1
|
Rondanelli M, Gasparri C, Pirola M, Barrile GC, Moroni A, Sajoux I, Perna S. Does the Ketogenic Diet Mediate Inflammation Markers in Obese and Overweight Adults? A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients 2024; 16:4002. [PMID: 39683396 DOI: 10.3390/nu16234002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives. The ketogenic diet has emerged as a potential treatment strategy for reducing inflammation. The purpose of this meta-analysis and systematic review is to look into how a ketogenic diet affects inflammatory biomarkers in persons who are overweight or obese. Methods. We conducted an extensive search of Web of Science, PubMed, Scopus, and Google Scholar to find pertinent studies reporting changes in inflammatory biomarkers such as C-reactive protein (CRP), the erythrocyte sedimentation rate, and cytokines after a ketogenic diet. Results. Seven randomized controlled trials involving 218 overweight or obese individuals who followed a ketogenic or control diet over 8 weeks to 2 years were included in the review, and five of those were considered for the meta-analysis. The primary outcomes were CRP and IL-6 levels. The results reported significant decreases after treatment for CRP (mean of -0.62 mg/dL (95% CI: -0.84, -0,40), and a slight, but not statistically significant, reduction in IL-6 (mean of -1.31 pg/mL (95% CI: -2.86, 0.25). Conclusions. The ketogenic diet could contribute to modulating inflammation in obese and overweight subjects.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, 27100 Pavia, Italy
| | - Martina Pirola
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, 27100 Pavia, Italy
| | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, 27100 Pavia, Italy
| | - Alessia Moroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona ''Istituto Santa Margherita'', University of Pavia, 27100 Pavia, Italy
| | - Ignacio Sajoux
- Scientific Officer, PronoKal Group, 08009 Barcelona, Spain
| | - Simone Perna
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
2
|
Rashan EH, Bartlett AK, Khana DB, Zhang J, Jain R, Smith AJ, Baker ZN, Cook T, Caldwell A, Chevalier AR, Pfleger BF, Yuan P, Amador-Noguez D, Simcox JA, Pagliarini DJ. ACAD10 and ACAD11 enable mammalian 4-hydroxy acid lipid catabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574893. [PMID: 38260250 PMCID: PMC10802472 DOI: 10.1101/2024.01.09.574893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Fatty acid β-oxidation (FAO) is a central catabolic pathway with broad implications for organismal health. However, various fatty acids are largely incompatible with standard FAO machinery until they are modified by other enzymes. Included among these are the 4-hydroxy acids (4-HAs)-fatty acids hydroxylated at the 4 (γ) position-which can be provided from dietary intake, lipid peroxidation, and certain drugs of abuse. Here, we reveal that two atypical and poorly characterized acyl-CoA dehydrogenases (ACADs), ACAD10 and ACAD11, drive 4-HA catabolism in mice. Unlike other ACADs, ACAD10 and ACAD11 feature kinase domains N-terminal to their ACAD domains that phosphorylate the 4-OH position as a requisite step in the conversion of 4-hydroxyacyl-CoAs into 2-enoyl-CoAs-conventional FAO intermediates. Our ACAD11 cryo-EM structure and molecular modeling reveal a unique binding pocket capable of accommodating this phosphorylated intermediate. We further show that ACAD10 is mitochondrial and necessary for catabolizing shorter-chain 4-HAs, whereas ACAD11 is peroxisomal and enables longer-chain 4-HA catabolism. Mice lacking ACAD11 accumulate 4-HAs in their plasma while comparable 3- and 5-hydroxy acids remain unchanged. Collectively, this work defines ACAD10 and ACAD11 as the primary gatekeepers of mammalian 4-HA catabolism and sets the stage for broader investigations into the ramifications of aberrant 4-HA metabolism in human health and disease.
Collapse
Affiliation(s)
- Edrees H. Rashan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Abigail K. Bartlett
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Daven B. Khana
- Department of Microbiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jingying Zhang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrew J. Smith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Zakery N. Baker
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Taylor Cook
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Alana Caldwell
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Autumn R. Chevalier
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Daniel Amador-Noguez
- Department of Microbiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Judith A. Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David J. Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
3
|
Willemse L, Terburgh K, Louw R. A ketogenic diet alters mTOR activity, systemic metabolism and potentially prevents collagen degradation associated with chronic alcohol consumption in mice. Metabolomics 2023; 19:43. [PMID: 37076659 PMCID: PMC10115735 DOI: 10.1007/s11306-023-02006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION A ketogenic diet (KD), which is a high fat, low carbohydrate diet has been shown to inhibit the mammalian target of rapamycin (mTOR) pathway and alter the redox state. Inhibition of the mTOR complex has been associated with the attenuation and alleviation of various metabolic and- inflammatory diseases such as neurodegeneration, diabetes, and metabolic syndrome. Various metabolic pathways and signalling mechanisms have been explored to assess the therapeutic potential of mTOR inhibition. However, chronic alcohol consumption has also been reported to alter mTOR activity, the cellular redox- and inflammatory state. Thus, a relevant question that remains is what effect chronic alcohol consumption would have on mTOR activity and overall metabolism during a KD-based intervention. OBJECTIVES The aim of this study was to evaluate the effect of alcohol and a KD on the phosphorylation of the mTORC1 target p70S6K, systemic metabolism as well as the redox- and inflammatory state in a mouse model. METHODS Mice were fed either a control diet with/without alcohol or a KD with/without alcohol for three weeks. After the dietary intervention, samples were collected and subjected towards western blot analysis, multi-platform metabolomics analysis and flow cytometry. RESULTS Mice fed a KD exhibited significant mTOR inhibition and reduction in growth rate. Alcohol consumption alone did not markedly alter mTOR activity or growth rate but moderately increased mTOR inhibition in mice fed a KD. In addition, metabolic profiling showed alteration of several metabolic pathways as well as the redox state following consumption of a KD and alcohol. A KD was also observed to potentially prevent bone loss and collagen degradation associated with chronic alcohol consumption, as indicated by hydroxyproline metabolism. CONCLUSION This study sheds light on the influence that a KD alongside alcohol intake can exert on not just mTOR, but also their effect on metabolic reprogramming and the redox state.
Collapse
Affiliation(s)
- Luciano Willemse
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
4
|
Li R, Huang Q, Ye C, Wu C, Luo N, Lu Y, Fang J, Wang Y. Bibliometric and visual analysis in the field of ketogenic diet on cancer from 2012 to 2021. Front Nutr 2022; 9:1060436. [PMID: 36438725 PMCID: PMC9686384 DOI: 10.3389/fnut.2022.1060436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 08/13/2023] Open
Abstract
Increasing evidence demonstrated that the ketogenic diet (KD) played a positive effect on cancer treatment. However, no systematic review and bibliometric analysis were conducted in this field. This study aimed to explore the current status, and reveal the potential trends and hotspots to provide a reference for future research. Publications were extracted from the Web of Science Core Collection. CiteSpace (5.6.R3) software and the website of bibliometrics were used for visual analysis. A total of 500 publications with 334 articles and 166 reviews were included, with the timespan of 2012 to 2021. The United States was the most productive country. Majority of the top 10 institutions were from the United States, and Harvard University was the top-contributing institution. The most prolific author and the co-cited author was Thomas N Seyfried from Boston College. The highest cited reference was published in PLoS ONE, authored by Abdelwahab Mohammed G, with 161 citations. Glioma and breast cancer were the most common types of cancer in this field, while hepatocellular carcinoma and pancreatic cancer were the new hotspots. The anti-tumor mechanism of KD mainly focused on regulating metabolism, decanoic acid, oxidative stress, fatty acid oxidation, and cell apoptosis. Additionally, the presence of "chemotherapy" and "radiotherapy" in the keywords indicated that KD combined with anti-tumor research was a topic, while "immunotherapy" has became a recent frontiers. Notably, as a metabolic therapy, KD was deserved more attention in the treatment of hepatocellular carcinoma and pancreatic cancer, and KD combined with immunotherapy was the new hotspot and frontier. Additionally, more molecular studies and high-quality uniformly, randomized, controlled clinical trials are urgently warranted to evaluate the effect of KD in multiple cancers.
Collapse
Affiliation(s)
- Rongrong Li
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingcheng Huang
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxiao Ye
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Changhong Wu
- Second Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ning Luo
- Third Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Lu
- Department of Clinical Nutrition, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, China
| | - Jianqiao Fang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Wang
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
5
|
Gao P, Shen X, Zhang X, Jiang C, Zhang S, Zhou X, Schüssler-Fiorenza Rose SM, Snyder M. Precision environmental health monitoring by longitudinal exposome and multi-omics profiling. Genome Res 2022; 32:1199-1214. [PMID: 35667843 PMCID: PMC9248886 DOI: 10.1101/gr.276521.121] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/18/2022] [Indexed: 11/24/2022]
Abstract
Conventional environmental health studies have primarily focused on limited environmental stressors at the population level, which lacks the power to dissect the complexity and heterogeneity of individualized environmental exposures. Here, as a pilot case study, we integrated deep-profiled longitudinal personal exposome and internal multi-omics to systematically investigate how the exposome shapes a single individual's phenome. We annotated thousands of chemical and biological components in the personal exposome cloud and found they were significantly correlated with thousands of internal biomolecules, which was further cross-validated using corresponding clinical data. Our results showed that agrochemicals and fungi predominated in the highly diverse and dynamic personal exposome, and the biomolecules and pathways related to the individual's immune system, kidney, and liver were highly associated with the personal external exposome. Overall, this data-driven longitudinal monitoring study shows the potential dynamic interactions between the personal exposome and internal multi-omics, as well as the impact of the exposome on precision health by producing abundant testable hypotheses.
Collapse
Affiliation(s)
- Peng Gao
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Xiaotao Shen
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Xinyue Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sai Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| | | | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94304, USA
| |
Collapse
|
6
|
He W, Wang Y, Xie EJ, Barry MA, Zhang GF. Metabolic perturbations mediated by propionyl-CoA accumulation in organs of mouse model of propionic acidemia. Mol Genet Metab 2021; 134:257-266. [PMID: 34635437 DOI: 10.1016/j.ymgme.2021.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022]
Abstract
Propionic acidemia (PA) is an autosomal recessive metabolic disorder after gene encoding propionyl-CoA carboxylase, Pcca or Pccb, is mutated. This genetic disorder could develop various complications which are ascribed to dysregulated propionyl-CoA metabolism in organs. However, the effect of attenuated PCC on propionyl-CoA metabolism in different organs remains to be fully understood. We investigated metabolic perturbations in organs of Pcca-/-(A138T) mice (a mouse model of PA) under chow diet and acute administration of [13C3]propionate to gain insight into pathological mechanisms of PA. With chow diet, the metabolic alteration is organ dependent. l-Carnitine reduction induced by propionylcarnitine accumulation only occurs in lung and liver of Pcca-/- (A138T) mice. [13C3]Propionate tracing data demonstrated that PCC activity was dramatically reduced in Pcca-/-(A138T) brain, lung, liver, kidney, and adipose tissues, but not significantly changed in Pcca-/-(A138T) muscles (heart and skeletal muscles) and pancreas, which was largely supported by PCCA expression data. The largest expansion of propionylcarnitine in Pcca-/-(A138T) heart after acute administration of propionate indicated the vulnerability of heart to high circulating propionate. The overwhelming propionate in blood also stimulated ketone production from the increased fatty acid oxidation in Pcca-/-(A138T) liver by lowering malonyl-CoA, which has been observed in cases where metabolic decompensation occurs in PA patients. This work shed light on organ-specific metabolic alternations under varying severities of PA.
Collapse
Affiliation(s)
- Wentao He
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - You Wang
- School of Basic Medicine, Jining Medical University, Shandong 272067, China
| | - Erik J Xie
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Guo-Fang Zhang
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Medicine, Division of Endocrinology, Metabolism Nutrition, Duke University Medical Center, Durham, NC 27701, USA.
| |
Collapse
|
7
|
Abstract
Human health is regulated by complex interactions among the genome, the microbiome, and the environment. While extensive research has been conducted on the human genome and microbiome, little is known about the human exposome. The exposome comprises the totality of chemical, biological, and physical exposures that individuals encounter over their lifetimes. Traditional environmental and biological monitoring only targets specific substances, whereas exposomic approaches identify and quantify thousands of substances simultaneously using nontargeted high-throughput and high-resolution analyses. The quantified self (QS) aims at enhancing our understanding of human health and disease through self-tracking. QS measurements are critical in exposome research, as external exposures impact an individual's health, behavior, and biology. This review discusses both the achievements and the shortcomings of current research and methodologies on the QS and the exposome and proposes future research directions.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Peng Gao
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| |
Collapse
|
8
|
Murugan M, Boison D. Ketogenic diet, neuroprotection, and antiepileptogenesis. Epilepsy Res 2020; 167:106444. [PMID: 32854046 PMCID: PMC7655615 DOI: 10.1016/j.eplepsyres.2020.106444] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/30/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
High fat, low carbohydrate ketogenic diets (KD) have been in use for the treatment of epilepsy for almost a hundred years. Remarkably, seizures that are resistant to conventional anti-seizure drugs can in many cases be controlled by the KD therapy, and it has been shown that many patients with epilepsy become seizure free even after discontinuation of the diet. These findings suggest that KD combine anti-seizure effects with disease modifying effects. In addition to the treatment of epilepsy, KDs are now widely used for the treatment of a wide range of conditions including weight reduction, diabetes, and cancer. The reason for the success of metabolic therapies is based on the synergism of at least a dozen different mechanisms through which KDs provide beneficial activities. Among the newest findings are epigenetic mechanisms (DNA methylation and histone acetylation) through which KD exerts long-lasting disease modifying effects. Here we review mechanisms through which KD can affect neuroprotection in the brain, and how a combination of those mechanisms with epigenetic alterations can attenuate and possibly reverse the development of epilepsy.
Collapse
Affiliation(s)
- Madhuvika Murugan
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, United States
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, United States; Department of Neurosurgery, New Jersey Medical School, Rutgers University, Newark, NJ 07102, United States; Rutgers Neurosurgery H.O.P.E. Center, Department of Neurosurgery, Rutgers University, New Brunswick, NJ 08901, United States.
| |
Collapse
|
9
|
Prikhodko V, Chernyuk D, Sysoev Y, Zernov N, Okovityi S, Popugaeva E. Potential Drug Candidates to Treat TRPC6 Channel Deficiencies in the Pathophysiology of Alzheimer's Disease and Brain Ischemia. Cells 2020; 9:cells9112351. [PMID: 33114455 PMCID: PMC7692306 DOI: 10.3390/cells9112351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease and cerebral ischemia are among the many causative neurodegenerative diseases that lead to disabilities in the middle-aged and elderly population. There are no effective disease-preventing therapies for these pathologies. Recent in vitro and in vivo studies have revealed the TRPC6 channel to be a promising molecular target for the development of neuroprotective agents. TRPC6 channel is a non-selective cation plasma membrane channel that is permeable to Ca2+. Its Ca2+-dependent pharmacological effect is associated with the stabilization and protection of excitatory synapses. Downregulation as well as upregulation of TRPC6 channel functions have been observed in Alzheimer’s disease and brain ischemia models. Thus, in order to protect neurons from Alzheimer’s disease and cerebral ischemia, proper TRPC6 channels modulators have to be used. TRPC6 channels modulators are an emerging research field. New chemical structures modulating the activity of TRPC6 channels are being currently discovered. The recent publication of the cryo-EM structure of TRPC6 channels should speed up the discovery process even more. This review summarizes the currently available information about potential drug candidates that may be used as basic structures to develop selective, highly potent TRPC6 channel modulators to treat neurodegenerative disorders, such as Alzheimer’s disease and cerebral ischemia.
Collapse
Affiliation(s)
- Veronika Prikhodko
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia;
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Daria Chernyuk
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
| | - Yurii Sysoev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia;
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Nikita Zernov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
| | - Sergey Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia;
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
- Correspondence:
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW High-fat, low-carbohydrate ketogenic diets have been used for almost a century for the treatment of epilepsy. Used traditionally for the treatment of refractory pediatric epilepsies, in recent years the use of ketogenic diets has experienced a revival to include the treatment of adulthood epilepsies as well as conditions ranging from autism to chronic pain and cancer. Despite the ability of ketogenic diet therapy to suppress seizures refractory to antiepileptic drugs and reports of lasting seizure freedom, the underlying mechanisms are poorly understood. This review explores new insights into mechanisms mobilized by ketogenic diet therapies. RECENT FINDINGS Ketogenic diets act through a combination of mechanisms, which are linked to the effects of ketones and glucose restriction, and to interactions with receptors, channels, and metabolic enzymes. Decanoic acid, a component of medium-chain triclycerides, contributes to seizure control through direct α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor inhibition, whereas drugs targeting lactate dehydrogenase reduce seizures through inhibition of a metabolic pathway. Ketogenic diet therapy also affects DNA methylation, a novel epigenetic mechanism of the diet. SUMMARY Ketogenic diet therapy combines several beneficial mechanisms that provide broad benefits for the treatment of epilepsy with the potential to not only suppress seizures but also to modify the course of the epilepsy.
Collapse
|
11
|
Mol M, Regazzoni L, Altomare A, Degani G, Carini M, Vistoli G, Aldini G. Enzymatic and non-enzymatic detoxification of 4-hydroxynonenal: Methodological aspects and biological consequences. Free Radic Biol Med 2017; 111:328-344. [PMID: 28161307 DOI: 10.1016/j.freeradbiomed.2017.01.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
4-Hydroxynonenal (HNE), an electrophilic end-product deriving from lipid peroxidation, undergoes a heterogeneous set of biotransformations including enzymatic and non-enzymatic reactions. The former mostly involve red-ox reactions on the HNE oxygenated functions (phase I metabolism) and GSH conjugations (phase II) while the latter are due to the HNE capacity to spontaneously condense with nucleophilic sites within endogenous molecules such as proteins, nucleic acids and phospholipids. The overall metabolic fate of HNE has recently attracted great interest not only because it clearly determines the HNE disposal, but especially because the generated metabolites and adducts are not inactive molecules (as initially believed) but show biological activities even more pronounced than those of the parent compound as exemplified by potent pro-inflammatory stimulus induced by GSH conjugates. Similarly, several studies revealed that the non-enzymatic reactions, initially considered as damaging processes randomly involving all endogenous nucleophilic reactants, are in fact quite selective in terms of both reactivity of the nucleophilic sites and stability of the generated adducts. Even though many formed adducts retain the expected toxic consequences, some adducts exhibit well-defined beneficial roles as documented by the protective effects of sublethal concentrations of HNE against toxic concentrations of HNE. Clearly, future investigations are required to gain a more detailed understanding of the metabolic fate of HNE as well as to identify novel targets involved in the biological activity of the HNE metabolites. These studies are and will be permitted by the continuous progress in the analytical methods for the identification and quantitation of novel HNE metabolites as well as for proteomic analyses able to offer a comprehensive picture of the HNE-induced adducted targets. On these grounds, the present review will focus on the major enzymatic and non-enzymatic HNE biotransformations discussing both the molecular mechanisms involved and the biological effects elicited. The review will also describe the most important analytical enhancements that have permitted the here discussed advancements in our understanding of the HNE metabolic fate and which will permit in a near future an even better knowledge of this enigmatic molecule.
Collapse
Affiliation(s)
- Marco Mol
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Genny Degani
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy.
| |
Collapse
|
12
|
Łuczaj W, Gęgotek A, Skrzydlewska E. Antioxidants and HNE in redox homeostasis. Free Radic Biol Med 2017; 111:87-101. [PMID: 27888001 DOI: 10.1016/j.freeradbiomed.2016.11.033] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022]
Abstract
Under physiological conditions, cells are in a stable state known as redox homeostasis, which is maintained by the balance between continuous ROS/RNS generation and several mechanisms involved in antioxidant activity. ROS overproduction results in alterations in the redox homeostasis that promote oxidative damage to major components of the cell, including the biomembrane phospholipids. Lipid peroxidation subsequently generates a diverse set of products, including α,β-unsaturated aldehydes. Of these products, 4-hydroxy-2-nonenal (HNE) is the most studied aldehyde on the basis of its involvement in cellular physiology and pathology. This review summarizes the current knowledge in the field of HNE generation, metabolism, and detoxification, as well as its interactions with various cellular macromolecules (protein, phospholipid, and nucleic acid). The formation of HNE-protein adducts enables HNE to participate in multi-step regulation of cellular metabolic pathways that include signaling and transcription of antioxidant enzymes, pro-inflammatory factors, and anti-apoptotic proteins. The most widely described roles for HNE in the signaling pathways are associated with its activation of kinases, as well as transcription factors that are responsible for redox homeostasis (Ref-1, Nrf2, p53, NFκB, and Hsf1). Depending on its level, HNE exerts harmful or protective effects associated with the induction of antioxidant defense mechanisms. These effects make HNE a key player in maintaining redox homeostasis, as well as producing imbalances in this system that participate in aging and the development of pathological conditions.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland.
| |
Collapse
|
13
|
Guéraud F. 4-Hydroxynonenal metabolites and adducts in pre-carcinogenic conditions and cancer. Free Radic Biol Med 2017; 111:196-208. [PMID: 28065782 DOI: 10.1016/j.freeradbiomed.2016.12.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/22/2022]
Abstract
4-hydroxy-2-nonenal (HNE) is an amazing reactive compound, originating from lipid peroxidation within cells but also in food and considered as a "second messenger" of oxidative stress. Due to its chemical features, HNE is able to make covalent links with DNA, proteins and lipids. The aim of this review is to give a comprehensive summary of the chemical properties of HNE and of the consequences of its reactivity in relation to cancer development. The formation of exocyclic etheno-and propano-adducts and genotoxic effects are addressed. The adduction to cellular proteins and the repercussions on the regulation of cell signaling pathways involved in cancer development are reviewed, notably on the Nrf2/Keap1/ARE pathway. The metabolic pathways leading to the inactivation/elimination or, on the contrary, to the bioactivation of HNE are considered. A special focus is given on the link between HNE and colorectal cancer development, due to its occurrence in foodstuffs and in the digestive lumen, during digestion.
Collapse
Affiliation(s)
- Françoise Guéraud
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
14
|
Csala M, Kardon T, Legeza B, Lizák B, Mandl J, Margittai É, Puskás F, Száraz P, Szelényi P, Bánhegyi G. On the role of 4-hydroxynonenal in health and disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:826-38. [PMID: 25643868 DOI: 10.1016/j.bbadis.2015.01.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/16/2014] [Accepted: 01/23/2015] [Indexed: 02/08/2023]
Abstract
Polyunsaturated fatty acids are susceptible to peroxidation and they yield various degradation products, including the main α,β-unsaturated hydroxyalkenal, 4-hydroxy-2,3-trans-nonenal (HNE) in oxidative stress. Due to its high reactivity, HNE interacts with various macromolecules of the cell, and this general toxicity clearly contributes to a wide variety of pathological conditions. In addition, growing evidence suggests a more specific function of HNE in electrophilic signaling as a second messenger of oxidative/electrophilic stress. It can induce antioxidant defense mechanisms to restrain its own production and to enhance the cellular protection against oxidative stress. Moreover, HNE-mediated signaling can largely influence the fate of the cell through modulating major cellular processes, such as autophagy, proliferation and apoptosis. This review focuses on the molecular mechanisms underlying the signaling and regulatory functions of HNE. The role of HNE in the pathophysiology of cancer, cardiovascular and neurodegenerative diseases is also discussed.
Collapse
Affiliation(s)
- Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University Budapest, Budapest, Hungary
| | - Tamás Kardon
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University Budapest, Budapest, Hungary
| | - Balázs Legeza
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Beáta Lizák
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University Budapest, Budapest, Hungary
| | - József Mandl
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University Budapest, Budapest, Hungary
| | - Éva Margittai
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Ferenc Puskás
- Department of Anesthesiology, University of Colorado, Denver, CO, USA
| | - Péter Száraz
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Péter Szelényi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University Budapest, Budapest, Hungary
| | - Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University Budapest, Budapest, Hungary.
| |
Collapse
|
15
|
Keller J, Baradat M, Jouanin I, Debrauwer L, Guéraud F. "Twin peaks": searching for 4-hydroxynonenal urinary metabolites after oral administration in rats. Redox Biol 2014; 4:136-48. [PMID: 25560242 PMCID: PMC4309853 DOI: 10.1016/j.redox.2014.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 01/17/2023] Open
Abstract
4-Hydroxynonenal (HNE) is a cytotoxic and genotoxic lipid oxidation secondary product which is formed endogenously upon peroxidation of cellular n-6 fatty acids. However, it can also be formed in food or during digestion, upon peroxidation of dietary lipids. Several studies have evidenced that we are exposed through food to significant concentrations of HNE that could pose a toxicological concern. It is then of importance to known how HNE is metabolized after oral administration. Although its metabolism has been studied after intravenous administration in order to mimick endogenous formation, its in vivo fate after oral administration had never been studied. In order to identify and quantify urinary HNE metabolites after oral administration in rats, radioactive and stable isotopes of HNE were used and urine was analyzed by radio-chromatography (radio-HPLC) and chromatography coupled with High Resolution Mass Spectrometry (HPLC-HRMS). Radioactivity distribution revealed that 48% of the administered radioactivity was excreted into urine and 15% into feces after 24h, while 3% were measured in intestinal contents and 2% in major organs, mostly in the liver. Urinary radio-HPLC profiles revealed 22 major peaks accounting for 88% of the urinary radioactivity. For identification purpose, HNE and its stable isotope [1,2-(13)C]-HNE were given at equimolar dose to be able to univocally identify HNE metabolites by tracking twin peaks on HPLC-HRMS spectra. The major peak was identified as 9-hydroxy-nonenoic acid (27% of the urinary radioactivity) followed by classical HNE mercapturic acid derivatives (the mercapturic acid conjugate of di-hydroxynonane (DHN-MA), the mercapturic acid conjugate of 4-hydroxynonenoic acid (HNA-MA) in its opened and lactone form) and by metabolites that are oxidized in the terminal position. New urinary metabolites as thiomethyl and glucuronide conjugates were also evidenced. Some analyses were also performed on feces and gastro-intestinal contents, revealing the presence of tritiated water that could originate from beta-oxidation reactions.
Collapse
Affiliation(s)
- Julia Keller
- UMR 1331 Toxalim, INRA, INP, UPS, Team 9 "Prevention, Promotion of Carcinogenesis by Food", BP 93173, 180 chemin de Tournefeuille, 31027 Toulouse CEDEX, France
| | - Maryse Baradat
- UMR 1331 Toxalim, INRA, INP, UPS, Team 9 "Prevention, Promotion of Carcinogenesis by Food", BP 93173, 180 chemin de Tournefeuille, 31027 Toulouse CEDEX, France
| | - Isabelle Jouanin
- UMR 1331 Toxalim, INRA, INP, UPS, Axiom Platform, BP 93173, 180 chemin de Tournefeuille, 31027 Toulouse CEDEX, France
| | - Laurent Debrauwer
- UMR 1331 Toxalim, INRA, INP, UPS, Axiom Platform, BP 93173, 180 chemin de Tournefeuille, 31027 Toulouse CEDEX, France
| | - Françoise Guéraud
- UMR 1331 Toxalim, INRA, INP, UPS, Team 9 "Prevention, Promotion of Carcinogenesis by Food", BP 93173, 180 chemin de Tournefeuille, 31027 Toulouse CEDEX, France.
| |
Collapse
|