1
|
Sultana R, Kamihira M. Bioengineered heparin: Advances in production technology. Biotechnol Adv 2024; 77:108456. [PMID: 39326809 DOI: 10.1016/j.biotechadv.2024.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Heparin, a highly sulfated glycosaminoglycan, is considered an indispensable anticoagulant with diverse therapeutic applications and has been a mainstay in medical practice for nearly a century. Its potential extends beyond anticoagulation, showing promise in treating inflammation, cancer, and infectious diseases such as COVID-19. However, its current sourcing from animal tissues poses challenges due to variable structures and adulterations, impacting treatment efficacy and safety. Recent advancements in metabolic engineering and synthetic biology offer alternatives through bioengineered heparin production, albeit with challenges such as controlling molecular weight and sulfonation patterns. This review offers comprehensive insight into recent advancements, encompassing: (i) the metabolic engineering strategies in prokaryotic systems for heparin production; (ii) strides made in the development of bioengineered heparin; and (iii) groundbreaking approaches driving production enhancements in eukaryotic systems. Additionally, it explores the potential of recombinant Chinese hamster ovary cells in heparin synthesis, discussing recent progress, challenges, and future prospects, thereby opening up new avenues in biomedical research.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Cakmak AY, Erdoğan SB, Sargın M, Er H, Usca MK, Hasbal B, Yapıcı N, Aka SA. Acquired antithrombin deficiency in adult patients with postcardiotomy extracorporeal membrane oxygenation. Perfusion 2024:2676591241279764. [PMID: 39207911 DOI: 10.1177/02676591241279764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
INTRODUCTION This study aimed to investigate the relationship between acquired antithrombin deficiency in patients undergoing postcardiotomy extracorporeal membrane oxygenation (PC-ECMO) and thromboembolic or haemorrhagic events such as bleeding, peripheral arterial thromboembolism, and ischemic cerebrovascular events. METHODS The study was designed as a single-center, prospective study and conducted at our hospital between November 2019 and June 2021. 50 patients who underwent ECMO due to postcardiotomy cardiogenic shock were included in the study. Antithrombin (AT) activity testing was performed immediately after ECMO placement and continued for 5 days. The total of haemorrhagic or thromboembolic events was defined as morbidity. The entire patient population was assessed daily for AT measurements according to morbidity status, and ROC analysis was applied to determine the cut-off point. The correlation between clinical outcomes and morbidities with antithrombin levels was analysed. RESULTS In our study, we identified a cut-off for AT levels on the first postoperative day. The risk of both bleeding (p = .006) and thromboembolism (p = .012) was significantly higher in patients below the 48.9% cut-off value. AT levels were compared with data on separation from PC-ECMO. The rate of separation from ECMO was 7.969 times higher in cases with AT levels above 51.8 on the third postoperative day and 5.6 times higher in cases with AT levels above 47.5 on the fourth postoperative day. CONCLUSION Acquired antithrombin deficiency may develop in adults undergoing PC-ECMO. In our study, we demonstrated that in patients with low antithrombin levels, the risk of bleeding and thromboembolism increased. Additionally, since AT levels were higher in survivors, this can be considered an indicator of severity. This study is the first prospective study related to determining target antithrombin levels in adult patients undergoing PC-ECMO.
Collapse
Affiliation(s)
- Arif Yasin Cakmak
- Department of Cardiovascular Surgery, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Sevinç Bayer Erdoğan
- Department of Cardiovascular Surgery, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Murat Sargın
- Department of Cardiovascular Surgery, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Halit Er
- Department of Cardiovascular Surgery, Kırklareli Training and Research Hospital, Kırklareli, Turkey
| | - Mehmet Kağan Usca
- Department of Cardiovascular Surgery, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Berat Hasbal
- Department of Cardiovascular Surgery, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Nihan Yapıcı
- Department of Department of Anesthesiology, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| | - Serap Aykut Aka
- Department of Cardiovascular Surgery, Dr Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
3
|
Balogh G, Bereczky Z. Molecular Mechanisms of the Impaired Heparin Pentasaccharide Interactions in 10 Antithrombin Heparin Binding Site Mutants Revealed by Enhanced Sampling Molecular Dynamics. Biomolecules 2024; 14:657. [PMID: 38927061 PMCID: PMC11201378 DOI: 10.3390/biom14060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Antithrombin (AT) is a critical regulator of the coagulation cascade by inhibiting multiple coagulation factors including thrombin and FXa. Binding of heparinoids to this serpin enhances the inhibition considerably. Mutations located in the heparin binding site of AT result in thrombophilia in affected individuals. Our aim was to study 10 antithrombin mutations known to affect their heparin binding in a heparin pentasaccharide bound state using two molecular dynamics (MD) based methods providing enhanced sampling, GaMD and LiGaMD2. The latter provides an additional boost to the ligand and the most important binding site residues. From our GaMD simulations we were able to identify four variants (three affecting amino acid Arg47 and one affecting Lys114) that have a particularly large effect on binding. The additional acceleration provided by LiGaMD2 allowed us to study the consequences of several other mutants including those affecting Arg13 and Arg129. We were able to identify several conformational types by cluster analysis. Analysis of the simulation trajectories revealed the causes of the impaired pentasaccharide binding including pentasaccharide subunit conformational changes and altered allosteric pathways in the AT protein. Our results provide insights into the effects of AT mutations interfering with heparin binding at an atomic level and can facilitate the design or interpretation of in vitro experiments.
Collapse
Affiliation(s)
- Gábor Balogh
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Siddiqui U, Khan AB, Ahmad T, Rehman AA, Jairajpuri MA. A common protein C inhibitor exosite partially controls the heparin induced activation and inhibition of serine proteases. Int J Biol Macromol 2024; 266:131065. [PMID: 38521329 DOI: 10.1016/j.ijbiomac.2024.131065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Protein C inhibitor (PCI) maintains hemostasis by inhibiting both procoagulant and anticoagulant serine proteases, and plays important roles in coagulation, fibrinolysis, reproduction, and anti-angiogenesis. The reactive site loop of PCI traps and irreversibly inhibits the proteases like APC (activating protein C), thrombin (FIIa) and factor Xa (FXa). Previous studies on antithrombin (ATIII) had identified Tyr253 and Glu255 as functional exosites that interact and aid in the inhibition of factor IXa and FXa. Presence of exosite in PCI is not known, however a sequence comparison with the PCI from different vertebrate species and ATIII identified Glu239 to be absolutely conserved. PCI residues analogous to ATIII exosite residues were mutated to R238A and E239A. Purified variant PCI in the presence of heparin (10 μg/ml) showed a 2-4 fold decrease in the rate of inhibition of the proteases. However, the stoichiometry of inhibition of FIIa, APC, and FXa by native PCI, R238A and E239A variants were found to be close to 1.0, which also indicated the formation of stable complexes based on SDS-PAGE and western blot analysis with thrombin and APC. Our findings revealed the possible presence of an exosite in PCI that influences the protease inhibition rates.
Collapse
Affiliation(s)
- Urfi Siddiqui
- Department of Bioscience, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Abdul Burhan Khan
- Department of Bioscience, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Tahif Ahmad
- Department of Bioscience, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ahmed Abdur Rehman
- Department of Bioscience, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | |
Collapse
|
5
|
Alotaibi FS, Alsadun MMR, Alsaiari SA, Ramakrishnan K, Yates EA, Fernig DG. Interactions of proteins with heparan sulfate. Essays Biochem 2024:EBC20230093. [PMID: 38646914 DOI: 10.1042/ebc20230093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024]
Abstract
Heparan sulfate (HS) is a glycosaminoglycan, polysaccharides that are considered to have arisen in the last common unicellular ancestor of multicellular animals. In this light, the large interactome of HS and its myriad functions in relation to the regulation of cell communication are not surprising. The binding of proteins to HS determines their localisation and diffusion, essential for embryonic development and homeostasis. Following the biosynthesis of the initial heparosan polymer, the subsequent modifications comprise an established canonical pathway and a minor pathway. The more frequent former starts with N-deacetylation and N-sulfation of GlcNAc residues, the latter with C-5 epimerisation of a GlcA residue adjacent to a GlcNAc. The binding of proteins to HS is driven by ionic interactions. The multivalent effect arising from the many individual ionic bonds between a single protein and a polysaccharide chain results in a far stronger interaction than would be expected from an ion-exchange process. In many instances, upon binding, both parties undergo substantial conformational change, the resulting hydrogen and van der Waal bonds contributing significant free energy to the binding reaction. Nevertheless, ionic bonds dominate the protein-polysaccharide interaction kinetically. Together with the multivalent effect, this provides an explanation for the observed trapping of HS-binding proteins in extracellular matrix. Importantly, individual ionic bonds have been observed to be dynamic; breaking and reforming, while the protein remains bound to the polysaccharide. These considerations lead to a model for 1D diffusion of proteins in extracellular matrix on HS, involving mechanisms such as sliding, chain switching and rolling.
Collapse
Affiliation(s)
- Faizah S Alotaibi
- Department of Biochemistry, Systems and Cell Biology, Institute of Molecular, Integrative and Systems Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Marim M R Alsadun
- Department of Biochemistry, Systems and Cell Biology, Institute of Molecular, Integrative and Systems Biology, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Biology, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Sarah A Alsaiari
- Department of Biochemistry, Systems and Cell Biology, Institute of Molecular, Integrative and Systems Biology, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Krithika Ramakrishnan
- Department of Biochemistry, Systems and Cell Biology, Institute of Molecular, Integrative and Systems Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Edwin A Yates
- Department of Biochemistry, Systems and Cell Biology, Institute of Molecular, Integrative and Systems Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - David G Fernig
- Department of Biochemistry, Systems and Cell Biology, Institute of Molecular, Integrative and Systems Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| |
Collapse
|
6
|
Balogh G, Bereczky Z. The Interaction of Factor Xa and IXa with Non-Activated Antithrombin in Michaelis Complex: Insights from Enhanced-Sampling Molecular Dynamics Simulations. Biomolecules 2023; 13:biom13050795. [PMID: 37238665 DOI: 10.3390/biom13050795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The interaction between coagulation factors Xa and IXa and the activated state of their inhibitor, antithrombin (AT),have been investigated using X-ray diffraction studies. However, only mutagenesis data are available for non-activated AT. Our aim was to propose a model based on docking and advanced-sampling molecular dynamics simulations that can reveal the conformational behavior of the systems when AT is not binding a pentasaccharide. We built the initial structure for non-activated AT-FXa and AT-FIXa complexes using HADDOCK 2.4. The conformational behavior was studied using Gaussian accelerated molecular dynamics simulations. In addition to the docked complexes, two systems based on the X-ray structures were also simulated, with and without the ligand. The simulations revealed large variability in conformation for both factors. In the docking-based complex of AT-FIXa, conformations with stable Arg150-AT interactions can exist for longer time periods but the system also has a higher tendency for reaching states with very limited interaction with the "exosite" of AT. By comparing simulations with or without the pentasaccharide, we were able to gain insights into the effects of conformational activation on the Michaelis complexes. RMSF analysis and correlation calculations for the alpha-carbon atoms revealed important details of the allosteric mechanisms. Our simulations provide atomistic models for better understanding the conformational activation mechanism of AT against its target factors.
Collapse
Affiliation(s)
- Gábor Balogh
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
7
|
Hogwood J, Mulloy B, Lever R, Gray E, Page CP. Pharmacology of Heparin and Related Drugs: An Update. Pharmacol Rev 2023; 75:328-379. [PMID: 36792365 DOI: 10.1124/pharmrev.122.000684] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Heparin has been used extensively as an antithrombotic and anticoagulant for close to 100 years. This anticoagulant activity is attributed mainly to the pentasaccharide sequence, which potentiates the inhibitory action of antithrombin, a major inhibitor of the coagulation cascade. More recently it has been elucidated that heparin exhibits anti-inflammatory effect via interference of the formation of neutrophil extracellular traps and this may also contribute to heparin's antithrombotic activity. This illustrates that heparin interacts with a broad range of biomolecules, exerting both anticoagulant and nonanticoagulant actions. Since our previous review, there has been an increased interest in these nonanticoagulant effects of heparin, with the beneficial role in patients infected with SARS2-coronavirus a highly topical example. This article provides an update on our previous review with more recent developments and observations made for these novel uses of heparin and an overview of the development status of heparin-based drugs. SIGNIFICANCE STATEMENT: This state-of-the-art review covers recent developments in the use of heparin and heparin-like materials as anticoagulant, now including immunothrombosis observations, and as nonanticoagulant including a role in the treatment of SARS-coronavirus and inflammatory conditions.
Collapse
Affiliation(s)
- John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Rebeca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., E.G., C.P.P.); National Institute for Biological Standards and Control, South Mimms, Hertfordshire, United Kingdom (J.H., E.G.) and School of Pharmacy, University College London, London, United Kingdom (R.L.)
| |
Collapse
|
8
|
Wang HL, Ruan DD, Wu M, Ji YY, Hu XX, Wu QY, Zhang YP, Lin B, Hu YN, Wang H, Tang Y, Fang ZT, Luo JW, Liao LS, Gao MZ. Identification and characterization of two SERPINC1 mutations causing congenital antithrombin deficiency. Thromb J 2023; 21:3. [PMID: 36624481 PMCID: PMC9830717 DOI: 10.1186/s12959-022-00443-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Antithrombin (AT) is the main physiological anticoagulant involved in hemostasis. Hereditary AT deficiency is a rare autosomal dominant thrombotic disease mainly caused by mutations in SERPINC1, which was usually manifested as venous thrombosis and pulmonary embolism. In this study, we analyzed the clinical characteristics and screened for mutant genes in two pedigrees with hereditary AT deficiency, and the functional effects of the pathogenic mutations were evaluated. METHODS Candidate gene variants were analyzed by next-generation sequencing to screen pathogenic mutations in probands, followed by segregation analysis in families by Sanger sequencing. Mutant and wild-type plasmids were constructed and transfected into HEK293T cells to observe protein expression and cellular localization of SERPINC1. The structure and function of the mutations were analyzed by bioinformatic analyses. RESULTS The proband of pedigree A with AT deficiency carried a heterozygous frameshift mutation c.1377delC (p.Asn460Thrfs*20) in SERPINC1 (NM000488.3), a 1377C base deletion in exon 7 resulting in a backward shift of the open reading frame, with termination after translation of 20 residues, and a different residue sequence translated after the frameshift. Bioinformatics analysis suggests that the missing amino acid sequence caused by the frameshift mutation might disrupt the disulfide bond between Cys279 and Cys462 and affect the structural function of the protein. This newly discovered variant is not currently included in the ClinVar and HGMD databases. p.Arg229* resulted in a premature stop codon in exon 4, and bioinformatics analysis suggests that the truncated protein structure lost its domain of interaction with factor IX (Ala414 site) after the deletion of nonsense mutations. However, considering the AT truncation protein resulting from the p.Arg229* variant loss a great proportion of the molecule, we speculate the variant may affect two functional domains HBS and RCL and lack of the corresponding function. The thrombophilia and decreased-AT-activity phenotypes of the two pedigrees were separated from their genetic variants. After lentiviral plasmid transfection into HEK293T cells, the expression level of AT protein decreased in the constructed c.1377delC mutant cells compared to that in the wild-type, which was not only reduced in c.685C > T mutant cells but also showed a significant band at 35 kDa, suggesting a truncated protein. Immunofluorescence localization showed no significant differences in protein localization before and after the mutation. CONCLUSIONS The p.Asn460Thrfs*20 and p.Arg229* variants of SERPINC1 were responsible for the two hereditary AT deficiency pedigrees, which led to AT deficiency by different mechanisms. The p.Asn460Thrfs*20 variant is reported for the first time.
Collapse
Affiliation(s)
- Han-lu Wang
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Dan-dan Ruan
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Min Wu
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Yuan-yuan Ji
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Xing-xing Hu
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China ,grid.415108.90000 0004 1757 9178Department of Cardiovascular Medicine, Fujian Provincial Hospital, Fuzhou, 350001 China
| | - Qiu-yan Wu
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Yan-ping Zhang
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Bin Lin
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Ya-nan Hu
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China
| | - Hang Wang
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China ,grid.415108.90000 0004 1757 9178Department of Cardiovascular Surgery, Fujian Provincial Hospital, Fuzhou, 350001 China
| | - Yi Tang
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China ,grid.415108.90000 0004 1757 9178Department of Interventional Radiology, Fujian Provincial Hospital, Fuzhou, 350001 China
| | - Zhu-ting Fang
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China ,grid.415108.90000 0004 1757 9178Department of Interventional Radiology, Fujian Provincial Hospital, Fuzhou, 350001 China
| | - Jie-wei Luo
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China ,grid.415108.90000 0004 1757 9178Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, 350001 China
| | - Li-sheng Liao
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China ,grid.415108.90000 0004 1757 9178Department of Hematology, Fujian Provincial Hospital, Fuzhou, 350001 China
| | - Mei-zhu Gao
- grid.415108.90000 0004 1757 9178Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001 China ,grid.415108.90000 0004 1757 9178Department of Nephrology, Fujian Provincial Hospital, Fuzhou, 350001 China
| |
Collapse
|
9
|
Grover SP, Mackman N. Anticoagulant SERPINs: Endogenous Regulators of Hemostasis and Thrombosis. Front Cardiovasc Med 2022; 9:878199. [PMID: 35592395 PMCID: PMC9110684 DOI: 10.3389/fcvm.2022.878199] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
Appropriate activation of coagulation requires a balance between procoagulant and anticoagulant proteins in blood. Loss in this balance leads to hemorrhage and thrombosis. A number of endogenous anticoagulant proteins, such as antithrombin and heparin cofactor II, are members of the serine protease inhibitor (SERPIN) family. These SERPIN anticoagulants function by forming irreversible inhibitory complexes with target coagulation proteases. Mutations in SERPIN family members, such as antithrombin, can cause hereditary thrombophilias. In addition, low plasma levels of SERPINs have been associated with an increased risk of thrombosis. Here, we review the biological activities of the different anticoagulant SERPINs. We further consider the clinical consequences of SERPIN deficiencies and insights gained from preclinical disease models. Finally, we discuss the potential utility of engineered SERPINs as novel therapies for the treatment of thrombotic pathologies.
Collapse
|
10
|
Izaguirre G, Swanson R, Roth R, Gettins PGW, Olson ST. Paramount Importance of Core Conformational Changes for Heparin Allosteric Activation of Antithrombin. Biochemistry 2021; 60:1201-1213. [PMID: 33822598 PMCID: PMC10921935 DOI: 10.1021/acs.biochem.1c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antithrombin is unique among serpin family protein protease inhibitors with respect to the major reactive center loop (RCL) and core conformational changes that mediate allosteric activation of its anticoagulant function by heparin. A critical role for expulsion of the RCL hinge from a native stabilizing interaction with the hydrophobic core in the activation mechanism has been proposed from reports that antithrombin variants that block this change through engineered disulfide bonds block activation. However, the sufficiency of core conformational changes for activation without expulsion of the RCL from the core is suggested by variants that are activated without the need for heparin and retain the native RCL-core interaction. To resolve these apparently conflicting findings, we engineered variants in which disulfides designed to block the RCL conformational change were combined with constitutively activating mutations. Our findings demonstrate that while a reversible constitutive activation can be engineered in variants that retain the native RCL-core interaction, engineered disulfides that lock the RCL native conformation can also block heparin allosteric activation. Such findings support a three-state allosteric activation model in which constitutive activating mutations stabilize an intermediate-activated state wherein core conformational changes and a major activation have occurred without the release of the RCL from the core but with a necessary repositioning of the RCL to allow productive engagement with an exosite. Rigid disulfide bonds that lock the RCL native conformation block heparin activation by preventing both RCL repositioning in the intermediate-activated state and the release of the RCL from the core in the fully activated state.
Collapse
|
11
|
N-Glycosylation as a Tool to Study Antithrombin Secretion, Conformation, and Function. Int J Mol Sci 2021; 22:ijms22020516. [PMID: 33419227 PMCID: PMC7825591 DOI: 10.3390/ijms22020516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 11/23/2022] Open
Abstract
N-linked glycosylation is a crucial post-translational modification involved in protein folding, function, and clearance. N-linked glycosylation is also used therapeutically to enhance the half-lives of many proteins. Antithrombin, a serpin with four potential N-glycosylation sites, plays a pivotal role in hemostasis, wherein its deficiency significantly increases thrombotic risk. In this study, we used the introduction of N-glycosylation sites as a tool to explore what effect this glycosylation has on the protein folding, secretion, and function of this key anticoagulant. To accomplish this task, we introduced an additional N-glycosylation sequence in each strand. Interestingly, all regions that likely fold rapidly or were surrounded by lysines were not glycosylated even though an N-glycosylation sequon was present. The new sequon in the strands of the A- and B-sheets reduced secretion, and the B-sheet was more sensitive to these changes. However, the mutations in the strands of the C-sheet allowed correct folding and secretion, which resulted in functional variants. Therefore, our study revealed crucial regions for antithrombin secretion and could potentially apply to all serpins. These results could also help us understand the functional effects of natural variants causing type-I deficiencies.
Collapse
|
12
|
Rezaie AR, Giri H. Anticoagulant and signaling functions of antithrombin. J Thromb Haemost 2020; 18:3142-3153. [PMID: 32780936 PMCID: PMC7855051 DOI: 10.1111/jth.15052] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/25/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
Abstract
Antithrombin (AT) is a major plasma glycoprotein of the serpin superfamily that regulates the proteolytic activity of the procoagulant proteases of both intrinsic and extrinsic pathways. Two important structural features that participate in the regulatory function of AT include a mobile reactive center loop that binds to active site of coagulation proteases, trapping them in the form of inactive covalent complexes, and a basic D-helix that binds to therapeutic heparins and heparan sulfate proteoglycans (HSPGs) on vascular endothelial cells. The binding of D-helix of AT by therapeutic heparins promotes the reactivity of the serpin with coagulation proteases by several orders of magnitude by both a conformational activation of the serpin and a template (bridging) mechanism. In addition to its essential anticoagulant function, AT elicits a potent anti-inflammatory signaling response when it binds to distinct vascular endothelial cell HSPGs, thereby inducing prostacyclin synthesis. Syndecans-4 has been found as a specific membrane-bound HSPG receptor on endothelial cells that relays the signaling effect of AT to the relevant second messenger molecules in the signal transduction pathways inside the cell. However, following cleavage by coagulation proteases and/or by spontaneous conversion to a latent form, AT loses both its anti-inflammatory activity and high-affinity interaction with heparin and HSPGs. Interestingly, these low-affinity heparin conformers of AT elicit potent proapoptotic and antiangiogenic activities by also binding to specific HSPGs by unknown mechanisms. This review article will summarize current knowledge about mechanisms through which different conformers of AT exert their serine protease inhibitory and intracellular signaling functions in these biological pathways.
Collapse
Affiliation(s)
- Alireza R. Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Hemant Giri
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| |
Collapse
|
13
|
Gyulkhandanyan A, Rezaie AR, Roumenina L, Lagarde N, Fremeaux-Bacchi V, Miteva MA, Villoutreix BO. Analysis of protein missense alterations by combining sequence- and structure-based methods. Mol Genet Genomic Med 2020; 8:e1166. [PMID: 32096919 PMCID: PMC7196459 DOI: 10.1002/mgg3.1166] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Different types of in silico approaches can be used to predict the phenotypic consequence of missense variants. Such algorithms are often categorized as sequence based or structure based, when they necessitate 3D structural information. In addition, many other in silico tools, not dedicated to the analysis of variants, can be used to gain additional insights about the possible mechanisms at play. METHODS Here we applied different computational approaches to a set of 20 known missense variants present on different proteins (CYP, complement factor B, antithrombin and blood coagulation factor VIII). The tools that were used include fast computational approaches and web servers such as PolyPhen-2, PopMusic, DUET, MaestroWeb, SAAFEC, Missense3D, VarSite, FlexPred, PredyFlexy, Clustal Omega, meta-PPISP, FTMap, ClusPro, pyDock, PPM, RING, Cytoscape, and ChannelsDB. RESULTS We observe some conflicting results among the methods but, most of the time, the combination of several engines helped to clarify the potential impacts of the amino acid substitutions. CONCLUSION Combining different computational approaches including some that were not developed to investigate missense variants help to predict the possible impact of the amino acid substitutions. Yet, when the modified residues are involved in a salt-bridge, the tools tend to fail, even when the analysis is performed in 3D. Thus, interactive structural analysis with molecular graphics packages such as Chimera or PyMol or others are still needed to clarify automatic prediction.
Collapse
Affiliation(s)
- Aram Gyulkhandanyan
- INSERM U973, Laboratory MTi, University Paris Diderot, Paris, France
- Laboratory SABNP, University of Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Alireza R Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lubka Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nathalie Lagarde
- INSERM U973, Laboratory MTi, University Paris Diderot, Paris, France
- Laboratoire GBCM, EA7528, Conservatoire national des arts et métiers, Hesam Université, Paris, France
| | - Veronique Fremeaux-Bacchi
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| | - Maria A Miteva
- INSERM U973, Laboratory MTi, University Paris Diderot, Paris, France
- Inserm U1268 MCTR, CNRS UMR 8038 CiTCoM, Faculté de Pharmacie de Paris, Univ. De Paris, Paris, France
| | - Bruno O Villoutreix
- INSERM U973, Laboratory MTi, University Paris Diderot, Paris, France
- INSERM, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, Université de Lille, Lille, France
| |
Collapse
|
14
|
Cho AE, Jerguson K, Peterson J, Patel DV, Saberi AA. Cost-effectiveness of Argatroban Versus Heparin Anticoagulation in Adult Extracorporeal Membrane Oxygenation Patients. Hosp Pharm 2019; 56:276-281. [PMID: 34381261 DOI: 10.1177/0018578719890091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose: The purpose of this study was to evaluate the cost effectiveness of argatroban compared to heparin during extracorporeal membrane oxygenation (ECMO) therapy. Methods: This was a retrospective study of patients who received argatroban or heparin infusions with ECMO therapy at a community hospital between January 1, 2017 and June 30, 2018. Adult patients who received heparin or argatroban for at least 48 hours while on venovenous (VV) or venoarterial (VA) ECMO were included. Patients with temporary mechanical circulatory assist devices were excluded. Each continuous course of anticoagulant exposure that met the inclusion criteria was evaluated. The primary endpoint was the total cost of anticoagulant therapy for heparin versus argatroban, including all administered study drugs, blood or factor products, and associated laboratory tests. Secondary endpoints included safety and efficacy of anticoagulation with each agent during ECMO. Documentation of bleeding events, circuit clotting, and ischemic events were noted. Partial thromboplastin time (PTT) values were evaluated for time to therapeutic range and percentage of therapeutic PTTs. Results: A total of 11 courses of argatroban and 24 courses of heparin anticoagulation were included in the study. The average cost per course of argatroban was less than the average cost per course of heparin ($7,091.98 vs $15,323.49, respectively; P value = 0.15). Furthermore, argatroban was not associated with an increased incidence of bleeding, thrombotic, or ischemic events. Conclusion: Argatroban may be more cost-effective during ECMO therapy in patients with low antithrombin III levels without increased risk of adverse events.
Collapse
|
15
|
Balogh G, Komáromi I, Bereczky Z. The mechanism of high affinity pentasaccharide binding to antithrombin, insights from Gaussian accelerated molecular dynamics simulations. J Biomol Struct Dyn 2019; 38:4718-4732. [PMID: 31686597 DOI: 10.1080/07391102.2019.1688194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The activity of antithrombin (AT), a serpin protease inhibitor, is enhanced by heparin and heparin analogs against its target proteases, mainly thrombin, factors Xa and IXa. Considerable amount of information is available on the multistep mechanism of the heparin pentasaccharide binding and conformational activation. However, much of the details were inferred from 'static' structures obtained by X-ray diffraction. Moreover, limited information is available for the early steps of binding mechanism other than kinetic studies with various ligands. To gain insights into these processes, we performed enhanced sampling molecular dynamics (MD) simulations using the Gaussian Accelerated Molecular Dynamics (GAMD) method, applied previously in drug binding studies. We were able to observe the binding of the pentasaccharide idraparinux to a 'non-activated' AT conformation in two separate trajectories with low root mean square deviation (RMSD) values compared to X-ray structures of the bound state. These trajectories along with further simulations of the AT-pentasaccharide complex provided insights into the mechanisms of multiple conformational transitions, including the expulsion of the hinge region, the extension of helix D and the conformational behavior of the reactive center loop (RCL). We could also confirm the high stability of helix P in non-activated AT conformations, such states might play an important role in heparin binding. 'Generalized correlation' matrices revealed possible paths of allosteric signal propagation to the binding sites for the target proteases, factors Xa and IXa. Enhanced MD simulations of ligand binding to AT may assist the design of new anticoagulant drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gábor Balogh
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - István Komáromi
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
16
|
Approaches to prevent bleeding associated with anticoagulants: current status and recent developments. Drug Deliv Transl Res 2018; 8:928-944. [PMID: 28741113 DOI: 10.1007/s13346-017-0413-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Anticoagulants are widely used for the prophylaxis and treatment of cardiovascular disorders and to prevent blood clotting during surgeries. However, the major limitation associated with anticoagulant therapy is bleeding; all the current anticoagulants do have a bleeding risk. The propensity to bleed is much higher among the elderly population and patients with renal insufficiency. Therefore, there is an utmost and urgent clinical need for a highly efficient, nontoxic antidote with excellent anticoagulant reversal activity. This will significantly improve the safety of anticoagulation therapy. This review summarizes the current options and approaches to reverse anticoagulation activity of clinically used anticoagulants. We start with an introduction to thrombosis and then summarize the details of current clinically available anticoagulants and their mechanisms of action and limitations. This is followed by current practices in anticoagulant neutralization including the details of the only clinically approved unfractionated heparin antidote, protamine; recent advances in the development of antidotes against heparin-based drugs; and direct oral anticoagulants (DOACs).
Collapse
|
17
|
Richard B, Swanson R, Izaguirre G, Olson ST. Cooperative Interactions of Three Hotspot Heparin Binding Residues Are Critical for Allosteric Activation of Antithrombin by Heparin. Biochemistry 2018; 57:2211-2226. [PMID: 29561141 DOI: 10.1021/acs.biochem.8b00216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heparin allosterically activates the anticoagulant serpin, antithrombin, by binding through a sequence-specific pentasaccharide and inducing activating conformational changes in the protein. Three basic residues of antithrombin, Lys114, Lys125, and Arg129, have been shown to be hotspots for binding the pentasaccharide, but the molecular basis for such hotspot binding has been unclear. To determine whether this results from cooperative interactions, we analyzed the effects of single, double, and triple mutations of the hotspot residues on pentasaccharide binding and activation of antithrombin. Double-mutant cycles revealed that the contribution of each residue to pentasaccharide binding energy was progressively reduced when one or both of the other residues were mutated, indicating strong coupling between each pair of residues that was dependent on the third residue and reflective of the three residues acting as a cooperative unit. Rapid kinetic studies showed that the hotspot residue mutations progressively abrogated the ability of the pentasaccharide to bind productively to native antithrombin and to conformationally activate the serpin by engaging the hotspot residues in an induced-fit interaction. Examination of the antithrombin-pentasaccharide complex structure revealed that the hotspot residues form two adjoining binding pockets for critical sulfates of the pentasaccharide that structurally link these residues. Together, these findings demonstrate that cooperative interactions of Lys114, Lys125, and Arg129 are critical for the productive induced-fit binding of the heparin pentasaccharide to antithrombin that allosterically activates the anticoagulant function of the serpin.
Collapse
Affiliation(s)
- Benjamin Richard
- Center for Molecular Biology of Oral Diseases and Department of Periodontics , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Richard Swanson
- Center for Molecular Biology of Oral Diseases and Department of Periodontics , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Gonzalo Izaguirre
- Center for Molecular Biology of Oral Diseases and Department of Periodontics , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Steven T Olson
- Center for Molecular Biology of Oral Diseases and Department of Periodontics , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| |
Collapse
|
18
|
Arantes PR, Pérez-Sánchez H, Verli H. Antithrombin conformational modulation by D-myo-inositol 3,4,5,6-tetrakisphosphate (TMI), a novel scaffold for the development of antithrombotic agents. J Biomol Struct Dyn 2017; 36:4045-4056. [DOI: 10.1080/07391102.2017.1407259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Pablo Ricardo Arantes
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, CP 15005, Porto Alegre 91500-970, RS, Brazil
| | - Horacio Pérez-Sánchez
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), Murcia, Spain
| | - Hugo Verli
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, CP 15005, Porto Alegre 91500-970, RS, Brazil
| |
Collapse
|
19
|
Verhamme IM. A novel antithrombin domain dictates the journey's end of a proteinase. J Biol Chem 2017; 292:16521-16522. [PMID: 28986431 DOI: 10.1074/jbc.h117.787325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antithrombin (AT) is an anticoagulant serpin that irreversibly inactivates the clotting proteinases factor Xa and thrombin by forming covalent complexes with them. Mutations in its critical domains, such as those that impair the conformational rearrangement required for proteinase inactivation, increase the risk of venous thrombosis. Águila et al. characterize for the first time the destabilizing effects of mutations in the region of AT that makes contact with the proteinase in the final acyl-enzyme complex. Their work adds new insight into the unique structural intricacies of the inhibitory mechanism.
Collapse
Affiliation(s)
- Ingrid M Verhamme
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
20
|
Recurrent mutations in a SERPINC1 hotspot associate with venous thrombosis without apparent antithrombin deficiency. Oncotarget 2017; 8:84417-84425. [PMID: 29137435 PMCID: PMC5663607 DOI: 10.18632/oncotarget.21365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/04/2017] [Indexed: 12/21/2022] Open
Abstract
Despite the essential anticoagulant function of antithrombin and the high risk of thrombosis associated with its deficiency, the prevalence of antithrombin deficiency among patients with venous thromboembolism (VTE) is very low. However, increasing evidence suggests that antithrombin deficiency may be underestimated. The analysis of SERPINC1, the gene encoding antithrombin, in 1,304 consecutive Chinese VTE patients and 1,334 healthy controls revealed a hotspot involving residues 294 and 295 that severely increases the risk of VTE. We detected the c.883G>A (p.Val295Met) (rs201381904) mutation in 11 patients and just one control (OR = 13.6; 95% CI: 1.7-107.1); c.881G>T (p.Arg294Leu) (rs587776397) in six patients but no controls; and c.880C>T (p.Arg294Cys) (rs747142328) in two patients but no controls. In addition, c.881G>A (p.Arg294His) (rs587776397) was identified in one control. These mutations were absent in a Caucasian cohort. Carriers of these mutations had normal antithrombin levels and anticoagulant activity, consistent with results obtained in a recombinant model. However, mutation carriers had a significantly increased endogenous thrombin potential. Our results suggest the existence in the Chinese population of a hotspot in SERPINC1 that significantly increases the risk of VTE by impairing the anticoagulant capacity of the hemostatic system. This effect is not revealed by current antigen or in vitro functional antithrombin assays.
Collapse
|
21
|
Águila S, Izaguirre G, Martínez-Martínez I, Vicente V, Olson ST, Corral J. Disease-causing mutations in the serpin antithrombin reveal a key domain critical for inhibiting protease activities. J Biol Chem 2017; 292:16513-16520. [PMID: 28743742 DOI: 10.1074/jbc.m117.787325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/24/2017] [Indexed: 01/05/2023] Open
Abstract
Antithrombin mainly inhibits factor Xa and thrombin. The reactive center loop (RCL) is crucial for its interactions with its protease targets and is fully inserted into the A-sheet after its cleavage, causing translocation of the covalently linked protease to the opposite end of the A-sheet. Antithrombin variants with altered RCL hinge residues behave as substrates rather than inhibitors, resulting in stoichiometries of inhibition greater than one. Other antithrombin residues have been suggested to interfere with RCL insertion or the stability of the antithrombin-protease complex, but available crystal structures or mutagenesis studies have failed to identify such residues. Here, we characterized two mutations, S365L and I207T, present in individuals with type II antithrombin deficiency and identified a new antithrombin functional domain. S365L did not form stable complexes with thrombin or factor Xa, and the I207T/I207A variants inhibited both proteases with elevated stoichiometries of inhibition. Close proximity of Ile-207 and Ser-365 to the inserted RCL suggested that the preferred reaction of these mutants as protease substrates reflects an effect on the rate of the RCL insertion and protease translocation. However, both residues lie within the final docking site for the protease in the antithrombin-protease complex, supporting the idea that the enhanced substrate reactions may result from an increased dissociation of the final complexes. Our findings demonstrate that the distal end of the antithrombin A-sheet is crucial for the last steps of protease inhibition either by affecting the rate of RCL insertion or through critical interactions with proteases at the end of the A-sheet.
Collapse
Affiliation(s)
- Sonia Águila
- From the Centro Regional de Hemodonación and Hospital Universitario Morales Meseguer, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Virgen de la Arrixaca, 30003 Murcia, Spain
| | - Gonzalo Izaguirre
- the Department of Periodontics, Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Irene Martínez-Martínez
- From the Centro Regional de Hemodonación and Hospital Universitario Morales Meseguer, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Virgen de la Arrixaca, 30003 Murcia, Spain, .,the Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Vicente Vicente
- From the Centro Regional de Hemodonación and Hospital Universitario Morales Meseguer, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Virgen de la Arrixaca, 30003 Murcia, Spain.,the Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Steven T Olson
- the Department of Periodontics, Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Javier Corral
- From the Centro Regional de Hemodonación and Hospital Universitario Morales Meseguer, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Virgen de la Arrixaca, 30003 Murcia, Spain.,the Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
22
|
Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Biochem J 2017; 473:2273-93. [PMID: 27470592 DOI: 10.1042/bcj20160014] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
Abstract
Serpins are a widely distributed family of high molecular mass protein proteinase inhibitors that can inhibit both serine and cysteine proteinases by a remarkable mechanism-based kinetic trapping of an acyl or thioacyl enzyme intermediate that involves massive conformational transformation. The trapping is based on distortion of the proteinase in the complex, with energy derived from the unique metastability of the active serpin. Serpins are the favoured inhibitors for regulation of proteinases in complex proteolytic cascades, such as are involved in blood coagulation, fibrinolysis and complement activation, by virtue of the ability to modulate their specificity and reactivity. Given their prominence as inhibitors, much work has been carried out to understand not only the mechanism of inhibition, but how it is fine-tuned, both spatially and temporally. The metastability of the active state raises the question of how serpins fold, whereas the misfolding of some serpin variants that leads to polymerization and pathologies of liver disease, emphysema and dementia makes it clinically important to understand how such polymerization might occur. Finally, since binding of serpins and their proteinase complexes, particularly plasminogen activator inhibitor-1 (PAI-1), to the clearance and signalling receptor LRP1 (low density lipoprotein receptor-related protein 1), may affect pathways linked to cell migration, angiogenesis, and tumour progression, it is important to understand the nature and specificity of binding. The current state of understanding of these areas is addressed here.
Collapse
|
23
|
Mulloy B, Hogwood J, Gray E, Lever R, Page CP. Pharmacology of Heparin and Related Drugs. Pharmacol Rev 2016; 68:76-141. [PMID: 26672027 DOI: 10.1124/pr.115.011247] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|
24
|
A rapid pro-hemostatic approach to overcome direct oral anticoagulants. Nat Med 2016; 22:924-32. [PMID: 27455511 DOI: 10.1038/nm.4149] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/16/2016] [Indexed: 02/07/2023]
Abstract
Direct inhibitors of coagulation factor Xa (FXa) or thrombin are promising oral anticoagulants that are becoming widely adopted. The ability to reverse their anticoagulant effects is important when serious bleeding occurs or urgent medical procedures are needed. Here, using experimental mouse models of hemostasis, we show that a variant coagulation factor, FXa(I16L), rapidly restores hemostasis in the presence of the anticoagulant effects of these inhibitors. The ability of FXa(I16L) to reverse the anticoagulant effects of FXa inhibitor depends, at least in part, on the ability of the active site inhibitor to hinder antithrombin-dependent FXa inactivation, paradoxically allowing uninhibited FXa to persist in plasma. Because of its inherent catalytic activity, FXa(I16L) is more potent (by >50-fold) in the hemostasis models tested than a noncatalytic antidote that is currently in clinical development. FXa(I16L) also reduces the anticoagulant-associated bleeding in vivo that is induced by the thrombin inhibitor dabigatran. FXa(I16L) may be able to fill an important unmet clinical need for a rapid, pro-hemostatic agent to reverse the effects of several new anticoagulants.
Collapse
|
25
|
Ustyuzhanina NE, Bilan MI, Gerbst AG, Ushakova NA, Tsvetkova EA, Dmitrenok AS, Usov AI, Nifantiev NE. Anticoagulant and antithrombotic activities of modified xylofucan sulfate from the brown alga Punctaria plantaginea. Carbohydr Polym 2016; 136:826-33. [PMID: 26572418 DOI: 10.1016/j.carbpol.2015.09.102] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 01/08/2023]
Abstract
Selectively and totally sulfated (1 → 3)-linked linear homofucans bearing ∼ 20 monosaccharide residues on average have been prepared from the branched xylofucan sulfate isolated from the brown alga Punctaria plantaginea. Anticoagulant and antithrombotic properties of the parent biopolymer and its derivatives were assessed in vitro. Highly sulfated linear fucan derivatives were shown to inhibit clot formation in APTT assay and ristocetin induced platelets aggregation, while the partially sulfated analogs were inactive. In the experiments with purified proteins, fucan derivatives with degree of sulfation of ∼ 2.0 were found to enhance thrombin and factor Xa inhibition by antithrombin III. The effect of sulfated fucans on thrombin inhibition, which was similar to those of heparinoid Clexane(®) (enoxaparin) and of a fucoidan from the brown alga Saccharina latissima studied previously, can be explained by the multicenter interaction and formation of a ternary complex thrombin-antithrombin III-polysaccharide. The possibility of such complexation was confirmed by computer docking study.
Collapse
Affiliation(s)
- Nadezhda E Ustyuzhanina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, B-334, 119991 Moscow, Russian Federation
| | - Maria I Bilan
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, B-334, 119991 Moscow, Russian Federation
| | - Alexey G Gerbst
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, B-334, 119991 Moscow, Russian Federation
| | - Natalia A Ushakova
- V.N. Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Pogodinskaya Str. 10, 119121 Moscow, Russian Federation
| | - Eugenia A Tsvetkova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, B-334, 119991 Moscow, Russian Federation
| | - Andrey S Dmitrenok
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, B-334, 119991 Moscow, Russian Federation
| | - Anatolii I Usov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, B-334, 119991 Moscow, Russian Federation
| | - Nikolay E Nifantiev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, B-334, 119991 Moscow, Russian Federation.
| |
Collapse
|
26
|
Roth R, Swanson R, Izaguirre G, Bock SC, Gettins PGW, Olson ST. Saturation Mutagenesis of the Antithrombin Reactive Center Loop P14 Residue Supports a Three-step Mechanism of Heparin Allosteric Activation Involving Intermediate and Fully Activated States. J Biol Chem 2015; 290:28020-28036. [PMID: 26359493 DOI: 10.1074/jbc.m115.678839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Indexed: 11/06/2022] Open
Abstract
Past studies have suggested that a key feature of the mechanism of heparin allosteric activation of the anticoagulant serpin, antithrombin, is the release of the reactive center loop P14 residue from a native state stabilizing interaction with the hydrophobic core. However, more recent studies have indicated that this structural change plays a secondary role in the activation mechanism. To clarify this role, we expressed and characterized 15 antithrombin P14 variants. The variants exhibited basal reactivities with factors Xa and IXa, heparin affinities and thermal stabilities that were dramatically altered from wild type, consistent with the P14 mutations perturbing native state stability and shifting an allosteric equilibrium between native and activated states. Rapid kinetic studies confirmed that limiting rate constants for heparin allosteric activation of the mutants were altered in conjunction with the observed shifts of the allosteric equilibrium. However, correlations of the P14 mutations' effects on parameters reflecting the allosteric activation state of the serpin were inconsistent with a two-state model of allosteric activation and suggested multiple activated states. Together, these findings support a minimal three-state model of allosteric activation in which the P14 mutations perturb equilibria involving distinct native, intermediate, and fully activated states wherein the P14 residue retains an interaction with the hydrophobic core in the intermediate state but is released from the core in the fully activated state, and the bulk of allosteric activation has occurred in the intermediate.
Collapse
Affiliation(s)
- Ryan Roth
- Center for Molecular Biology of Oral Diseases and Departments of Periodontics
| | - Richard Swanson
- Center for Molecular Biology of Oral Diseases and Departments of Periodontics
| | - Gonzalo Izaguirre
- Center for Molecular Biology of Oral Diseases and Departments of Periodontics
| | - Susan C Bock
- Departments of Medicine and Bioengineering, University of Utah, Salt Lake City, Utah 84132
| | - Peter G W Gettins
- Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Steven T Olson
- Center for Molecular Biology of Oral Diseases and Departments of Periodontics.
| |
Collapse
|