1
|
Kimura-Ishimaru C, Liang S, Matsuse K, Iwama R, Sato K, Watanabe N, Tezaki S, Horiuchi H, Fukuda R. Mar1, a high mobility group box protein, regulates n-alkane adsorption and cell morphology of the dimorphic yeast Yarrowia lipolytica. Appl Environ Microbiol 2024; 90:e0054624. [PMID: 39058021 PMCID: PMC11337826 DOI: 10.1128/aem.00546-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The dimorphic yeast Yarrowia lipolytica possesses an excellent ability to utilize n-alkane as a sole carbon and energy source. Although there are detailed studies on the enzymes that catalyze the reactions in the metabolic processes of n-alkane in Y. lipolytica, the molecular mechanism underlying the incorporation of n-alkane into the cells remains to be elucidated. Because Y. lipolytica adsorbs n-alkane, we postulated that Y. lipolytica incorporates n-alkane through direct interaction with it. We isolated and characterized mutants defective in adsorption to n-hexadecane. One of the mutants harbored a nonsense mutation in MAR1 (Morphology and n-alkane Adsorption Regulator 1) encoding a protein containing a high mobility group box. The deletion mutant of MAR1 exhibited defects in adsorption to n-hexadecane and filamentous growth on solid media, whereas the strain that overexpressed MAR1 exhibited hyperfilamentous growth. Fluorescence microscopic observations suggested that Mar1 localizes in the nucleus. RNA-sequencing analysis revealed the alteration of the transcript levels of several genes, including those encoding transcription factors and cell surface proteins, by the deletion of MAR1. These findings suggest that MAR1 is involved in the transcriptional regulation of the genes required for n-alkane adsorption and cell morphology transition.IMPORTANCEYarrowia lipolytica, a dimorphic yeast capable of assimilating n-alkane as a carbon and energy source, has been extensively studied as a promising host for bioconversion of n-alkane into useful chemicals and bioremediation of soil and water contaminated by petroleum. While the metabolic pathway of n-alkane in this yeast and the enzymes involved in this pathway have been well characterized, the molecular mechanism to incorporate n-alkane into the cells is yet to be fully understood. Due to the ability of Y. lipolytica to adsorb n-alkane, it has been hypothesized that Y. lipolytica incorporates n-alkane through direct interaction with it. In this study, we identified a gene, MAR1, which plays a crucial role in the transcriptional regulation of the genes necessary for the adsorption to n-alkane and the transition of the cell morphology in Y. lipolytica. Our findings provide valuable insights that could lead to advanced applications of Y. lipolytica in n-alkane bioconversion and bioremediation.
Collapse
Affiliation(s)
| | - Simiao Liang
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Katsuro Matsuse
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenta Sato
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Natsuhito Watanabe
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Tezaki
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Kim YC, Yoo HW, Park BG, Sarak S, Hahn JS, Kim BG, Yun H. One-Pot Biocatalytic Route from Alkanes to α,ω-Diamines by Whole-Cell Consortia of Engineered Yarrowia lipolytica and Escherichia coli. ACS Synth Biol 2024; 13:2188-2198. [PMID: 38912892 DOI: 10.1021/acssynbio.4c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Metabolically engineered microbial consortia can contribute as a promising production platform for the supply of polyamide monomers. To date, the biosynthesis of long-chain α,ω-diamines from n-alkanes is challenging because of the inert nature of n-alkanes and the complexity of the overall synthesis pathway. We combined an engineered Yarrowia lipolytica module with Escherichia coli modules to obtain a mixed strain microbial consortium that could catalyze an efficient biotransformation of n-alkanes into corresponding α,ω-diamines. The engineered Y. lipolytica strain was constructed (YALI10) wherein the two genes responsible for β-oxidation and the five genes responsible for the overoxidation of fatty aldehydes were deleted. This newly constructed YALI10 strain expressing transaminase (TA) could produce 0.2 mM 1,12-dodecanediamine (40.1 mg/L) from 10 mM n-dodecane. The microbial consortia comprising engineered Y. lipolytica strains for the oxidation of n-alkanes (OM) and an E. coli amination module (AM) expressing an aldehyde reductase (AHR) and transaminase (TA) improved the production of 1,12-diamine up to 1.95 mM (391 mg/L) from 10 mM n-dodecane. Finally, combining the E. coli reduction module (RM) expressing a carboxylic acid reductase (CAR) and an sfp phosphopantetheinyl transferase with OM and AM further improved the production of 1,12-diamine by catalyzing the reduction of undesired 1,12-diacids into 1,12-diols, which further undergo amination to give 1,12-diamine as the target product. This newly constructed mixed strain consortium comprising three modules in one pot gave 4.1 mM (41%; 816 mg/L) 1,12-diaminododecane from 10 mM n-dodecane. The whole-cell consortia reported herein present an elegant "greener" alternative for the biosynthesis of various α,ω-diamines (C8, C10, C12, and C14) from corresponding n-alkanes.
Collapse
Affiliation(s)
- Ye Chan Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Hee-Wang Yoo
- Manufacfuring development, Pyeongtaek plant, Hanmi Pharm. Co., Pyeontaek 17118, South Korea
| | - Beom Gi Park
- CutisBio Co., Ltd., 8F Apgujeong B/D, 842 Nonhyeon-ro, Gangnam-gu, Seoul 08826, South Korea
| | - Sharad Sarak
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Saint Paul campus, Saint Paul, Minnesota 55108, United States of America
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
3
|
Poopanitpan N, Piampratom S, Viriyathanit P, Lertvatasilp T, Horiuchi H, Fukuda R, Kiatwuthinon P. SNF1 plays a crucial role in the utilization of n-alkane and transcriptional regulation of the genes involved in it in the yeast Yarrowia lipolytica. Heliyon 2024; 10:e32886. [PMID: 38975102 PMCID: PMC11226914 DOI: 10.1016/j.heliyon.2024.e32886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Yarrowia lipolytica is an ascomycetous yeast that can assimilate hydrophobic carbon sources including oil and n-alkane. The sucrose non-fermenting 1/AMP-activated protein kinase (Snf1/AMPK) complex is involved in the assimilation of non-fermentable carbon sources in various yeasts. However, the role of the Snf1/AMPK complex in n-alkane assimilation in Y. lipolytica has not yet been elucidated. This study aimed to clarify the role of Y. lipolytica SNF1 (YlSNF1) in the utilization of n-alkane. The deletion mutant of YlSNF1 (ΔYlsnf1) exhibited substantial growth defects on n-alkanes of various lengths (C10, C12, C14, and C16), and its growth was restored through the introduction of YlSNF1. Microscopic observations revealed that YlSnf1 tagged with enhanced green fluorescence protein showed dot-like distribution patterns in some cells cultured in the medium containing n-decane, which were not observed in cells cultured in the medium containing glucose or glycerol. The RNA sequencing analysis of ΔYlsnf1 cultured in the medium containing n-decane exhibited 302 downregulated and 131 upregulated genes compared with the wild-type strain cultured in the same medium. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that a significant fraction of the downregulated genes functioned in peroxisomes or were involved in the metabolism of n-alkane and fatty acids. Quantitative real-time PCR analysis confirmed the downregulation of 12 genes involved in the metabolism of n-alkane and fatty acid, ALK1-ALK3, ALK5, ADH7, PAT1, POT1, POX2, PEX3, PEX11, YAS1, and HFD3. Furthermore, ΔYlsnf1 exhibited growth defects on the medium containing the metabolites of n-alkane (fatty alcohol and fatty aldehyde). These findings suggest that YlSNF1 plays a crucial role in the utilization of n-alkane in Y. lipolytica. This study provides important insights into the advanced biotechnological applications of this yeast, including the bioconversion of n-alkane to useful chemicals and the bioremediation of petroleum-contaminated environments.
Collapse
Affiliation(s)
- Napapol Poopanitpan
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
- Interdisciplinary Program in Genetic Engineering, The Graduate School, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Sorawit Piampratom
- Interdisciplinary Program in Genetic Engineering, The Graduate School, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Patthanant Viriyathanit
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Threesara Lertvatasilp
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Pichamon Kiatwuthinon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
4
|
Gu S, Zhu F, Zhang L, Wen J. Mid-Long Chain Dicarboxylic Acid Production via Systems Metabolic Engineering: Progress and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5555-5573. [PMID: 38442481 DOI: 10.1021/acs.jafc.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Mid-to-long-chain dicarboxylic acids (DCAi, i ≥ 6) are organic compounds in which two carboxylic acid functional groups are present at the terminal position of the carbon chain. These acids find important applications as structural components and intermediates across various industrial sectors, including organic compound synthesis, food production, pharmaceutical development, and agricultural manufacturing. However, conventional petroleum-based DCA production methods cause environmental pollution, making sustainable development challenging. Hence, the demand for eco-friendly processes and renewable raw materials for DCA production is rising. Owing to advances in systems metabolic engineering, new tools from systems biology, synthetic biology, and evolutionary engineering can now be used for the sustainable production of energy-dense biofuels. Here, we explore systems metabolic engineering strategies for DCA synthesis in various chassis via the conversion of different raw materials into mid-to-long-chain DCAs. Subsequently, we discuss the future challenges in this field and propose synthetic biology approaches for the efficient production and successful commercialization of these acids.
Collapse
Affiliation(s)
- Shanna Gu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Fuzhou Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
| |
Collapse
|
5
|
Matsuse K, Hara M, Iwama R, Horiuchi H, Fukuda R. Phosphatidylserine synthase plays a critical role in the utilization of n-alkanes in the yeast Yarrowia lipolytica. FEMS Yeast Res 2024; 24:foae030. [PMID: 39293814 PMCID: PMC11462088 DOI: 10.1093/femsyr/foae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/20/2024] Open
Abstract
The yeast Yarrowia lipolytica can assimilate n-alkane as a carbon and energy source. To elucidate the significance of phosphatidylserine (PS) in the utilization of n-alkane in Y. lipolytica, we investigated the role of the Y. lipolytica ortholog (PSS1) of Saccharomyces cerevisiae PSS1/CHO1, which encodes a PS synthase. The PSS1 deletion mutant (pss1Δ) of Y. lipolytica could not grow on minimal medium in the absence of ethanolamine and choline but grew when either ethanolamine or choline was supplied to synthesize phosphatidylethanolamine and phosphatidylcholine. The pss1Δ strain exhibited severe growth defects on media containing n-alkanes even in the presence of ethanolamine and choline. In the pss1Δ strain, the transcription of ALK1, which encodes a primary cytochrome P450 that catalyses the hydroxylation of n-alkanes in the endoplasmic reticulum, was upregulated by n-alkane as in the wild-type strain. However, the production of functional P450 was not detected, as indicated by the absence of reduced CO-difference spectra in the pss1Δ strain. PS was undetectable in the lipid extracts of the pss1Δ strain. These results underscore the critical role of PSS1 in the biosynthesis of PS, which is essential for the production of functional P450 enzymes involved in n-alkane hydroxylation in Y. lipolytica.
Collapse
Affiliation(s)
- Katsuro Matsuse
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mariho Hara
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Min Lee S, Young Lee J, Hahn JS, Baek SH. Engineering of Yarrowia lipolytica as a platform strain for producing adipic acid from renewable resource. BIORESOURCE TECHNOLOGY 2024; 391:129920. [PMID: 37931767 DOI: 10.1016/j.biortech.2023.129920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
There is an increasing demand for bio-based dicarboxylic acids (DCA) as an eco-friendly alternatives to chemically synthesized DCA. Adipic acid, which is not naturally produced by microorganisms, is an essential DCA with significant industrial importance. This study aimed to develop a platform strain using Yarrowia lipolytica for efficient bioconversion of renewable resources into adipic acid. To prevent the complete oxidation of adipic acid, peroxisomal β-oxidation was engineered by selectively disrupting acyl-CoA oxidases. Furthermore, ω-oxidation activity was improved via introducing an additional copy of cytochrome P450 monooxygenase (ALK5) and reductase (CPR1) with fatty alcohol oxidase (FAO1). The production phase used SP92D medium in a two-stage bioconversion process, during which the engineered strain exhibited the highest production level, achieving a remarkable 9.7-fold increase compared to that of the parental strain. To our knowledge, this is the first report demonstrating that engineered Y. lipolytica can produce adipic acid from fatty acid methyl esters.
Collapse
Affiliation(s)
- Sang Min Lee
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea; Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju Young Lee
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Ji-Sook Hahn
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Ho Baek
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea.
| |
Collapse
|
7
|
Walker C, Mortensen M, Poudel B, Cotter C, Myers R, Okekeogbu IO, Ryu S, Khomami B, Giannone RJ, Laursen S, Trinh CT. Proteomes reveal metabolic capabilities of Yarrowia lipolytica for biological upcycling of polyethylene into high-value chemicals. mSystems 2023; 8:e0074123. [PMID: 37882587 PMCID: PMC10734471 DOI: 10.1128/msystems.00741-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Sustainable processes for biological upcycling of plastic wastes in a circular bioeconomy are needed to promote decarbonization and reduce environmental pollution due to increased plastic consumption, incineration, and landfill storage. Strain characterization and proteomic analysis revealed the robust metabolic capabilities of Yarrowia lipolytica to upcycle polyethylene into high-value chemicals. Significant proteome reallocation toward energy and lipid metabolisms was required for robust growth on hydrocarbons with n-hexadecane as the preferential substrate. However, an apparent over-investment in these same categories to utilize complex depolymerized plastic (DP) oil came at the expense of protein biosynthesis, limiting cell growth. Taken together, this study elucidates how Y. lipolytica activates its metabolism to utilize DP oil and establishes Y. lipolytica as a promising host for the upcycling of plastic wastes.
Collapse
Affiliation(s)
- Caleb Walker
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Max Mortensen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Bindica Poudel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Christopher Cotter
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Ryan Myers
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Ikenna O. Okekeogbu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Seunghyun Ryu
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Bamin Khomami
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Richard J. Giannone
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Siris Laursen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Cong T. Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
8
|
Using oils and fats to replace sugars as feedstocks for biomanufacturing: Challenges and opportunities for the yeast Yarrowia lipolytica. Biotechnol Adv 2023; 65:108128. [PMID: 36921878 DOI: 10.1016/j.biotechadv.2023.108128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
More than 200 million tons of plant oils and animal fats are produced annually worldwide from oil, crops, and the rendered animal fat industry. Triacylglycerol, an abundant energy-dense compound, is the major form of lipid in oils and fats. While oils or fats are very important raw materials and functional ingredients for food or related products, a significant portion is currently diverted to or recovered as waste. To significantly increase the value of waste oils or fats and expand their applications with a minimal environmental footprint, microbial biomanufacturing is presented as an effective strategy for adding value. Though both bacteria and yeast can be engineered to use oils or fats as the biomanufacturing feedstocks, the yeast Yarrowia lipolytica is presented as one of the most attractive platforms. Y. lipolytica is oleaginous, generally regarded as safe, demonstrated as a promising industrial producer, and has unique capabilities for efficient catabolism and bioconversion of lipid substrates. This review summarizes the major challenges and opportunities for Y. lipolytica as a new biomanufacturing platform for the production of value-added products from oils and fats. This review also discusses relevant cellular and metabolic engineering strategies such as fatty acid transport, fatty acid catabolism and bioconversion, redox balances and energy yield, cell morphology and stress response, and bioreaction engineering. Finally, this review highlights specific product classes including long-chain diacids, wax esters, terpenes, and carotenoids with unique synthesis opportunities from oils and fats in Y. lipolytica.
Collapse
|
9
|
Wang M, Ding M, Yuan Y. Bioengineering for the Microbial Degradation of Petroleum Hydrocarbon Contaminants. Bioengineering (Basel) 2023; 10:bioengineering10030347. [PMID: 36978738 PMCID: PMC10045523 DOI: 10.3390/bioengineering10030347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
Petroleum hydrocarbons are relatively recalcitrant compounds, and as contaminants, they are one of the most serious environmental problems. n-Alkanes are important constituents of petroleum hydrocarbons. Advances in synthetic biology and metabolic engineering strategies have made n-alkane biodegradation more designable and maneuverable for solving environmental pollution problems. In the microbial degradation of n-alkanes, more and more degradation pathways, related genes, microbes, and alkane hydroxylases have been discovered, which provide a theoretical basis for the further construction of degrading strains and microbial communities. In this review, the current advances in the microbial degradation of n-alkanes under aerobic condition are summarized in four aspects, including the biodegradation pathways and related genes, alkane hydroxylases, engineered microbial chassis, and microbial community. Especially, the microbial communities of “Alkane-degrader and Alkane-degrader” and “Alkane-degrader and Helper” provide new ideas for the degradation of petroleum hydrocarbons. Surfactant producers and nitrogen providers as a “Helper” are discussed in depth. This review will be helpful to further achieve bioremediation of oil-polluted environments rapidly.
Collapse
Affiliation(s)
- Minzhen Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mingzhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Correspondence:
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Utilization of n-alkane and roles of lipid transfer proteins in Yarrowia lipolytica. World J Microbiol Biotechnol 2023; 39:97. [PMID: 36781616 PMCID: PMC9925530 DOI: 10.1007/s11274-023-03541-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023]
Abstract
Yarrowia lipolytica, a dimorphic yeast belonging to the Ascomycota, has potent abilities to utilize hydrophobic compounds, such as n-alkanes and fatty acids, as carbon and energy sources. Yarrowia lipolytica can synthesize and accumulate large amounts of lipids, making it a promising host to produce various lipids and convert n-alkanes to useful compounds. For advanced use of Y. lipolytica in these applications, it is necessary to understand the metabolism of these hydrophobic compounds in this yeast and the underlying molecular mechanisms. In this review, current knowledge on the n-alkane metabolism and how this is regulated in Y. lipolytica is summarized. Furthermore, recent studies revealed that lipid transfer proteins are involved in the utilization of n-alkanes and the regulation of cell morphology in response to n-alkanes. This review discusses the roles of membrane lipids in these processes in Y. lipolytica.
Collapse
|
11
|
Improving Lipid Production of Yarrowia lipolytica by the Aldehyde Dehydrogenase-Mediated Furfural Detoxification. Int J Mol Sci 2022; 23:ijms23094761. [PMID: 35563152 PMCID: PMC9102794 DOI: 10.3390/ijms23094761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Yarrowia lipolytica, the non-conventional yeast capable of high lipogenesis, is a microbial chassis for producing lipid-based biofuels and chemicals from renewable resources such as lignocellulosic biomass. However, the low tolerance of Y. lipolytica against furfural, a major inhibitory furan aldehyde derived from the pretreatment processes of lignocellulosic biomass, has restricted the efficient conversion of lignocellulosic hydrolysates. In this study, the furfural tolerance of Y. lipolytica has been improved by supporting its endogenous detoxification mechanism. Specifically, the endogenous genes encoding the aldehyde dehydrogenase family proteins were overexpressed in Y. lipolytica to support the conversion of furfural to furoic acid. Among them, YALI0E15400p (FALDH2) has shown the highest conversion rate of furfural to furoic acid and resulted in two-fold increased cell growth and lipid production in the presence of 0.4 g/L of furfural. To our knowledge, this is the first report to identify the native furfural detoxification mechanism and increase furfural resistance through rational engineering in Y. lipolytica. Overall, these results will improve the potential of Y. lipolytica to produce lipids and other value-added chemicals from a carbon-neutral feedstock of lignocellulosic biomass.
Collapse
|
12
|
Jarboe LR, Khalid A, Rodriguez Ocasio E, Noroozi KF. Extrapolation of design strategies for lignocellulosic biomass conversion to the challenge of plastic waste. J Ind Microbiol Biotechnol 2022; 49:kuac001. [PMID: 35040946 PMCID: PMC9119000 DOI: 10.1093/jimb/kuac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 11/12/2022]
Abstract
The goal of cost-effective production of fuels and chemicals from biomass has been a substantial driver of the development of the field of metabolic engineering. The resulting design principles and procedures provide a guide for the development of cost-effective methods for degradation, and possibly even valorization, of plastic wastes. Here, we highlight these parallels, using the creative work of Lonnie O'Neal (Neal) Ingram in enabling production of fuels and chemicals from lignocellulosic biomass, with a focus on ethanol production as an exemplar process.
Collapse
Affiliation(s)
- Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Ammara Khalid
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Efrain Rodriguez Ocasio
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kimia Fashkami Noroozi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
13
|
OUP accepted manuscript. FEMS Yeast Res 2022; 22:6522173. [DOI: 10.1093/femsyr/foac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 11/12/2022] Open
|
14
|
Tenagy, Iwama R, Kobayashi S, Shiwa Y, Yoshikawa H, Horiuchi H, Fukuda R, Kajiwara S. Acyl-CoA synthetases, Aal4 and Aal7, are involved in the utilization of exogenous fatty acids in Yarrowia lipolytica. J GEN APPL MICROBIOL 2021; 67:9-14. [PMID: 33100277 DOI: 10.2323/jgam.2020.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The yeast Yarrowia lipolytica assimilates hydrophobic compounds, such as n-alkanes and fatty acids, as sole carbon and energy sources. It has been shown that the acyl-CoA synthetase (ACS) genes, FAT1 and FAA1, are involved in the activation of fatty acids produced during the metabolism of n-alkanes, but the ACS genes that are involved in the metabolism of fatty acids from the culture medium remains to be identified. In this paper, we have identified the ACS genes involved in the utilization of exogenous fatty acids. RNA-seq analysis and qRT-PCR revealed that the transcript levels of the peroxisomal ACS-like protein-encoding genes AAL4 and AAL7 were increased in the presence of oleic acid. The single deletion mutant of AAL4 or AAL7 and double deletion mutant of AAL4 and AAL7 did not show any defects in the growth on the medium containing glucose, glycerol, n-alkanes, or fatty acids. In contrast, the mutant with deletion of seven genes, FAA1, FAT1-FAT4, AAL4, and AAL7, showed severe growth defects on the medium containing dodecanoic acid or oleic acid. These results suggest that Aal4p and Aal7p play important roles in the metabolism of exogenous fatty acids in collaboration with Faa1p and Fat1p-Fat4p.
Collapse
Affiliation(s)
- Tenagy
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Ryo Iwama
- Department of Biotechnology, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | | | - Yuh Shiwa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture.,Department of Molecular Microbiology, Tokyo University of Agriculture
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture.,Department of Bioscience, Tokyo University of Agriculture
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology
| |
Collapse
|
15
|
Mamaev D, Zvyagilskaya R. Yarrowia lipolytica: a multitalented yeast species of ecological significance. FEMS Yeast Res 2021; 21:6141120. [PMID: 33595651 DOI: 10.1093/femsyr/foab008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Yarrowia lipolytica is characterized by GRAS (Generally regarded as safe) status, the versatile substrate utilization profile, rapid utilization rates, metabolic diversity and flexibility, the unique abilities to tolerate to extreme environments (acidic, alkaline, hypersaline, heavy metal-pollutions and others) and elevated biosynthesis and secreting capacities. These advantages of Y. lipolytica allow us to consider it as having great ecological significance. Unfortunately, there is still a paucity of relevant review data. This mini-review highlights ecological ubiquity of Y. lipolytica species, their ability to diversify and colonize specialized niches. Different Y. lipolytica strains, native and engineered, are beneficial in degrading many environmental pollutants causing serious ecological problems worldwide. In agriculture has a potential to be a bio-control agent by stimulating plant defense response, and an eco-friendly bio-fertilizer. Engineered strains of Y. lipolytica have become a very promising platform for eco-friendly production of biofuel, commodities, chemicals and secondary metabolites of plant origin, obtaining which by other method were limited or economically infeasible, or were accompanied by stringent environmental problems. Perspectives to use potential of Y. lipolytica's capacities for industrial scale production of valuable compounds in an eco-friendly manner are proposed.
Collapse
Affiliation(s)
- Dmitry Mamaev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russian Federation
| | - Renata Zvyagilskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russian Federation
| |
Collapse
|
16
|
Holkenbrink C, Ding BJ, Wang HL, Dam MI, Petkevicius K, Kildegaard KR, Wenning L, Sinkwitz C, Lorántfy B, Koutsoumpeli E, França L, Pires M, Bernardi C, Urrutia W, Mafra-Neto A, Ferreira BS, Raptopoulos D, Konstantopoulou M, Löfstedt C, Borodina I. Production of moth sex pheromones for pest control by yeast fermentation. Metab Eng 2020; 62:312-321. [DOI: 10.1016/j.ymben.2020.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
|
17
|
Pang Y, Zhao Y, Li S, Zhao Y, Li J, Hu Z, Zhang C, Xiao D, Yu A. Engineering the oleaginous yeast Yarrowia lipolytica to produce limonene from waste cooking oil. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:241. [PMID: 31624503 PMCID: PMC6781337 DOI: 10.1186/s13068-019-1580-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/25/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Limonene is an important biologically active natural product widely used in the food, cosmetic, nutraceutical and pharmaceutical industries. However, the low abundance of limonene in plants renders their isolation from plant sources non-economically viable. Therefore, engineering microbes into microbial factories for producing limonene is fast becoming an attractive alternative approach that can overcome the aforementioned bottleneck to meet the needs of industries and make limonene production more sustainable and environmentally friendly. RESULTS In this proof-of-principle study, the oleaginous yeast Yarrowia lipolytica was successfully engineered to produce both d-limonene and l-limonene by introducing the heterologous d-limonene synthase from Citrus limon and l-limonene synthase from Mentha spicata, respectively. However, only 0.124 mg/L d-limonene and 0.126 mg/L l-limonene were produced. To improve the limonene production by the engineered yeast Y. lipolytica strain, ten genes involved in the mevalonate-dependent isoprenoid pathway were overexpressed individually to investigate their effects on limonene titer. Hydroxymethylglutaryl-CoA reductase (HMGR) was found to be the key rate-limiting enzyme in the mevalonate (MVA) pathway for the improving limonene synthesis in Y. lipolytica. Through the overexpression of HMGR gene, the titers of d-limonene and l-limonene were increased to 0.256 mg/L and 0.316 mg/L, respectively. Subsequently, the fermentation conditions were optimized to maximize limonene production by the engineered Y. lipolytica strains from glucose, and the final titers of d-limonene and l-limonene were improved to 2.369 mg/L and 2.471 mg/L, respectively. Furthermore, fed-batch fermentation of the engineered strains Po1g KdHR and Po1g KlHR was used to enhance limonene production in shake flasks and the titers achieved for d-limonene and l-limonene were 11.705 mg/L (0.443 mg/g) and 11.088 mg/L (0.385 mg/g), respectively. Finally, the potential of using waste cooking oil as a carbon source for limonene biosynthesis from the engineered Y. lipolytica strains was investigated. We showed that d-limonene and l-limonene were successfully produced at the respective titers of 2.514 mg/L and 2.723 mg/L under the optimal cultivation condition, where 70% of waste cooking oil was added as the carbon source, representing a 20-fold increase in limonene titer compared to that before strain and fermentation optimization. CONCLUSIONS This study represents the first report on the development of a new and efficient process to convert waste cooking oil into d-limonene and l-limonene by exploiting metabolically engineered Y. lipolytica strains for fermentation. The results obtained in this study lay the foundation for more future applications of Y. lipolytica in converting waste cooking oil into various industrially valuable products.
Collapse
Affiliation(s)
- Yaru Pang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Yakun Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Shenglong Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Yu Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Jian Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Zhihui Hu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Dongguang Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457 People’s Republic of China
| |
Collapse
|
18
|
Dahlin J, Holkenbrink C, Marella ER, Wang G, Liebal U, Lieven C, Weber D, McCloskey D, Ebert BE, Herrgård MJ, Blank LM, Borodina I, Wang HL. Multi-Omics Analysis of Fatty Alcohol Production in Engineered Yeasts Saccharomyces cerevisiae and Yarrowia lipolytica. Front Genet 2019; 10:747. [PMID: 31543895 PMCID: PMC6730484 DOI: 10.3389/fgene.2019.00747] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/17/2019] [Indexed: 12/02/2022] Open
Abstract
Fatty alcohols are widely used in various applications within a diverse set of industries, such as the soap and detergent industry, the personal care, and cosmetics industry, as well as the food industry. The total world production of fatty alcohols is over 2 million tons with approximately equal parts derived from fossil oil and from plant oils or animal fats. Due to the environmental impact of these production methods, there is an interest in alternative methods for fatty alcohol production via microbial fermentation using cheap renewable feedstocks. In this study, we aimed to obtain a better understanding of how fatty alcohol biosynthesis impacts the host organism, baker’s yeast Saccharomyces cerevisiae or oleaginous yeast Yarrowia lipolytica. Producing and non-producing strains were compared in growth and nitrogen-depletion cultivation phases. The multi-omics analysis included physiological characterization, transcriptome analysis by RNAseq, 13Cmetabolic flux analysis, and intracellular metabolomics. Both species accumulated fatty alcohols under nitrogen-depletion conditions but not during growth. The fatty alcohol–producing Y. lipolytica strain had a higher fatty alcohol production rate than an analogous S. cerevisiae strain. Nitrogen-depletion phase was associated with lower glucose uptake rates and a decrease in the intracellular concentration of acetyl–CoA in both yeast species, as well as increased organic acid secretion rates in Y. lipolytica. Expression of the fatty alcohol–producing enzyme fatty acyl–CoA reductase alleviated the growth defect caused by deletion of hexadecenal dehydrogenase encoding genes (HFD1 and HFD4) in Y. lipolytica. RNAseq analysis showed that fatty alcohol production triggered a cell wall stress response in S. cerevisiae. RNAseq analysis also showed that both nitrogen-depletion and fatty alcohol production have substantial effects on the expression of transporter encoding genes in Y. lipolytica. In conclusion, through this multi-omics study, we uncovered some effects of fatty alcohol production on the host metabolism. This knowledge can be used as guidance for further strain improvement towards the production of fatty alcohols.
Collapse
Affiliation(s)
- Jonathan Dahlin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Carina Holkenbrink
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Eko Roy Marella
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Guokun Wang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulf Liebal
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Christian Lieven
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Dieter Weber
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Douglas McCloskey
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Birgitta E Ebert
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hong-Lei Wang
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Qiu S, Zeng B. Advances in understanding of the oxysterol-binding protein homologous in yeast and filamentous fungi. Int Microbiol 2019; 22:169-179. [PMID: 30810998 DOI: 10.1007/s10123-019-00056-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 01/14/2023]
Abstract
Oxysterol-binding protein is an important non-vesicular trafficking protein involved in the transportation of lipids in eukaryotic cells. Oxysterol-binding protein is identified as oxysterol-binding protein-related proteins (ORPs) in mammals and oxysterol-binding protein homologue (Osh) in yeast. Research has described the function and structure of oxysterol-binding protein in mammals and yeast, but little information about the protein's structure and function in filamentous fungi has been reported. This article focuses on recent advances in the research of Osh proteins in yeast and filamentous fungi, such as Aspergillus oryzae, Aspergillus nidulans, and Candida albicans. Furthermore, we point out some problems in the field, summarizing the membrane contact sites (MCS) of Osh proteins in yeast, and consider the future of Osh protein development.
Collapse
Affiliation(s)
- Shangkun Qiu
- Jiangxi Province Key Laboratory Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Bin Zeng
- Jiangxi Province Key Laboratory Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
20
|
Osh6p, a homologue of the oxysterol-binding protein, is involved in production of functional cytochrome P450 belonging to CYP52 family in n-alkane-assimilating yeast Yarrowia lipolytica. Biochem Biophys Res Commun 2018; 499:836-842. [DOI: 10.1016/j.bbrc.2018.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/01/2018] [Indexed: 01/04/2023]
|
21
|
Sinha M, Weyda I, Sørensen A, Bruno KS, Ahring BK. Alkane biosynthesis by Aspergillus carbonarius ITEM 5010 through heterologous expression of Synechococcus elongatus acyl-ACP/CoA reductase and aldehyde deformylating oxygenase genes. AMB Express 2017; 7:18. [PMID: 28058634 PMCID: PMC5216010 DOI: 10.1186/s13568-016-0321-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/26/2016] [Indexed: 01/20/2023] Open
Abstract
In this study we describe the heterologous expression of the recently identified cyanobacterial pathway for long chain alkane biosynthesis, involving the reduction of fatty acyl-ACP to fatty aldehyde and the subsequent conversion of this into alkanes, in the filamentous fungus Aspergillus carbonarius ITEM 5010. Genes originating from Synechococcus elongatus strain PCC7942, encoding acyl-ACP/CoA reductase and aldehyde deformylating oxygenase enzymes, were successfully expressed in A. carbonarius, which lead to the production of pentadecane and heptadecane, alkanes that have not been previously produced by this fungus. Titers of 0.2, 0.5 and 2.7 mg/l pentadecane and 0.8, 1.6 and 10.2 mg/l heptadecane were achieved using glucose, Yeast malt and oatmeal media, respectively. Besides producing alkanes, we found elevated levels of internal free fatty acids and triglycerides in the alkane producing transformant. These findings can indicate that a yet unidentified, native fatty aldehyde dehydrogenase channels back the fatty aldehydes into the fatty acid metabolism, thus competing for substrate with the heterologously expressed fatty aldehyde deformylating oxygenase. These findings will potentially facilitate the future application of robust, fungal cell factories for the production of advanced biofuels from various substrates.
Collapse
|
22
|
Xie D. Integrating Cellular and Bioprocess Engineering in the Non-Conventional Yeast Yarrowia lipolytica for Biodiesel Production: A Review. Front Bioeng Biotechnol 2017; 5:65. [PMID: 29090211 PMCID: PMC5650997 DOI: 10.3389/fbioe.2017.00065] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022] Open
Abstract
As one of the major biofuels to replace fossil fuel, biodiesel has now attracted more and more attention due to its advantages in higher energy density and overall less greenhouse gas generation. Biodiesel (fatty acid alkyl esters) is produced by chemically or enzymatically catalyzed transesterification of lipids from microbial cells, microalgae, oil crops, or animal fats. Currently, plant oils or waste cooking oils/fats remain the major source for biodiesel production via enzymatic route, but the production capacity is limited either by the uncertain supplement of plant oils or by the low or inconsistent quality of waste oils/fats. In the past decades, significant progresses have been made on synthesis of microalgae oils directly from CO2via a photosynthesis process, but the production cost from any current technologies is still too high to be commercialized due to microalgae’s slow growth rate on CO2, inefficiency in photo-bioreactors, lack of efficient contamination control methods, and high cost in downstream recovery. At the same time, many oleaginous microorganisms have been studied to produce lipids via the fatty acid synthesis pathway under aerobic fermentation conditions, among them one of the most studied is the non-conventional yeast, Yarrowia lipolytica, which is able to produce fatty acids at very high titer, rate, and yield from various economical substrates. This review summarizes the recent research progresses in both cellular and bioprocess engineering in Y. lipolytica to produce lipids at a low cost that may lead to commercial-scale biodiesel production. Specific technologies include the strain engineering for using various substrates, metabolic engineering in high-yield lipid synthesis, cell morphology study for efficient substrate uptake and product formation, free fatty acid formation and secretion for improved downstream recovery, and fermentation engineering for higher productivities and less operating cost. To further improve the economics of the microbial oil-based biodiesel, production of lipid-related or -derived high-value products are also discussed.
Collapse
Affiliation(s)
- Dongming Xie
- Massachusetts Biomanufacturing Center, Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
23
|
Combinatorial Engineering of Yarrowia lipolytica as a Promising Cell Biorefinery Platform for the de novo Production of Multi-Purpose Long Chain Dicarboxylic Acids. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3030040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Δ12-fatty acid desaturase is involved in growth at low temperature in yeast Yarrowia lipolytica. Biochem Biophys Res Commun 2017; 488:165-170. [DOI: 10.1016/j.bbrc.2017.05.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 12/19/2022]
|
25
|
Ledesma-Amaro R, Nicaud JM. Metabolic Engineering for Expanding the Substrate Range of Yarrowia lipolytica. Trends Biotechnol 2016; 34:798-809. [DOI: 10.1016/j.tibtech.2016.04.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 11/16/2022]
|
26
|
Three alcohol dehydrogenase genes and one acetyl-CoA synthetase gene are responsible for ethanol utilization in Yarrowia lipolytica. Fungal Genet Biol 2016; 95:30-38. [PMID: 27486067 DOI: 10.1016/j.fgb.2016.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 11/21/2022]
Abstract
The non-conventional yeast Yarrowia lipolytica is able to utilize a wide range of different substrates like glucose, glycerol, ethanol, acetate, proteins and various hydrophobic molecules. Although most metabolic pathways for the utilization of these substrates have been clarified by now, it was not clear whether ethanol is oxidized by alcohol dehydrogenases or by an alternative oxidation system inside the cell. In order to detect the genes that are required for ethanol utilization in Y. lipolytica, eight alcohol dehydrogenase (ADH) genes and one alcohol oxidase gene (FAO1) have been identified and respective deletion strains were tested for their ability to metabolize ethanol. As a result of this, we found that the availability of ADH1, ADH2 or ADH3 is required for ethanol utilization in Y. lipolytica. A strain with deletions in all three genes is lacking the ability to utilize ethanol as sole carbon source. Although Adh2p showed by far the highest enzyme activity in an in vitro assay, the availability of any of the three genes was sufficient to enable a decent growth. In addition to ADH1, ADH2 and ADH3, an acetyl-CoA synthetase encoding gene (ACS1) was found to be essential for ethanol utilization. As Y. lipolytica is a non-fermenting yeast, it is neither able to grow under anaerobic conditions nor to produce ethanol. To investigate whether Y. lipolytica may produce ethanol, the key genes of alcoholic fermentation in S. cerevisiae, ScADH1 and ScPDC1, were overexpressed in an ADH and an ACS1 deletion strain. However, instead of producing ethanol, the respective strains regained the ability to use ethanol as single carbon source and were still not able to grow under anaerobic conditions.
Collapse
|
27
|
Iwama R, Kobayashi S, Ishimaru C, Ohta A, Horiuchi H, Fukuda R. Functional roles and substrate specificities of twelve cytochromes P450 belonging to CYP52 family in n-alkane assimilating yeast Yarrowia lipolytica. Fungal Genet Biol 2016; 91:43-54. [PMID: 27039152 DOI: 10.1016/j.fgb.2016.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/16/2016] [Accepted: 03/29/2016] [Indexed: 11/26/2022]
Abstract
Yarrowia lipolytica possesses twelve ALK genes, which encode cytochromes P450 in the CYP52 family. In this study, using a Y. lipolytica strain from which all twelve ALK genes had been deleted, strains individually expressing each of the ALK genes were constructed and their roles and substrate specificities were determined by observing their growth on n-alkanes and analyzing fatty acid metabolism. The results suggested that the twelve Alk proteins can be categorized into four groups based on their substrate specificity: Alk1p, Alk2p, Alk9p, and Alk10p, which have significant activities to hydroxylate n-alkanes; Alk4p, Alk5p, and Alk7p, which have significant activities to hydroxylate the ω-terminal end of dodecanoic acid; Alk3p and Alk6p, which have significant activities to hydroxylate both n-alkanes and dodecanoic acid; and Alk8p, Alk11p, and Alk12p, which showed faint or no activities to oxidize these substrates. The involvement of Alk proteins in the oxidation of fatty alcohols and fatty aldehydes was also analyzed by measuring viability of the mutant deleted for twelve ALK genes in medium containing dodecanol and by observing growth on dodecanal of a mutant strain, in which twelve ALK genes were deleted along with four fatty aldehyde dehydrogenase genes. It was suggested that ALK gene(s) is/are involved in the detoxification of dodecanol and the assimilation of dodecanal. These results imply that genes encoding CYP52-family P450s have undergone multiplication and diversification in Y. lipolytica for assimilation of various hydrophobic compounds.
Collapse
Affiliation(s)
- Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kobayashi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chiaki Ishimaru
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akinori Ohta
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
28
|
Wang G, Xiong X, Ghogare R, Wang P, Meng Y, Chen S. Exploring fatty alcohol-producing capability of Yarrowia lipolytica. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:107. [PMID: 27213014 PMCID: PMC4875687 DOI: 10.1186/s13068-016-0512-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/20/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Fatty alcohols are important oleochemicals widely used in detergents, surfactants and personal care products. Bio-synthesized fatty alcohol provides a promising alternative to traditional fatty alcohol industry. Harnessing oleaginous microorganisms for fatty alcohol production may offer a new strategy to achieve a commercially viable yield that currently still seems to be a remote target. RESULTS In this study, we introduced functional fatty acyl-CoA reductase (FAR), TaFAR1 to direct the conversion from fatty acyl-CoA to fatty alcohol in Yarrowia lipolytica (Y. lipolytica), an oleaginous non-conventional yeast showing great lipid-producing capability. Tri-module optimizations including eliminating fatty alcohol degradation pathway, enhancing TaFAR1 expression, and increasing fatty acyl-CoA supply were furtherly conducted, resulting in 63-fold increase in intracellular fatty alcohol-producing capability compared to the starting strain. Thus, this work demonstrated successful construction of first generation of Y. lipolytica fatty alcohol-producing cell factory. Through the study of effect of environmental nutrition on fatty alcohol production, up to 636.89 mg/L intracellular hexadecanol (high fatty alcohol-retaining capability) and 53.32 mg/L extracellular hexadecanol were produced by this cell factory through batch fermentation, which was comparable to the highest production of Saccharomyces cerevisiae under the similar condition. CONCLUSION This work preliminarily explored fatty alcohol-producing capability through mobilization of FAR and fatty acid metabolism, maximizing the intracellular fatty alcohol-producing capability, suggesting that Y. lipolytica cell factory potentially offers a promising platform for fatty alcohol production.
Collapse
Affiliation(s)
- Guokun Wang
- />Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120 USA
- />Tianjin Key Laboratory of Industrial Biosystem and Bioprocess Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Xiaochao Xiong
- />Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120 USA
| | - Rishikesh Ghogare
- />Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120 USA
| | - Pengdong Wang
- />Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120 USA
| | - Yonghong Meng
- />Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120 USA
- />College of Food Engineering and Nutritional Science, Shaanxi Normal University, 199 South Chang’an Road, Xi’an, 710062 People’s Republic of China
| | - Shulin Chen
- />Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120 USA
| |
Collapse
|
29
|
Kobayashi S, Tezaki S, Horiuchi H, Fukuda R, Ohta A. Acidic phospholipid-independent interaction of Yas3p, an Opi1-family transcriptional repressor ofYarrowia lipolytica, with the endoplasmic reticulum. Yeast 2015; 32:691-701. [DOI: 10.1002/yea.3096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 11/08/2022] Open
Affiliation(s)
| | - Satoshi Tezaki
- Department of Biotechnology; The University of Tokyo; Japan
| | | | | | - Akinori Ohta
- Department of Biotechnology; The University of Tokyo; Japan
| |
Collapse
|
30
|
Tenagy, Park JS, Iwama R, Kobayashi S, Ohta A, Horiuchi H, Fukuda R. Involvement of acyl-CoA synthetase genes in n-alkane assimilation and fatty acid utilization in yeast Yarrowia lipolytica. FEMS Yeast Res 2015; 15:fov031. [PMID: 26019148 DOI: 10.1093/femsyr/fov031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2015] [Indexed: 01/19/2023] Open
Abstract
Here, we investigated the roles of YAL1 (FAA1) and FAT1 encoding acyl-CoA synthetases (ACSs) and three additional orthologs of ACS genes FAT2-FAT4 of the yeast Yarrowia lipolytica in the assimilation or utilization of n-alkanes and fatty acids. ACS deletion mutants were generated to characterize their function. The FAT1 deletion mutant exhibited decreased growth on n-alkanes of 10-18 carbons, whereas the FAA1 mutant showed growth reduction on n-alkane of 16 carbons. However, FAT2-FAT4 deletion mutants did not show any growth defects, suggesting that FAT1 and FAA1 are involved in the activation of fatty acids produced during the metabolism of n-alkanes. In contrast, deletions of FAA1 and FAT1-FAT4 conferred no defect in growth on fatty acids. The wild-type strain grew in the presence of cerulenin, an inhibitor of fatty acid synthesis, by utilizing exogenously added fatty acid or fatty acid derived from n-alkane when oleic acid or n-alkane of 18 carbons was supplemented. However, the FAA1 deletion mutant did not grow, indicating a critical role for FAA1 in the utilization of fatty acids. Fluorescent microscopic observation and biochemical analyses suggested that Fat1p is present in the peroxisome and Faa1p is localized in the cytosol and to membranes.
Collapse
Affiliation(s)
- Tenagy
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jun Seok Park
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kobayashi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akinori Ohta
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
31
|
Yarrowia lipolytica: recent achievements in heterologous protein expression and pathway engineering. Appl Microbiol Biotechnol 2015; 99:4559-77. [PMID: 25947247 DOI: 10.1007/s00253-015-6624-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 12/13/2022]
Abstract
The oleaginous yeast Yarrowia lipolytica has become a recognized system for expression/secretion of heterologous proteins. This non-conventional yeast is currently being developed as a workhorse for biotechnology by several research groups throughout the world, especially for single-cell oil production, whole cell bioconversion and upgrading of industrial wastes. This mini-review presents established tools for protein expression in Y. lipolytica and highlights novel developments in the areas of promoter design, surface display, and host strain or metabolic pathway engineering. An overview of the industrial and commercial biotechnological applications of Y. lipolytica is also presented.
Collapse
|
32
|
Iwama R, Kobayashi S, Ohta A, Horiuchi H, Fukuda R. Alcohol dehydrogenases and an alcohol oxidase involved in the assimilation of exogenous fatty alcohols in Yarrowia lipolytica. FEMS Yeast Res 2015; 15:fov014. [DOI: 10.1093/femsyr/fov014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 01/21/2023] Open
|