RR spectra of a low-spin 4B1-N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine complex, a crystal structure indicated that this inhibitor does not alter heme ruffling. RR spectra of Fe2+-CO HC complexes revealed larger effects of HC length in E310A than in 4B1, suggesting that reduced rigidity probably underlies increased E310A-catalyzed (ω-1)-hydroxylation. Diminished effects of the HC on the position of the Fe-CO stretching mode in 4B1 suggested that the ester linkage limits substrate access to the CO. Heme ruffling probably facilitates autocatalytic ester formation by reducing inhibitory coordination of Glu-310 with the heme iron. This also positions the 5-methyl for a reaction with the proposed glutamyl radical intermediate and potentially enhances oxo-ferryl intermediate reactivity for generation of the glutamyl radical to initiate ester bond formation and ω-hydroxylation.
Collapse
Affiliation(s)
- Gareth K Jennings
- Massey Cancer Center and Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Mei-Hui Hsu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Lisa S Shock
- Massey Cancer Center and Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Eric F Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037.
| | - John C Hackett
- Massey Cancer Center and Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298.
| |
Collapse
|
6
|
Nicolussi A, Auer M, Sevcnikar B, Paumann-Page M, Pfanzagl V, Zámocký M, Hofbauer S, Furtmüller PG, Obinger C. Posttranslational modification of heme in peroxidases – Impact on structure and catalysis. Arch Biochem Biophys 2018; 643:14-23. [DOI: 10.1016/j.abb.2018.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
|
7
|
Lin YW. Structure and function of heme proteins regulated by diverse post-translational modifications. Arch Biochem Biophys 2018; 641:1-30. [DOI: 10.1016/j.abb.2018.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 01/08/2023]
|
8
|
Nicolussi A, Dunn JD, Mlynek G, Bellei M, Zamocky M, Battistuzzi G, Djinović-Carugo K, Furtmüller PG, Soldati T, Obinger C. Secreted heme peroxidase from Dictyostelium discoideum: Insights into catalysis, structure, and biological role. J Biol Chem 2017; 293:1330-1345. [PMID: 29242189 PMCID: PMC5787809 DOI: 10.1074/jbc.ra117.000463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/01/2017] [Indexed: 12/16/2022] Open
Abstract
Oxidation of halides and thiocyanate by heme peroxidases to antimicrobial oxidants is an important cornerstone in the innate immune system of mammals. Interestingly, phylogenetic and physiological studies suggest that homologous peroxidases are already present in mycetozoan eukaryotes such as Dictyostelium discoideum This social amoeba kills bacteria via phagocytosis for nutrient acquisition at its single-cell stage and for antibacterial defense at its multicellular stages. Here, we demonstrate that peroxidase A from D. discoideum (DdPoxA) is a stable, monomeric, glycosylated, and secreted heme peroxidase with homology to mammalian peroxidases. The first crystal structure (2.5 Å resolution) of a mycetozoan peroxidase of this superfamily shows the presence of a post-translationally-modified heme with one single covalent ester bond between the 1-methyl heme substituent and Glu-236. The metalloprotein follows the halogenation cycle, whereby compound I oxidizes iodide and thiocyanate at high rates (>108 m-1 s-1) and bromide at very low rates. It is demonstrated that DdPoxA is up-regulated and likely secreted at late multicellular development stages of D. discoideum when migrating slugs differentiate into fruiting bodies that contain persistent spores on top of a cellular stalk. Expression of DdPoxA is shown to restrict bacterial contamination of fruiting bodies. Structure and function of DdPoxA are compared with evolutionary-related mammalian peroxidases in the context of non-specific immune defense.
Collapse
Affiliation(s)
- Andrea Nicolussi
- From the Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Joe Dan Dunn
- the Department of Biochemistry, Faculty of Science, University of Geneva, 1211 Genève, Switzerland
| | - Georg Mlynek
- the Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | | | - Marcel Zamocky
- From the Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria.,the Institute of Molecular Biology, Slovak Academy of Sciences, 84551 Bratislava, Slovakia, and
| | - Gianantonio Battistuzzi
- Chemistry and Geology, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Kristina Djinović-Carugo
- the Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria.,the Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Paul G Furtmüller
- From the Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Thierry Soldati
- the Department of Biochemistry, Faculty of Science, University of Geneva, 1211 Genève, Switzerland
| | - Christian Obinger
- From the Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, 1190 Vienna, Austria,
| |
Collapse
|
9
|
Nicolussi A, Auer M, Weissensteiner J, Schütz G, Katz S, Maresch D, Hofbauer S, Bellei M, Battistuzzi G, Furtmüller PG, Obinger C. Posttranslational Modification of Heme b in a Bacterial Peroxidase: The Role of Heme to Protein Ester Bonds in Ligand Binding and Catalysis. Biochemistry 2017; 56:4525-4538. [DOI: 10.1021/acs.biochem.7b00632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea Nicolussi
- Department
of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Markus Auer
- Department
of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Julia Weissensteiner
- Department
of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Georg Schütz
- Department
of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Sonja Katz
- Department
of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Daniel Maresch
- Department
of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Stefan Hofbauer
- Department
of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Marzia Bellei
- Department
of Life Sciences, University of Modena and Reggio Emilia, via Campi
103, 41125 Modena, Italy
| | - Gianantonio Battistuzzi
- Department
of Chemistry and Geology, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Paul G. Furtmüller
- Department
of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christian Obinger
- Department
of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
10
|
Paumann-Page M, Katz RS, Bellei M, Schwartz I, Edenhofer E, Sevcnikar B, Soudi M, Hofbauer S, Battistuzzi G, Furtmüller PG, Obinger C. Pre-steady-state Kinetics Reveal the Substrate Specificity and Mechanism of Halide Oxidation of Truncated Human Peroxidasin 1. J Biol Chem 2017; 292:4583-4592. [PMID: 28154175 PMCID: PMC5377774 DOI: 10.1074/jbc.m117.775213] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/24/2017] [Indexed: 11/23/2022] Open
Abstract
Human peroxidasin 1 is a homotrimeric multidomain peroxidase that is secreted to the extracellular matrix. The heme enzyme was shown to release hypobromous acid that mediates the formation of specific covalent sulfilimine bonds to reinforce collagen IV in basement membranes. Maturation by proteolytic cleavage is known to activate the enzyme. Here, we present the first multimixing stopped-flow study on a fully functional truncated variant of human peroxidasin 1 comprising four immunoglobulin-like domains and the catalytically active peroxidase domain. The kinetic data unravel the so far unknown substrate specificity and mechanism of halide oxidation of human peroxidasin 1. The heme enzyme is shown to follow the halogenation cycle that is induced by the rapid H2O2-mediated oxidation of the ferric enzyme to the redox intermediate compound I. We demonstrate that chloride cannot act as a two-electron donor of compound I, whereas thiocyanate, iodide, and bromide efficiently restore the ferric resting state. We present all relevant apparent bimolecular rate constants, the spectral signatures of the redox intermediates, and the standard reduction potential of the Fe(III)/Fe(II) couple, and we demonstrate that the prosthetic heme group is post-translationally modified and cross-linked with the protein. These structural features provide the basis of human peroxidasin 1 to act as an effective generator of hypobromous acid, which mediates the formation of covalent cross-links in collagen IV.
Collapse
Affiliation(s)
- Martina Paumann-Page
- From the Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria and
| | - Romy-Sophie Katz
- From the Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria and
| | | | - Irene Schwartz
- From the Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria and
| | - Eva Edenhofer
- From the Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria and
| | - Benjamin Sevcnikar
- From the Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria and
| | - Monika Soudi
- From the Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria and
| | - Stefan Hofbauer
- From the Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria and
| | | | - Paul G Furtmüller
- From the Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria and
| | - Christian Obinger
- From the Department of Chemistry, Division of Biochemistry, Vienna Institute of BioTechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria and
| |
Collapse
|
11
|
Hofbauer S, Mlynek G, Milazzo L, Pühringer D, Maresch D, Schaffner I, Furtmüller PG, Smulevich G, Djinović-Carugo K, Obinger C. Hydrogen peroxide-mediated conversion of coproheme to heme b by HemQ-lessons from the first crystal structure and kinetic studies. FEBS J 2016; 283:4386-4401. [PMID: 27758026 PMCID: PMC5157759 DOI: 10.1111/febs.13930] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 11/30/2022]
Abstract
Heme biosynthesis in Gram-positive bacteria follows a recently described coproporphyrin-dependent pathway with HemQ catalyzing the decarboxylation of coproheme to heme b. Here we present the first crystal structure of a HemQ (homopentameric coproheme-HemQ from Listeria monocytogenes) at 1.69 Å resolution and the conversion of coproheme to heme b followed by UV-vis and resonance Raman spectroscopy as well as mass spectrometry. The ferric five-coordinated coproheme iron of HemQ is weakly bound by a neutral proximal histidine H174. In the crystal structure of the resting state, the distal Q187 (conserved in Firmicutes HemQ) is H-bonded with propionate p2 and the hydrophobic distal cavity lacks solvent water molecules. Two H2 O2 molecules are shown to be necessary for decarboxylation of the propionates p2 and p4, thereby forming the corresponding vinyl groups of heme b. The overall reaction is relatively slow (kcat /KM = 1.8 × 102 m-1 ·s-1 at pH 7.0) and occurs in a stepwise manner with a three-propionate intermediate. We present the noncovalent interactions between coproheme and the protein and propose a two-step reaction mechanism. Furthermore, the structure of coproheme-HemQ is compared to that of the phylogenetically related heme b-containing chlorite dismutases. DATABASE Structural data are available in the PDB under the accession number 5LOQ.
Collapse
Affiliation(s)
- Stefan Hofbauer
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Austria
| | - Georg Mlynek
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Austria
| | - Lisa Milazzo
- Dipartimento di Chimica 'Ugo Schiff', Università di Firenze, Sesto Fiorentino (FI), Italy
| | - Dominic Pühringer
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Austria.,Division of Biochemistry, Department of Chemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Division of Biochemistry, Department of Chemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Irene Schaffner
- Division of Biochemistry, Department of Chemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul G Furtmüller
- Division of Biochemistry, Department of Chemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Giulietta Smulevich
- Dipartimento di Chimica 'Ugo Schiff', Università di Firenze, Sesto Fiorentino (FI), Italy
| | - Kristina Djinović-Carugo
- Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Austria.,Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Christian Obinger
- Division of Biochemistry, Department of Chemistry, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
12
|
Yan DJ, Yuan H, Li W, Xiang Y, He B, Nie CM, Wen GB, Lin YW, Tan X. How a novel tyrosine-heme cross-link fine-tunes the structure and functions of heme proteins: a direct comparitive study of L29H/F43Y myoglobin. Dalton Trans 2016; 44:18815-22. [PMID: 26458300 DOI: 10.1039/c5dt03040d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A heme-protein cross-link is a key post-translational modification (PTM) of heme proteins. Meanwhile, the structural and functional consequences of heme-protein cross-links are not fully understood, due to limited studies on a direct comparison of the same protein with and without the cross-link. A Tyr-heme cross-link with a C-O bond is a newly discovered PTM of heme proteins, and is spontaneously formed in F43Y myoglobin (Mb) between the Tyr hydroxyl group and the heme 4-vinyl group in vivo. In this study, we found that with an additional distal His29 introduced in the heme pocket, the double mutant L29H/F43Y Mb can form two distinct forms under different protein purification conditions, with and without a novel Tyr-heme cross-link. By solving the X-ray structures of both forms of L29H/F43Y Mb and performing spectroscopic studies, we made a direct structural and functional comparison in the same protein scaffold. It revealed that the Tyr-heme cross-link regulates the heme distal hydrogen-bonding network, and fine-tunes not only the spectroscopic and ligand binding properties, but also the protein reactivity. Moreover, the formation of the Tyr-heme cross-link in the double mutant L29H/F43Y Mb was investigated in vitro. This study addressed the key issue of how Tyr-heme cross-link fine-tunes the structure and functions of the heme protein, and provided a plausible mechanism for the formation of the newly discovered Tyr-heme cross-link.
Collapse
Affiliation(s)
- Dao-Jing Yan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Hong Yuan
- Department of Chemistry/Shanghai Key Lab of Chemical Biology for Protein Research & Institute of Biomedical Science, Fudan University, Shanghai 200433, China.
| | - Wei Li
- Department of Chemistry/Shanghai Key Lab of Chemical Biology for Protein Research & Institute of Biomedical Science, Fudan University, Shanghai 200433, China.
| | - Yu Xiang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bo He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China. and Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry/Shanghai Key Lab of Chemical Biology for Protein Research & Institute of Biomedical Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
13
|
From chlorite dismutase towards HemQ - the role of the proximal H-bonding network in haeme binding. Biosci Rep 2016; 36:BSR20150330. [PMID: 26858461 PMCID: PMC4793301 DOI: 10.1042/bsr20150330] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/21/2016] [Indexed: 12/31/2022] Open
Abstract
Chlorite dismutase (Cld) and HemQ are structurally and phylogenetically closely related haeme enzymes differing fundamentally in their enzymatic properties. Clds are able to convert chlorite into chloride and dioxygen, whereas HemQ is proposed to be involved in the haeme b synthesis of Gram-positive bacteria. A striking difference between these protein families concerns the proximal haeme cavity architecture. The pronounced H-bonding network in Cld, which includes the proximal ligand histidine and fully conserved glutamate and lysine residues, is missing in HemQ. In order to understand the functional consequences of this clearly evident difference, specific hydrogen bonds in Cld from 'Candidatus Nitrospira defluvii' (NdCld) were disrupted by mutagenesis. The resulting variants (E210A and K141E) were analysed by a broad set of spectroscopic (UV-vis, EPR and resonance Raman), calorimetric and kinetic methods. It is demonstrated that the haeme cavity architecture in these protein families is very susceptible to modification at the proximal site. The observed consequences of such structural variations include a significant decrease in thermal stability and also affinity between haeme b and the protein, a partial collapse of the distal cavity accompanied by an increased percentage of low-spin state for the E210A variant, lowered enzymatic activity concomitant with higher susceptibility to self-inactivation. The high-spin (HS) ligand fluoride is shown to exhibit a stabilizing effect and partially restore wild-type Cld structure and function. The data are discussed with respect to known structure-function relationships of Clds and the proposed function of HemQ as a coprohaeme decarboxylase in the last step of haeme biosynthesis in Firmicutes and Actinobacteria.
Collapse
|
14
|
Zámocký M, Hofbauer S, Schaffner I, Gasselhuber B, Nicolussi A, Soudi M, Pirker KF, Furtmüller PG, Obinger C. Independent evolution of four heme peroxidase superfamilies. Arch Biochem Biophys 2015; 574:108-19. [PMID: 25575902 PMCID: PMC4420034 DOI: 10.1016/j.abb.2014.12.025] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 01/19/2023]
Abstract
Four heme peroxidase superfamilies (peroxidase-catalase, peroxidase-cyclooxygenase, peroxidase-chlorite dismutase and peroxidase-peroxygenase superfamily) arose independently during evolution, which differ in overall fold, active site architecture and enzymatic activities. The redox cofactor is heme b or posttranslationally modified heme that is ligated by either histidine or cysteine. Heme peroxidases are found in all kingdoms of life and typically catalyze the one- and two-electron oxidation of a myriad of organic and inorganic substrates. In addition to this peroxidatic activity distinct (sub)families show pronounced catalase, cyclooxygenase, chlorite dismutase or peroxygenase activities. Here we describe the phylogeny of these four superfamilies and present the most important sequence signatures and active site architectures. The classification of families is described as well as important turning points in evolution. We show that at least three heme peroxidase superfamilies have ancient prokaryotic roots with several alternative ways of divergent evolution. In later evolutionary steps, they almost always produced highly evolved and specialized clades of peroxidases in eukaryotic kingdoms with a significant portion of such genes involved in coding various fusion proteins with novel physiological functions.
Collapse
Affiliation(s)
- Marcel Zámocký
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia.
| | - Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Irene Schaffner
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Bernhard Gasselhuber
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Andrea Nicolussi
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Monika Soudi
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Katharina F Pirker
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|