1
|
Kudo F. Biosynthesis of macrolactam antibiotics with β-amino acid polyketide starter units. J Antibiot (Tokyo) 2024; 77:486-498. [PMID: 38816450 PMCID: PMC11284099 DOI: 10.1038/s41429-024-00742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Macrolactam antibiotics incorporating β-amino acid polyketide starter units, isolated primarily from Actinomycetes species, show significant biological activities. This review provides a detailed analysis into the biosynthetic studies of vicenistatin, a macrolactam antibiotic with a 3-aminoisobutyrate starter unit, as well as biosynthetic research on related macrolactam compounds. Firstly, the elucidation of a common mechanism for the incorporation of β-amino acid starter units into the polyketide synthase (PKS) is described. Secondly, the unique biosynthetic mechanisms of the β-amino acids that are used to supply the main macrolactam biosynthetic pathways with starter units are discussed. Thirdly, some distinctive post-PKS modification mechanisms that complete macrolactam antibiotic biosynthesis are summarized. Finally, future directions for creating new macrolactam compounds through engineered biosynthesis pathways are described.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.
| |
Collapse
|
2
|
Zhang M, Peng Z, Huang Z, Fang J, Li X, Qiu X. Functional Diversity and Engineering of the Adenylation Domains in Nonribosomal Peptide Synthetases. Mar Drugs 2024; 22:349. [PMID: 39195464 DOI: 10.3390/md22080349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Nonribosomal peptides (NRPs) are biosynthesized by nonribosomal peptide synthetases (NRPSs) and are widely distributed in both terrestrial and marine organisms. Many NRPs and their analogs are biologically active and serve as therapeutic agents. The adenylation (A) domain is a key catalytic domain that primarily controls the sequence of a product during the assembling of NRPs and thus plays a predominant role in the structural diversity of NRPs. Engineering of the A domain to alter substrate specificity is a potential strategy for obtaining novel NRPs for pharmaceutical studies. On the basis of introducing the catalytic mechanism and multiple functions of the A domains, this article systematically describes several representative NRPS engineering strategies targeting the A domain, including mutagenesis of substrate-specificity codes, substitution of condensation-adenylation bidomains, the entire A domain or its subdomains, domain insertion, and whole-module rearrangements.
Collapse
Affiliation(s)
- Mengli Zhang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zijing Peng
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zhenkuai Huang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Jiaqi Fang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Xinhai Li
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Xiaoting Qiu
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| |
Collapse
|
3
|
Heard SC, Winter JM. Structural, biochemical and bioinformatic analyses of nonribosomal peptide synthetase adenylation domains. Nat Prod Rep 2024; 41:1180-1205. [PMID: 38488017 PMCID: PMC11253843 DOI: 10.1039/d3np00064h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 07/18/2024]
Abstract
Covering: 1997 to July 2023The adenylation reaction has been a subject of scientific intrigue since it was first recognized as essential to many biological processes, including the homeostasis and pathogenicity of some bacteria and the activation of amino acids for protein synthesis in mammals. Several foundational studies on adenylation (A) domains have facilitated an improved understanding of their molecular structures and biochemical properties, in particular work on nonribosomal peptide synthetases (NRPSs). In NRPS pathways, A domains activate their respective acyl substrates for incorporation into a growing peptidyl chain, and many nonribosomal peptides are bioactive. From a natural product drug discovery perspective, improving existing bioinformatics platforms to predict unique NRPS products more accurately from genomic data is desirable. Here, we summarize characterization efforts of A domains primarily from NRPS pathways from July 1997 up to July 2023, covering protein structure elucidation, in vitro assay development, and in silico tools for improved predictions.
Collapse
Affiliation(s)
- Stephanie C Heard
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
4
|
Li J, Yang Z, Shi C, Wu X, Zhou L, Liang Y, Li Q, Ju J. Semi-synthesis and structure-activity relationship study yield antibacterial vicenistatin derivatives with low cytotoxicity. J Antibiot (Tokyo) 2024; 77:221-227. [PMID: 38228780 DOI: 10.1038/s41429-023-00701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
Vicenistatin (1) is a 20-membered polyketide macrocyclic antibiotic with potent antimicrobial and cytotoxic activities. In this study, to further explore the potential of 1 as candidates of antibacterial drug development, 4'-N-demethyl vicenistatin (2), a secondary metabolite obtained from the ∆vicG mutant strain of Monodonata labio-associated Streptomyces parvus SCSIO Mla-L010, was utilized as a starting material for modifications of 4'-amino group of vicenistatin. Six new vicenistatin derivatives (3-8) were semi-synthesized through a concise route of amino modification with various aliphatic and aromatic aldehydes. Our study reveals that the bioactivity of vicenistatin is closely related to amino modification in sugar moiety, which results from the length of alkyl side chain as well as the presence of electron withdrawing/denoting group on the benzene ring. Importantly, compounds 4 with a butyl group and 8 with a 3,5-dihydroxyl-benzyl group at 4'-amino group, respectively, exhibited good antimicrobial activities, with MIC values spanning 0.5-4 μg ml-1 to Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis, Micrococcus luteus and Bacillus subtilis, with low cytotoxicity. This research promotes the further exploration of structure-activity relationships of vicenistatin and provides new vicenistatin derivatives for development of future anti-infectious agents with reduced cytotoxicity.
Collapse
Affiliation(s)
- Jun Li
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Chinese Academy of Sceinces, South China Sea Institute of Oceanology, Guangzhou, 510301, China
| | - Zhenye Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Chinese Academy of Sceinces, South China Sea Institute of Oceanology, Guangzhou, 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao, 266400, China
| | - Chuanling Shi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaoyun Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Le Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Chinese Academy of Sceinces, South China Sea Institute of Oceanology, Guangzhou, 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yongqian Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Chinese Academy of Sceinces, South China Sea Institute of Oceanology, Guangzhou, 510301, China.
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao, 266400, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Chinese Academy of Sceinces, South China Sea Institute of Oceanology, Guangzhou, 510301, China.
- College of Oceanology, University of Chinese Academy of Sciences, Qingdao, 266400, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
5
|
Patel KD, Gulick AM. Structural and functional insights into δ-poly-L-ornithine polymer biosynthesis from Acinetobacter baumannii. Commun Biol 2023; 6:982. [PMID: 37752201 PMCID: PMC10522769 DOI: 10.1038/s42003-023-05362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Cationic homo-polyamino acid (CHPA) peptides containing isopeptide bonds of diamino acids have been identified from Actinomycetes strains. However, none has been reported from other bacteria. Here, we report a δ-poly-L-ornithine synthetase from Acinetobacter baumannii, which we name PosA. Surprisingly, structural analysis of the adenylation domain and biochemical assay shows L-ornithine as the substrate for PosA. The product from the enzymatic reaction was purified and identified as poly-L-ornithine composed of 7-12 amino acid units. Chemical labeling of the polymer confirmed the isopeptide linkage of δ-poly-L-ornithine. We examine the biological activity of chemically synthesized 12-mer δ-poly-L-ornithine, illustrating that the polymer may act as an anti-fungal agent. Structures of the isolated adenylation domain from PosA are presented with several diamino acids and biochemical assays identify important substrate binding residues. Structurally-guided genome-mining led to the identification of homologs with different substrate binding residues that could activate additional substrates. A homolog from Bdellovibrionales sp. shows modest activity with L-arginine but not with any diamino acids observed to be substrates for previously examined CHPA synthetases. Our study indicates the possibility that additional CHPAs may be produced by various microbes, supporting the further exploration of uncharacterized natural products.
Collapse
Affiliation(s)
- Ketan D Patel
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, 14203, USA
| | - Andrew M Gulick
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, 14203, USA.
| |
Collapse
|
6
|
Patel KD, MacDonald MR, Ahmed SF, Singh J, Gulick AM. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Nat Prod Rep 2023; 40:1550-1582. [PMID: 37114973 PMCID: PMC10510592 DOI: 10.1039/d3np00003f] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
Covering: up to fall 2022.Nonribosomal peptide synthetases (NRPSs) are a family of modular, multidomain enzymes that catalyze the biosynthesis of important peptide natural products, including antibiotics, siderophores, and molecules with other biological activity. The NRPS architecture involves an assembly line strategy that tethers amino acid building blocks and the growing peptides to integrated carrier protein domains that migrate between different catalytic domains for peptide bond formation and other chemical modifications. Examination of the structures of individual domains and larger multidomain proteins has identified conserved conformational states within a single module that are adopted by NRPS modules to carry out a coordinated biosynthetic strategy that is shared by diverse systems. In contrast, interactions between modules are much more dynamic and do not yet suggest conserved conformational states between modules. Here we describe the structures of NRPS protein domains and modules and discuss the implications for future natural product discovery.
Collapse
Affiliation(s)
- Ketan D Patel
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Monica R MacDonald
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Syed Fardin Ahmed
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Jitendra Singh
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
7
|
Stephan P, Langley C, Winkler D, Basquin J, Caputi L, O'Connor SE, Kries H. Directed Evolution of Piperazic Acid Incorporation by a Nonribosomal Peptide Synthetase. Angew Chem Int Ed Engl 2023; 62:e202304843. [PMID: 37326625 DOI: 10.1002/anie.202304843] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Engineering of biosynthetic enzymes is increasingly employed to synthesize structural analogues of antibiotics. Of special interest are nonribosomal peptide synthetases (NRPSs) responsible for the production of important antimicrobial peptides. Here, directed evolution of an adenylation domain of a Pro-specific NRPS module completely switched substrate specificity to the non-standard amino acid piperazic acid (Piz) bearing a labile N-N bond. This success was achieved by UPLC-MS/MS-based screening of small, rationally designed mutant libraries and can presumably be replicated with a larger number of substrates and NRPS modules. The evolved NRPS produces a Piz-derived gramicidin S analogue. Thus, we give new impetus to the too-early dismissed idea that widely accessible low-throughput methods can switch the specificity of NRPSs in a biosynthetically useful fashion.
Collapse
Affiliation(s)
- Philipp Stephan
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Chloe Langley
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Daniela Winkler
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Planegg Martinsried, Germany
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| |
Collapse
|
8
|
Chen IH, Cheng T, Wang YL, Huang SJ, Hsiao YH, Lai YT, Toh SI, Chu J, Rudolf JD, Chang CY. Characterization and Structural Determination of CmnG-A, the Adenylation Domain That Activates the Nonproteinogenic Amino Acid Capreomycidine in Capreomycin Biosynthesis. Chembiochem 2022; 23:e202200563. [PMID: 36278314 DOI: 10.1002/cbic.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/23/2022] [Indexed: 01/25/2023]
Abstract
Capreomycidine (Cap) is a nonproteinogenic amino acid and building block of nonribosomal peptide (NRP) natural products. We report the formation and activation of Cap in capreomycin biosynthesis. CmnC and CmnD catalyzed hydroxylation and cyclization, respectively, of l-Arg to form l-Cap. l-Cap is then adenylated by CmnG-A before being incorporated into the nonribosomal peptide. The co-crystal structures of CmnG-A with l-Cap and adenosine nucleotides provide insights into the specificity and engineering opportunities of this unique adenylation domain.
Collapse
Affiliation(s)
- I-Hsuan Chen
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.,Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Ting Cheng
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Yung-Lin Wang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan ROC
| | - Szu-Jo Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Yu-Hsuan Hsiao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Yi-Ting Lai
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Shu-Ing Toh
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - John Chu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan, ROC
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida, 32611-7011, USA
| | - Chin-Yuan Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.,Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan ROC.,Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan ROC
| |
Collapse
|
9
|
Miyanaga A, Kudo F, Eguchi T. Recent advances in the structural analysis of adenylation domains in natural product biosynthesis. Curr Opin Chem Biol 2022; 71:102212. [PMID: 36116190 DOI: 10.1016/j.cbpa.2022.102212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Adenylation (A) domains catalyze the biosynthetic incorporation of acyl building blocks into nonribosomal peptides and related natural products by selectively transferring acyl substrates onto cognate carrier proteins (CP). The use of noncanonical acyl units, such as nonproteinogenic amino acids and keto acids, by A domains expands the structural diversity of natural products. Furthermore, interrupted A domains, which have embedded auxiliary domains, are able to modify the incorporated acyl units. Structural information on A domains is important for rational protein engineering to generate unnatural compounds. In this review, we summarize recent advances in the structural analysis of A domains. First, we discuss the mechanisms by which A domains recognize noncanonical acyl units. We then focus on the interactions of A domains with CP domains and embedded auxiliary domains.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, 152-8551, Japan.
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| |
Collapse
|
10
|
Han P, Chen Z, Liu Y, Ma A, Li S, Jia Y. An accurate strategy for pointing the key biocatalytic sites of bre2691A protein for modification of the brevilaterin from Brevibacillus laterosporus. Microb Cell Fact 2022; 21:196. [PMID: 36123650 PMCID: PMC9484153 DOI: 10.1186/s12934-022-01918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brevilaterin A-E, a novel class of multi-component cationic antimicrobial lipopeptides, were biosynthesized by a non-ribosomal peptides synthetase (NRPS) in Brevibacillus laterosporus. However, the antimicrobial abilities of different brevilaterin components varied greatly, and this multi-component form was impeding the scale production of the excellent component, and a little information about the brevilaterin biosynthesis mechanism was available to apply in brevilaterin design modification. In this study, we used an accurate strategy that revealed the reason for producing multi-component was the substrate selectivity of bre2691A protein being not enough specific and pinpointed the key design sites to make the specificity of bre2691A enhanced. RESULTS Bioinformatic analysis revealed that the biocatalytic site of bre2691A, which was an adenylation domain catalyzed and recognized methionine, leucine, valine and isoleucine and thus introduced them into brevilaterins and caused different components (brevilaterin A-E), was consisted of A1 ~ A10 residues named specificity-conferring code. Coupling molecular docking simulations with mutation studies identified A2 and A7 as critical residues, where determined substrate-specificity and impacted activity. The in virto activity assay showed that the A2 mutant (G193A) would lose activity against methionine and have no effect on the other three amino acids, the A7 mutant (G285C) would enhance the catalytic activity against four substrates, especially against leucine at almost a double activity. When the A2 and A7 residues were synchronously mutated, this mutant would be more focused on recognizing leucine. CONCLUSIONS An accurate strategy that combined with bioinformatics and site-directed mutation techniques revealed the pivotal site A2 and A7 positions of bre2691A protein that could be used to design and modify brevilaterins, thus further providing a reasonable direction of genetic engineering for Brevibacillus laterosporus. A deeper understanding of the function of crucial residues in the adenylation domain would make it get more accurate and highly efficient design and more fully utilized. Furthermore, it would contribute to biotechnological applications, namely for the large centralized synthesis of antimicrobial peptides, or for the optimization of their production.
Collapse
Affiliation(s)
- Panpan Han
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yangliu Liu
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
11
|
Niehs SP, Scherlach K, Dose B, Uzum Z, Stinear TP, Pidot SJ, Hertweck C. A highly conserved gene locus in endofungal bacteria codes for the biosynthesis of symbiosis-specific cyclopeptides. PNAS NEXUS 2022; 1:pgac152. [PMID: 36714835 PMCID: PMC9802438 DOI: 10.1093/pnasnexus/pgac152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023]
Abstract
The tight association of the pathogenic fungus Rhizopus microsporus and its toxin-producing, bacterial endosymbionts (Mycetohabitans spp.) is distributed worldwide and has significance for agriculture, food production, and human health. Intriguingly, the endofungal bacteria are essential for the propagation of the fungal host. Yet, little is known about chemical mediators fostering the symbiosis, and universal metabolites that support the mutualistic relationship have remained elusive. Here, we describe the discovery of a complex of specialized metabolites produced by endofungal bacteria under symbiotic conditions. Through full genome sequencing and comparative genomics of eight endofungal symbiont strains from geographically distant regions, we discovered a conserved gene locus (hab) for a nonribosomal peptide synthetase as a unifying trait. Bioinformatics analyses, targeted gene deletions, and chemical profiling uncovered unprecedented depsipeptides (habitasporins) whose structures were fully elucidated. Computational network analysis and labeling experiments granted insight into the biosynthesis of their nonproteinogenic building blocks (pipecolic acid and β-phenylalanine). Deletion of the hab gene locus was shown to impair the ability of the bacteria to enter their fungal host. Our study unveils a common principle of the endosymbiotic lifestyle of Mycetohabitans species and expands the repertoire of characterized chemical mediators of a globally occurring mutualistic association.
Collapse
Affiliation(s)
| | | | - Benjamin Dose
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Zerrin Uzum
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, 792 Elizabeth Street, Melbourne, 3000, Australia
| | - Sacha J Pidot
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, 792 Elizabeth Street, Melbourne, 3000, Australia
| | | |
Collapse
|
12
|
Liang Z, Li J, Ling C, Xu R, Yi X, Ju J, Li Q. Characterization of the Aminosugar Biosynthetic and Regulatory Genes of Vicenistatin in Monodonata labio-Associated Streptomyces parvus SCSIO Mla-L010. JOURNAL OF NATURAL PRODUCTS 2022; 85:256-263. [PMID: 35042332 DOI: 10.1021/acs.jnatprod.1c01044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vicenistatin (1) is a potent polyketide antitumor antibiotic composed of a 20-membered macrolactam core appended to a unique aminosugar, vicenisamine. In this study, vicenistatin was isolated and its biosynthetic gene cluster identified from Monodonata labio-associated Streptomyces parvus SCSIO Mla-L010. A set of five genes, vicC, vicD, vicE, vicF, and vicG, was confirmed to be involved in the biosynthesis of the aminosugar by gene inactivations. VicG was characterized as an N-methyltransferase that catalyzes the methylation of the 4'-amino group in the last step of the aminosugar biosynthetic pathway; the N-demethyl intermediate 4'-N-demethylvicenistatin (2) was isolated from the ΔvicG mutant strain. In addition, vicR1 was characterized as a positive pathway-specific regulatory gene. Notably, N-demethyl compound 2 was found to exert impressive antibacterial activities, with MIC values spanning 0.06-4 μg/mL, against a panel of Gram-positive bacteria including methicillin-resistant Staphylococcus aureus, Gram-negative Helicobacter pylori, and mycobacterium Mycobacterium smegmatis and the fungal pathogen Candida albicans. Compound 2 was also found to display reduced cytotoxicities relative to vicenistatin, especially against noncancerous human cell lines.
Collapse
Affiliation(s)
- Zhicheng Liang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 110039, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Chunyao Ling
- Institute of Marine Drug, School of Pharmacy, Guangxi University of Traditional Chinese Medicine, No. 13 Wuhe Avenue, Qingxiu District, Nanning 530200, China
| | - Run Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xiangxi Yi
- Institute of Marine Drug, School of Pharmacy, Guangxi University of Traditional Chinese Medicine, No. 13 Wuhe Avenue, Qingxiu District, Nanning 530200, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 110039, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| |
Collapse
|
13
|
Kudo F, Takahashi S, Miyanaga A, Nakazawa Y, Nishino K, Hayakawa Y, Kawamura K, Ishikawa F, Tanabe G, Iwai N, Nagumo Y, Usui T, Eguchi T. Mutational Biosynthesis of Hitachimycin Analogs Controlled by the β-Amino Acid-Selective Adenylation Enzyme HitB. ACS Chem Biol 2021; 16:539-547. [PMID: 33625847 DOI: 10.1021/acschembio.1c00003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hitachimycin is a macrolactam antibiotic with an (S)-β-phenylalanine (β-Phe) at the starter position of its polyketide skeleton. (S)-β-Phe is formed from l-α-phenylalanine by the phenylananine-2,3-aminomutase HitA in the hitachimycin biosynthetic pathway. In this study, we produced new hitachimycin analogs via mutasynthesis by feeding various (S)-β-Phe analogs to a ΔhitA strain. We obtained six hitachimycin analogs with F at the ortho, meta, or para position and Cl, Br, or a CH3 group at the meta position of the phenyl moiety, as well as two hitachimycin analogs with thienyl substitutions. Furthermore, we carried out a biochemical and structural analysis of HitB, a β-amino acid-selective adenylation enzyme that introduces (S)-β-Phe into the hitachimycin biosynthetic pathway. The KM values of the incorporated (S)-β-Phe analogs and natural (S)-β-Phe were similar. However, the KM values of unincorporated (S)-β-Phe analogs with Br and a CH3 group at the ortho or para position of the phenyl moiety were high, indicating that HitB functions as a gatekeeper to select macrolactam starter units during mutasynthesis. The crystal structure of HitB in complex with (S)-β-3-Br-phenylalanine sulfamoyladenosine (β-m-Br-Phe-SA) revealed that the bulky meta-Br group is accommodated by the conformational flexibility around Phe328, whose side chain is close to the meta position. The aromatic group of β-m-Br-Phe-SA is surrounded by hydrophobic and aromatic residues, which appears to confer the conformational flexibility that enables HitB to accommodate the meta-substituted (S)-β-Phe. The new hitachimycin analogs exhibited different levels of biological activity in HeLa cells and multidrug-sensitive budding yeast, suggesting that they may target different molecules.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| | - Sotaro Takahashi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| | - Yuichiro Nakazawa
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| | - Kota Nishino
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| | - Yuki Hayakawa
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| | - Koichi Kawamura
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| | - Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Naeko Iwai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan
| | - Yoko Nagumo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan
| | - Takeo Usui
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| |
Collapse
|
14
|
Alvarez R, de Lera AR. Natural polyenic macrolactams and polycyclic derivatives generated by transannular pericyclic reactions: optimized biogenesis challenging chemical synthesis. Nat Prod Rep 2020; 38:1136-1220. [PMID: 33283831 DOI: 10.1039/d0np00050g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering from 1992 to the end of 2020-11-20.Genetically-encoded polyenic macrolactams, which are constructed by Nature using hybrid polyketide synthase/nonribosomal peptide synthase (PKSs/NRPSs) assembly lines, are part of the large collection of natural products isolated from bacteria. Activation of cryptic (i.e., silent) gene clusters in these microorganisms has more recently allowed to generate and eventually isolate additional members of the family. Having two unsaturated fragments separated by short saturated chains, the primary macrolactam is posited to undergo transannular reactions and further rearrangements thus leading to the generation of a structurally diverse collection of polycyclic (natural) products and oxidized derivatives. The review will cover the challenges that scientists face on the isolation of these unstable compounds from the cultures of the producing microorganisms, their structural characterization, biological activities, optimized biogenetic routes, as well as the skeletal rearrangements of the primary structures of the natural macrolactams derived from pericyclic reactions of the polyenic fragments. The efforts of the synthetic chemists to emulate Nature on the successful generation and structural confirmation of these natural products will also be reported.
Collapse
Affiliation(s)
- Rosana Alvarez
- Department of Organic Chemistry and Center for Biomedical Research (CINBIO), IBIV, Universidade de Vigo, 36310 Vigo, Spain.
| | | |
Collapse
|
15
|
Dashti Y, Nakou IT, Mullins AJ, Webster G, Jian X, Mahenthiralingam E, Challis GL. Discovery and Biosynthesis of Bolagladins: Unusual Lipodepsipeptides from Burkholderia gladioli Clinical Isolates*. Angew Chem Int Ed Engl 2020; 59:21553-21561. [PMID: 32780452 PMCID: PMC7756342 DOI: 10.1002/anie.202009110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 01/01/2023]
Abstract
Two Burkholderia gladioli strains isolated from the lungs of cystic fibrosis patients were found to produce unusual lipodepsipeptides containing a unique citrate-derived fatty acid and a rare dehydro-β-alanine residue. The gene cluster responsible for their biosynthesis was identified by bioinformatics and insertional mutagenesis. In-frame deletions and enzyme activity assays were used to investigate the functions of several proteins encoded by the biosynthetic gene cluster, which was found in the genomes of about 45 % of B. gladioli isolates, suggesting that its metabolic products play an important role in the growth and/or survival of the species. The Chrome Azurol S assay indicated that these metabolites bind ferric iron, which suppresses their production when added to the growth medium. Moreover, a gene encoding a TonB-dependent ferric-siderophore receptor is adjacent to the biosynthetic genes, suggesting that these metabolites may function as siderophores in B. gladioli.
Collapse
Affiliation(s)
- Yousef Dashti
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Current address: The Centre for Bacterial Cell BiologyBiosciences InstituteMedical SchoolNewcastle UniversityNewcastle upon TyneNE2 4AXUK
| | - Ioanna T. Nakou
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Alex J. Mullins
- Microbiomes, Microbes and Informatics GroupOrganisms and Environment DivisionSchool of BiosciencesCardiff UniversityCardiffCF103 ATUK
| | - Gordon Webster
- Microbiomes, Microbes and Informatics GroupOrganisms and Environment DivisionSchool of BiosciencesCardiff UniversityCardiffCF103 ATUK
| | - Xinyun Jian
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics GroupOrganisms and Environment DivisionSchool of BiosciencesCardiff UniversityCardiffCF103 ATUK
| | - Gregory L. Challis
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
- Department of Biochemistry and Molecular Biology, ARC Centre of Excellence for Innovations in Peptide and Protein ScienceMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
16
|
Dashti Y, Nakou IT, Mullins AJ, Webster G, Jian X, Mahenthiralingam E, Challis GL. Discovery and Biosynthesis of Bolagladins: Unusual Lipodepsipeptides from
Burkholderia gladioli
Clinical Isolates**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yousef Dashti
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Current address: The Centre for Bacterial Cell Biology Biosciences Institute Medical School Newcastle University Newcastle upon Tyne NE2 4AX UK
| | - Ioanna T. Nakou
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Alex J. Mullins
- Microbiomes, Microbes and Informatics Group Organisms and Environment Division School of Biosciences Cardiff University Cardiff CF103 AT UK
| | - Gordon Webster
- Microbiomes, Microbes and Informatics Group Organisms and Environment Division School of Biosciences Cardiff University Cardiff CF103 AT UK
| | - Xinyun Jian
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre University of Warwick Coventry CV4 7AL UK
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group Organisms and Environment Division School of Biosciences Cardiff University Cardiff CF103 AT UK
| | - Gregory L. Challis
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre University of Warwick Coventry CV4 7AL UK
- Department of Biochemistry and Molecular Biology, ARC Centre of Excellence for Innovations in Peptide and Protein Science Monash University Clayton VIC 3800 Australia
| |
Collapse
|
17
|
Miyanaga A, Kurihara S, Chisuga T, Kudo F, Eguchi T. Structural Characterization of Complex of Adenylation Domain and Carrier Protein by Using Pantetheine Cross-Linking Probe. ACS Chem Biol 2020; 15:1808-1812. [PMID: 32608966 DOI: 10.1021/acschembio.0c00403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenylation domains (A-domains) are responsible for selective incorporation of carboxylic acid substrates in the biosynthesis of various natural products. Each A-domain must recognize a cognate carrier protein (CP) for functional substrate transfer. The transient interactions between an A-domain and CP have been investigated by using acyl vinylsulfonamide adenosine inhibitors as probes to determine the structures of several A-domain-CP complexes. However, this strategy requires a specific vinylsulfonamide inhibitor that contains an acyl group corresponding to the substrate specificity of a target A-domain in every case. Here, we report an alternative strategy for structural characterization of A-domain-CP complexes. We used a bromoacetamide pantetheine cross-linking probe in combination with a Cys mutation to trap the standalone A-domain-CP complex involved in macrolactam polyketide biosynthesis through a covalent linkage, allowing the determination of the complex structure. This strategy facilitates the structural determination of A-domain-CP complexes.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| | - Shohei Kurihara
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| | - Taichi Chisuga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo 152-8551, Japan
| |
Collapse
|
18
|
Tan K, Zhou M, Jedrzejczak RP, Wu R, Higuera RA, Borek D, Babnigg G, Joachimiak A. Structures of teixobactin-producing nonribosomal peptide synthetase condensation and adenylation domains. Curr Res Struct Biol 2020; 2:14-24. [PMID: 34235466 PMCID: PMC8244413 DOI: 10.1016/j.crstbi.2020.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 11/28/2022] Open
Abstract
The recently discovered antibiotic teixobactin is produced by uncultured soil bacteria. The antibiotic inhibits cell wall synthesis of Gram-positive bacteria by binding to precursors of cell wall building blocks, and therefore it is thought to be less vulnerable to development of resistance. Teixobactin is synthesized by two nonribosomal peptide synthetases (NRPSs), encoded by txo1 and txo2 genes. Like other NRPSs, the Txo1 and Txo2 synthetases are large, multifunctional, and comprised of several modules. Each module is responsible for catalysis of a distinct step of teixobactin synthesis and contains specific functional units, commonly including a condensation (C) domain, an adenylation (A) domain, and a peptidyl carrier protein (PCP) domain. Here we report the structures of the C-A bidomains of the two L-Ser condensing modules, from Txo1 and Txo2, respectively. In the structure of the C domain of the L-Ser subunit of Txo1, a large conformational change is observed, featuring an outward swing of its N-terminal α-helix. This repositioning, if functionally validated, provides the necessary conformational change for the condensation reaction in C domain, and likely represents a regulatory mechanism. In an Acore subdomain, a well-coordinated Mg2+ cation is observed, which is required in the adenylation reaction. The Mg2+-binding site is defined by a largely conserved amino acid sequence motif and is coordinated by the α-phosphate group of AMP (or ATP) when present, providing some structural evidence for the role of the metal cation in the catalysis of A domain.
Collapse
Key Words
- A domain, Adenylation domain
- Acore subdomain, Large N-terminal subdomain of A domain
- Adenylation domain
- Asub subdomain, Small C-terminal subdomain of A domain
- C domain, Condensation domain
- CCterm subdomain, C-terminal subdomain of C domain
- CNterm subdomain, N-terminal subdomain of C domain
- COMA domain, Acceptor communication-mediating domain
- COMD domain, Donor communication-mediating domain
- Condensation domain
- Conformational change
- MES, 2- morpholinoethane sulfonic acid
- Mg2+-binding
- NRPS, Nonribosomal peptide synthetase
- Nonribosomal peptide synthetase
- PCP domain, Peptidyl carrier domain
- RMSD, Root-mean-square deviation
- SAD, Single wavelength diffraction
- SSM, Secondary-structure matching
- Teixobactin
- Txo1
- Txo2
- α-helix regulation
Collapse
Affiliation(s)
- Kemin Tan
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439, USA
| | - Min Zhou
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Robert P. Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439, USA
| | - Ruiying Wu
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439, USA
| | - Raul A. Higuera
- BUILDing SCHOLARS, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968, USA
| | - Dominika Borek
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gyorgy Babnigg
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
19
|
Brown AS, Calcott MJ, Owen JG, Ackerley DF. Structural, functional and evolutionary perspectives on effective re-engineering of non-ribosomal peptide synthetase assembly lines. Nat Prod Rep 2019; 35:1210-1228. [PMID: 30069573 DOI: 10.1039/c8np00036k] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to May 2018 Non-ribosomal peptide synthetases (NRPSs) are mega-enzymes that form modular templates to assemble specific peptide products, independent of the ribosome. The autonomous nature of the modules in the template offers prospects for re-engineering NRPS enzymes to generate modified peptide products. Although this has clearly been a primary mechanism of natural product diversification throughout evolution, equivalent strategies have proven challenging to implement in the laboratory. In this review we examine key examples of successful and less-successful re-engineering of NRPS templates to generate novel peptides, with the aim of extracting practical guidelines to inform future efforts. We emphasise the importance of maintaining effective protein-protein interactions in recombinant NRPS templates, and identify strengths and limitations of diverse strategies for achieving different engineering outcomes.
Collapse
Affiliation(s)
- Alistair S Brown
- School of Biological Sciences, Victoria University of Wellington, New Zealand.
| | | | | | | |
Collapse
|
20
|
Izoré T, Cryle MJ. The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis. Nat Prod Rep 2019; 35:1120-1139. [PMID: 30207358 DOI: 10.1039/c8np00038g] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: up to July 2018 Non-ribosomal peptide synthetase (NRPS) machineries are complex, multi-domain proteins that are responsible for the biosynthesis of many important, peptide-derived compounds. By decoupling peptide synthesis from the ribosome, NRPS assembly lines are able to access a significant pool of amino acid monomers for peptide synthesis. This is combined with a modular protein architecture that allows for great variation in stereochemistry, peptide length, cyclisation state and further modifications. The architecture of NRPS assembly lines relies upon a repetitive set of catalytic domains, which are organised into modules responsible for amino acid incorporation. Central to NRPS-mediated biosynthesis is the carrier protein (CP) domain, to which all intermediates following initial monomer activation are bound during peptide synthesis up until the final handover to the thioesterase domain that cleaves the mature peptide from the NRPS. This mechanism makes understanding the protein-protein interactions that occur between different NRPS domains during peptide biosynthesis of crucial importance to understanding overall NRPS function. This endeavour is also highly challenging due to the inherent flexibility and dynamics of NRPS systems. In this review, we present the current state of understanding of the protein-protein interactions that govern NRPS-mediated biosynthesis, with a focus on insights gained from structural studies relating to CP domain interactions within these impressive peptide assembly lines.
Collapse
Affiliation(s)
- Thierry Izoré
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
21
|
Synthesis of d-Amino Acid-Containing Dipeptides Using the Adenylation Domains of Nonribosomal Peptide Synthetase. Appl Environ Microbiol 2019; 85:AEM.00120-19. [PMID: 31003981 DOI: 10.1128/aem.00120-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/10/2019] [Indexed: 11/20/2022] Open
Abstract
Recent papers have reported dipeptides containing d-amino acids to have novel effects that cannot be observed with ll-dipeptides, and such dipeptides are expected to be novel functional compounds for pharmaceuticals and food additives. Although the functions of d-amino acid-containing dipeptides are gaining more attention, there are few reports on the synthetic enzymes that can accept d-amino acids as substrates, and synthetic methods for d-amino acid-containing dipeptides have not yet been constructed. Previously, we developed a chemoenzymatic system for amide synthesis that comprised enzymatic activation and a subsequent nucleophilic substitution reaction. In this study, we demonstrated the application of the system for d-amino acid-containing-dipeptide synthesis. We chose six adenylation domains as targets according to our newly constructed hypothesis, i.e., an adenylation domain located upstream from the epimerization domain may activate d-amino acid as well as l-amino acid. We successfully synthesized over 40 kinds of d-amino acid-containing dipeptides, including ld-, dl-, and dd-dipeptides, using only two adenylation domains, TycA-A from tyrocidine synthetase and BacB2-A from bacitracin synthetase. Furthermore, this study offered the possibility that the epimerization domain could be a clue to the activity of the adenylation domains toward d-amino acid. This paper provides additional information regarding d-amino acid-containing-dipeptide synthesis through the combination of enzymatic adenylation and chemical nucleophilic reaction, and this system will be a useful tool for dipeptide synthesis.IMPORTANCE Because almost all amino acids in nature are l-amino acids, the functioning of d-amino acids has received little attention. Thus, there is little information available on the activity of enzymes toward d-amino acids or synthetic methods for d-amino acid-containing dipeptides. Recently, d-amino acids and d-amino acid-containing peptides have attracted attention as novel functional compounds, and d-amino acid-activating enzymes and synthetic methods are required for the development of the d-amino acid-containing-peptide industry. This study provides additional knowledge regarding d-amino acid-activating enzymes and proposes a unique synthetic method for d-amino acid-containing peptides, including ld-, dl-, and dd-dipeptides.
Collapse
|
22
|
Robinson SL, Christenson JK, Richman JE, Jenkins DJ, Neres J, Fonseca DR, Aldrich CC, Wackett LP. Mechanism of a Standalone β-Lactone Synthetase: New Continuous Assay for a Widespread ANL Superfamily Enzyme. Chembiochem 2019; 20:1701-1711. [PMID: 30856684 DOI: 10.1002/cbic.201800821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/09/2019] [Indexed: 12/11/2022]
Abstract
Enzyme-catalyzed β-lactone formation from β-hydroxy acids is a crucial step in bacterial biosynthesis of β-lactone natural products and membrane hydrocarbons. We developed a novel, continuous assay for β-lactone synthetase activity using synthetic β-hydroxy acid substrates with alkene or alkyne moieties. β-Lactone formation is followed by rapid decarboxylation to form a conjugated triene chromophore for real-time evaluation by UV/Vis spectroscopy. The assay was used to determine steady-state kinetics of a long-chain β-lactone synthetase, OleC, from the plant pathogen Xanthomonas campestris. Site-directed mutagenesis was used to test the involvement of conserved active site residues in Mg2+ and ATP binding. A previous report suggested OleC adenylated the substrate hydroxy group. Here we present several lines of evidence, including hydroxylamine trapping of the AMP intermediate, to demonstrate the substrate carboxyl group is adenylated prior to making the β-lactone final product. A panel of nine substrate analogues were used to investigate the substrate specificity of X. campestris OleC by HPLC and GC-MS. Stereoisomers of 2-hexyl-3hydroxyoctanoic acid were synthesized and OleC preferred the (2R,3S) diastereomer consistent with the stereo-preference of upstream and downstream pathway enzymes. This biochemical knowledge was used to guide phylogenetic analysis of the β-lactone synthetases to map their functional diversity within the acyl-CoA synthetase, NRPS adenylation domain, and luciferase superfamily.
Collapse
Affiliation(s)
- Serina L Robinson
- BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - James K Christenson
- BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA.,Present address: Department of Chemistry, Bethel University, 3900 Bethel Drive, Saint Paul, MN, 55112, USA
| | - Jack E Richman
- BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Dominick J Jenkins
- BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - João Neres
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St. SE, Minneapolis, MN, 55455, USA.,Present address: UCB Biopharma, Chemin du Foriest, 1420, Braine-l'Alleud, Belgium
| | - Dallas R Fonseca
- BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St. SE, Minneapolis, MN, 55455, USA
| | - Lawrence P Wackett
- BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA
| |
Collapse
|
23
|
Structure-guided function discovery of an NRPS-like glycine betaine reductase for choline biosynthesis in fungi. Proc Natl Acad Sci U S A 2019; 116:10348-10353. [PMID: 31061132 DOI: 10.1073/pnas.1903282116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) and NRPS-like enzymes have diverse functions in primary and secondary metabolisms. By using a structure-guided approach, we uncovered the function of a NRPS-like enzyme with unusual domain architecture, catalyzing two sequential two-electron reductions of glycine betaine to choline. Structural analysis based on the homology model suggests cation-π interactions as the major substrate specificity determinant, which was verified using substrate analogs and inhibitors. Bioinformatic analysis indicates this NRPS-like glycine betaine reductase is highly conserved and widespread in kingdom fungi. Genetic knockout experiments confirmed its role in choline biosynthesis and maintaining glycine betaine homeostasis in fungi. Our findings demonstrate that the oxidative choline-glycine betaine degradation pathway can operate in a fully reversible fashion and provide insight in understanding fungal choline metabolism. The use of an NRPS-like enzyme for reductive choline formation is energetically efficient compared with known pathways. Our discovery also underscores the capabilities of the structure-guided approach in assigning functions of uncharacterized multidomain proteins, which can potentially aid functional discovery of new enzymes by genome mining.
Collapse
|
24
|
Cieślak J, Miyanaga A, Takaishi M, Kudo F, Eguchi T. Functional and structural characterization of IdnL7, an adenylation enzyme involved in incednine biosynthesis. Acta Crystallogr F Struct Biol Commun 2019; 75:299-306. [PMID: 30950831 PMCID: PMC6450520 DOI: 10.1107/s2053230x19002863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/25/2019] [Indexed: 12/28/2022] Open
Abstract
Adenylation enzymes play an important role in the selective incorporation of the cognate carboxylate substrates in natural product biosynthesis. Here, the biochemical and structural characterization of the adenylation enzyme IdnL7, which is involved in the biosynthesis of the macrolactam polyketide antibiotic incednine, is reported. Biochemical analysis showed that IdnL7 selects and activates several small amino acids. The structure of IdnL7 in complex with an L-alanyl-adenylate intermediate mimic, 5'-O-[N-(L-alanyl)sulfamoyl]adenosine, was determined at 2.1 Å resolution. The structure of IdnL7 explains the broad substrate specificity of IdnL7 towards small L-amino acids.
Collapse
Affiliation(s)
- Jolanta Cieślak
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Makoto Takaishi
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
25
|
Stanišić A, Kries H. Adenylation Domains in Nonribosomal Peptide Engineering. Chembiochem 2019; 20:1347-1356. [DOI: 10.1002/cbic.201800750] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Aleksa Stanišić
- Independent Junior Research GroupBiosynthetic Design of Natural ProductsLeibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI Jena) Beutenbergstrasse 11a 07745 Jena Germany
| | - Hajo Kries
- Independent Junior Research GroupBiosynthetic Design of Natural ProductsLeibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI Jena) Beutenbergstrasse 11a 07745 Jena Germany
| |
Collapse
|
26
|
Structural basis of the nonribosomal codes for nonproteinogenic amino acid selective adenylation enzymes in the biosynthesis of natural products. ACTA ACUST UNITED AC 2019; 46:515-536. [DOI: 10.1007/s10295-018-2084-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023]
Abstract
Abstract
Nonproteinogenic amino acids are the unique building blocks of nonribosomal peptides (NRPs) and hybrid nonribosomal peptide–polyketides (NRP–PKs) and contribute to their diversity of chemical structures and biological activities. In the biosynthesis of NRPs and NRP–PKs, adenylation enzymes select and activate an amino acid substrate as an aminoacyl adenylate, which reacts with the thiol of the holo form of the carrier protein to afford an aminoacyl thioester as the electrophile for the condensation reaction. Therefore, the substrate specificity of adenylation enzymes is a key determinant of the structure of NRPs and NRP–PKs. Here, we focus on nonproteinogenic amino acid selective adenylation enzymes, because understanding their unique selection mechanisms will lead to accurate functional predictions and protein engineering toward the rational biosynthesis of designed molecules containing amino acids. Based on recent progress in the structural analysis of adenylation enzymes, we discuss the nonribosomal codes of nonproteinogenic amino acid selective adenylation enzymes.
Collapse
|
27
|
Musiol-Kroll EM, Wohlleben W. Acyltransferases as Tools for Polyketide Synthase Engineering. Antibiotics (Basel) 2018; 7:antibiotics7030062. [PMID: 30022008 PMCID: PMC6164871 DOI: 10.3390/antibiotics7030062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Polyketides belong to the most valuable natural products, including diverse bioactive compounds, such as antibiotics, anticancer drugs, antifungal agents, immunosuppressants and others. Their structures are assembled by polyketide synthases (PKSs). Modular PKSs are composed of modules, which involve sets of domains catalysing the stepwise polyketide biosynthesis. The acyltransferase (AT) domains and their “partners”, the acyl carrier proteins (ACPs), thereby play an essential role. The AT loads the building blocks onto the “substrate acceptor”, the ACP. Thus, the AT dictates which building blocks are incorporated into the polyketide structure. The precursor- and occasionally the ACP-specificity of the ATs differ across the polyketide pathways and therefore, the ATs contribute to the structural diversity within this group of complex natural products. Those features make the AT enzymes one of the most promising tools for manipulation of polyketide assembly lines and generation of new polyketide compounds. However, the AT-based PKS engineering is still not straightforward and thus, rational design of functional PKSs requires detailed understanding of the complex machineries. This review summarizes the attempts of PKS engineering by exploiting the AT attributes for the modification of polyketide structures. The article includes 253 references and covers the most relevant literature published until May 2018.
Collapse
Affiliation(s)
- Ewa Maria Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Wolfgang Wohlleben
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
28
|
|
29
|
Miyanaga A, Kudo F, Eguchi T. Protein–protein interactions in polyketide synthase–nonribosomal peptide synthetase hybrid assembly lines. Nat Prod Rep 2018; 35:1185-1209. [DOI: 10.1039/c8np00022k] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The protein–protein interactions in polyketide synthase–nonribosomal peptide synthetase hybrids are summarized and discussed.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| | - Fumitaka Kudo
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| | - Tadashi Eguchi
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| |
Collapse
|
30
|
Miyanaga A. Structure and function of polyketide biosynthetic enzymes: various strategies for production of structurally diverse polyketides. Biosci Biotechnol Biochem 2017; 81:2227-2236. [DOI: 10.1080/09168451.2017.1391687] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Polyketides constitute a large family of natural products that display various biological activities. Polyketides exhibit a high degree of structural diversity, although they are synthesized from simple acyl building blocks. Recent biochemical and structural studies provide a better understanding of the biosynthetic logic of polyketide diversity. This review highlights the biosynthetic mechanisms of structurally unique polyketides, β-amino acid-containing macrolactams, enterocin, and phenolic lipids. Functional and structural studies of macrolactam biosynthetic enzymes have revealed the unique biosynthetic machinery used for selective incorporation of a rare β-amino acid starter unit into the polyketide skeleton. Biochemical and structural studies of cyclization enzymes involved in the biosynthesis of enterocin and phenolic lipids provide mechanistic insights into how these enzymes diversify the carbon skeletons of their products.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
31
|
Nonribosomal biosynthesis of backbone-modified peptides. Nat Chem 2017; 10:282-287. [DOI: 10.1038/nchem.2891] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/06/2017] [Indexed: 01/01/2023]
|
32
|
Meyer S, Mainz A, Kehr JC, Süssmuth RD, Dittmann E. Prerequisites of Isopeptide Bond Formation in Microcystin Biosynthesis. Chembiochem 2017; 18:2376-2379. [PMID: 29024253 DOI: 10.1002/cbic.201700389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 11/11/2022]
Abstract
The biosynthesis of the potent cyanobacterial hepatotoxin microcystin involves isopeptide bond formation through the carboxylic acid side chains of d-glutamate and β-methyl d-aspartate. Analysis of the in vitro activation profiles of the two corresponding adenylation domains, McyE-A and McyB-A2 , either in a didomain or a tridomain context with the cognate thiolation domain and the upstream condensation domain revealed that substrate activation of both domains strictly depended on the presence of the condensation domains. We further identified two key amino acids in the binding pockets of both adenylation domains that could serve as a bioinformatic signature of isopeptide bond-forming modules incorporating d-glutamate or d-aspartate. Our findings further contribute to the understanding of the multifaceted role of condensation domains in nonribosomal peptide synthetase assembly lines.
Collapse
Affiliation(s)
- Sabine Meyer
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Strasse 24/25, 14476, Potsdam-Golm, Germany
| | - Andi Mainz
- Technical University Berlin, Department of Organic Chemistry, Strasse des 17. Juni 124/ TC2, 10626, Berlin, Germany
| | - Jan-Christoph Kehr
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Strasse 24/25, 14476, Potsdam-Golm, Germany
| | - Roderich D Süssmuth
- Technical University Berlin, Department of Organic Chemistry, Strasse des 17. Juni 124/ TC2, 10626, Berlin, Germany
| | - Elke Dittmann
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Strasse 24/25, 14476, Potsdam-Golm, Germany
| |
Collapse
|
33
|
Payne JAE, Schoppet M, Hansen MH, Cryle MJ. Diversity of nature's assembly lines - recent discoveries in non-ribosomal peptide synthesis. MOLECULAR BIOSYSTEMS 2017; 13:9-22. [PMID: 27853778 DOI: 10.1039/c6mb00675b] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The biosynthesis of complex natural products by non-ribosomal peptide synthetases (NRPSs) and the related polyketide synthases (PKSs) represents a major source of important bioactive compounds. These large, multi-domain machineries are able to produce a fascinating range of molecules due to the nature of their modular architectures, which allows natural products to be assembled and tailored in a modular, step-wise fashion. In recent years there has been significant progress in characterising the important domains and underlying mechanisms of non-ribosomal peptide synthesis. More significantly, several studies have uncovered important examples of novel activity in many NRPS domains. These discoveries not only greatly increase the structural diversity of the possible products of NRPS machineries but - possibly more importantly - they improve our understanding of what is a highly important, yet complex, biosynthetic apparatus. In this review, several recent examples of novel NRPS function will be introduced, which highlight the range of previously uncharacterised activities that have now been detected in the biosynthesis of important natural products by these mega-enzyme synthetases.
Collapse
Affiliation(s)
- Jennifer A E Payne
- EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| | - Melanie Schoppet
- EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| | | | - Max J Cryle
- EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
34
|
Cieślak J, Miyanaga A, Takaku R, Takaishi M, Amagai K, Kudo F, Eguchi T. Biochemical characterization and structural insight into aliphatic β-amino acid adenylation enzymes IdnL1 and CmiS6. Proteins 2017; 85:1238-1247. [DOI: 10.1002/prot.25284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/01/2017] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Jolanta Cieślak
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Akimasa Miyanaga
- Department of Chemistry; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Ryoma Takaku
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Makoto Takaishi
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Keita Amagai
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Fumitaka Kudo
- Department of Chemistry; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Tadashi Eguchi
- Department of Chemistry and Materials Science; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
- Department of Chemistry; Tokyo Institute of Technology; O-okayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
35
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 572] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
36
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
37
|
Mechanisms of β-amino acid incorporation in polyketide macrolactam biosynthesis. Curr Opin Chem Biol 2016; 35:58-64. [DOI: 10.1016/j.cbpa.2016.08.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/30/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022]
|
38
|
Přichystal J, Schug KA, Lemr K, Novák J, Havlíček V. Structural Analysis of Natural Products. Anal Chem 2016; 88:10338-10346. [PMID: 27661090 DOI: 10.1021/acs.analchem.6b02386] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Current mass spectrometry, nuclear magnetic resonance spectroscopy, and X-ray diffraction are presented as structure elucidation tools for analytical chemistry of natural products. Discovering new molecular entities combined with dereplication of known organic compounds represent prerequisites for biological assays and for respective applications as pharmaceuticals or molecular markers. Liquid chromatography is briefly addressed with respect to its use in mass spectrometry- and nuclear magnetic resonance-based metabolomics studies.
Collapse
Affiliation(s)
- Jakub Přichystal
- Institute of Microbiology, Academy of Sciences of the Czech Republic , Videnska 1083, Prague 4, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Kevin A Schug
- The University of Texas at Arlington , Department of Chemistry and Biochemistry, Arlington, Texas 76019-0065, United States
| | - Karel Lemr
- Institute of Microbiology, Academy of Sciences of the Czech Republic , Videnska 1083, Prague 4, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Jiří Novák
- Institute of Microbiology, Academy of Sciences of the Czech Republic , Videnska 1083, Prague 4, Czech Republic
| | - Vladimír Havlíček
- Institute of Microbiology, Academy of Sciences of the Czech Republic , Videnska 1083, Prague 4, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
39
|
Structure-based analysis of the molecular interactions between acyltransferase and acyl carrier protein in vicenistatin biosynthesis. Proc Natl Acad Sci U S A 2016; 113:1802-7. [PMID: 26831085 DOI: 10.1073/pnas.1520042113] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Acyltransferases (ATs) are key determinants of building block specificity in polyketide biosynthesis. Despite the importance of protein-protein interactions between AT and acyl carrier protein (ACP) during the acyltransfer reaction, the mechanism of ACP recognition by AT is not understood in detail. Herein, we report the crystal structure of AT VinK, which transfers a dipeptide group between two ACPs, VinL and VinP1LdACP, in vicenistatin biosynthesis. The isolated VinK structure showed a unique substrate-binding pocket for the dipeptide group linked to ACP. To gain greater insight into the mechanism of ACP recognition, we attempted to crystallize the VinK-ACP complexes. Because transient enzyme-ACP complexes are difficult to crystallize, we developed a covalent cross-linking strategy using a bifunctional maleimide reagent to trap the VinK-ACP complexes, allowing the determination of the crystal structure of the VinK-VinL complex. In the complex structure, Arg-153, Met-206, and Arg-299 of VinK interact with the negatively charged helix II region of VinL. The VinK-VinL complex structure allows, to our knowledge, the first visualization of the interaction between AT and ACP and provides detailed mechanistic insights into ACP recognition by AT.
Collapse
|
40
|
Miyanaga A, Hayakawa Y, Numakura M, Hashimoto J, Teruya K, Hirano T, Shin-Ya K, Kudo F, Eguchi T. Identification of the Fluvirucin B2 (Sch 38518) Biosynthetic Gene Cluster from Actinomadura fulva subsp. indica ATCC 53714: substrate Specificity of the β-Amino Acid Selective Adenylating Enzyme FlvN. Biosci Biotechnol Biochem 2016; 80:935-41. [PMID: 26818633 DOI: 10.1080/09168451.2015.1132155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fluvirucins are 14-membered macrolactam polyketides that show antifungal and antivirus activities. Fluvirucins have the β-alanine starter unit at their polyketide skeletons. To understand the construction mechanism of the β-alanine moiety in fluvirucin biosyntheses, we have identified the biosynthetic cluster of fluvirucin B2 produced from Actinomadura fulva subsp. indica ATCC 53714. The identified gene cluster contains three polyketide synthases, four characteristic β-amino acid-carrying enzymes, one decarboxylase, and one amidohydrolase. We next investigated the activity of the adenylation enzyme FlvN, which is a key enzyme for the selective incorporation of a β-amino acid substrate. FlvN showed strong preference for l-aspartate over other amino acids such as β-alanine. Based on these results, we propose a biosynthetic pathway for fluvirucin B2.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- a Department of Chemistry , Tokyo Institute of Technology , Tokyo , Japan
| | - Yuki Hayakawa
- b Department of Chemistry and Materials Science , Tokyo Institute of Technology , Tokyo , Japan
| | - Mario Numakura
- a Department of Chemistry , Tokyo Institute of Technology , Tokyo , Japan
| | | | - Kuniko Teruya
- d Okinawa Biotechnology Business Support Center , Okinawa Institute of Advanced Sciences , Uruma , Japan
| | - Takashi Hirano
- d Okinawa Biotechnology Business Support Center , Okinawa Institute of Advanced Sciences , Uruma , Japan.,e Okinawa Biotechnology Business Support Center , Okinawa Science and Technology Promotion Center , Uruma , Japan
| | - Kazuo Shin-Ya
- f National Institute of Advanced Industrial Science and Technology , Tokyo , Japan
| | - Fumitaka Kudo
- a Department of Chemistry , Tokyo Institute of Technology , Tokyo , Japan
| | - Tadashi Eguchi
- b Department of Chemistry and Materials Science , Tokyo Institute of Technology , Tokyo , Japan
| |
Collapse
|
41
|
Lee TV, Johnson RD, Arcus VL, Lott JS. Prediction of the substrate for nonribosomal peptide synthetase (NRPS) adenylation domains by virtual screening. Proteins 2015; 83:2052-66. [PMID: 26358936 DOI: 10.1002/prot.24922] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/19/2015] [Accepted: 08/28/2015] [Indexed: 12/28/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) synthesize a diverse array of bioactive small peptides, many of which are used in medicine. There is considerable interest in predicting NRPS substrate specificity in order to facilitate investigation of the many "cryptic" NRPS genes that have not been linked to any known product. However, the current sequence similarity-based methods are unable to produce reliable predictions when there is a lack of prior specificity data, which is a particular problem for fungal NRPSs. We conducted virtual screening on the specificity-determining domain of NRPSs, the adenylation domain, and found that virtual screening using experimentally determined structures results in good enrichment of the cognate substrate. Our results indicate that the conformation of the adenylation domain and in particular the conformation of a key conserved aromatic residue is important in determining the success of the virtual screening. When homology models of NRPS adenylation domains of known specificity, rather than experimentally determined structures, were built and used for virtual screening, good enrichment of the cognate substrate was also achieved in many cases. However, the accuracy of the models was key to the reliability of the predictions and there was a large variation in the results when different models of the same domain were used. This virtual screening approach is promising and is able to produce enrichment of the cognate substrates in many cases, but improvements in building and assessing homology models are required before the approach can be reliably applied to these models.
Collapse
Affiliation(s)
- T Verne Lee
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard D Johnson
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Vickery L Arcus
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - J Shaun Lott
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|