1
|
Kumar S, Arwind DA, Kumar B H, Pandey S, Nayak R, Vithalkar MP, Kumar N, Pai KSR. Inhibition of STAT3: A promising approach to enhancing the efficacy of chemotherapy in medulloblastoma. Transl Oncol 2024; 46:102023. [PMID: 38852276 PMCID: PMC11220551 DOI: 10.1016/j.tranon.2024.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024] Open
Abstract
Medulloblastoma is a type of brain cancer that primarily affects children. While chemotherapy has been shown to be effective in treating medulloblastoma, the development of chemotherapy resistance remains a challenge. One potential therapeutic approach is to selectively inhibit the inducible transcription factor called STAT3, which is known to play a crucial role in the survival and growth of tumor cells. The activation of STAT3 has been linked to the growth and progression of various cancers, including medulloblastoma. Inhibition of STAT3 has been shown to sensitize medulloblastoma cells to chemotherapy, leading to improved treatment outcomes. Different approaches to STAT3 inhibition have been developed, including small-molecule inhibitors and RNA interference. Preclinical studies have shown the efficacy of STAT3 inhibitors in medulloblastoma, and clinical trials are currently ongoing to evaluate their safety and effectiveness in patients with various solid tumors, including medulloblastoma. In addition, researchers are also exploring ways to optimize the use of STAT3 inhibitors in combination with chemotherapy and identify biomarkers that can predict treatment that will help to develop personalized treatment strategies. This review highlights the potential of selective inhibition of STAT3 as a novel approach for the treatment of medulloblastoma and suggests that further research into the development of STAT3 inhibitors could lead to improved outcomes for patients with aggressive cancer.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Dube Aakash Arwind
- Department of Pharmacology and toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Samyak Pandey
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Raksha Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India.
| |
Collapse
|
2
|
Ray S. Tumorsphere Formation Assay: A Cancer Stem-Like Cell Characterization in Pediatric Brain Cancer Medulloblastoma. Methods Mol Biol 2023; 2701:253-259. [PMID: 37574488 DOI: 10.1007/978-1-0716-3373-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Cancer is a heterogeneous disease, comprising of a mixture of different cell populations. Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are a subpopulation of multipotent cells within the cancer that has self-renewing capability, tumor-initiating ability, multi-differentiation potential, and an inherent capacity for drug and chemoresistance. Sphere-formation assay is commonly used for enrichment and analysis of CSC properties in vitro and is typically used as a metric for testing the viability of tumor cells to anticancer agents. This model is based on the ability of CSCs to grow under ultralow-attachment conditions in serum-free medium supplemented with growth factors. In contrast to the adherent 2D culture of cancer cells, the 3D culture of tumorsphere assay exploits inherent biologic features of CSCs such as anoikis resistance and self-renewal. We describe here the detailed methodology for the generation and propagation of spheres generated from pediatric brain tumor medulloblastoma (MB) cells. As signal transducer and activator of transcription (STAT3) is known to play an important role in maintaining cancer stem cell properties, we accessed the effect of depleting or inhibiting STAT3 on MB-sphere sizes, numbers, and integrity. This may serve as a promising platform for screening potential anti-CSC agents and small-molecule inhibitors.
Collapse
Affiliation(s)
- Sutapa Ray
- Department of Pediatrics, Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffett Cancer Center, Omaha, NE, USA.
- Child Health Research Institute, Omaha, NE, USA.
| |
Collapse
|
3
|
STAT3 and PD-L1 are negatively correlated with ATM and have impact on the prognosis of triple-negative breast cancer patients with low ATM expression. Breast Cancer Res Treat 2022; 196:45-56. [PMID: 36056297 DOI: 10.1007/s10549-022-06679-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/04/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is known for its aggressive behaviors and lacking of effective treatment. Programmed cell death ligand-1 (PD-L1) inhibitor has just been approved for using in the management of advanced TNBC. To accurately screen TNBC sensitive to anti-PD-L1 treatment and to explore the feasibility of the ataxia-telangiectasia mutation protein (ATM) inhibitor combined with PD-L1 inhibitor, radiotherapy and chemotherapy, we focus on whether ATM participates in the regulation of PD-L1 and affects the prognosis of patients through c-Src, signal transducer and activator of transcription 1&3 (STAT1 and STAT3). MATERIALS AND METHODS We used immunohistochemical staining to explore the relationship of ATM with c-Src, STAT1, STAT3, PD-1/PD-L1, Tumor-infiltrating lymphocytes (TILs), as well as other clinicopathologic features in 86 pathological stage III TNBCs. Their impact on prognosis was also explored. RESULTS We found ATM expression was negatively correlated with STAT1, STAT3, PD-L1, TILs and CD8 + cells in TNBC. STAT1 positively correlated the expression of PD-L1. In TNBC with ATM low expression, STAT3 was an independent factor for improved prognosis, while PD-L1 was an independent negative prognostic factor. Furthermore, in low ATM group, the phosphorylation of tyrosine at position 419 of c-Src (p-c-src Y419) was correlated with the overexpression of STAT3. CONCLUSION Locally advanced TNBC with low ATM expression may be more likely to benefit from anti-PD-L1 inhibitors. The feasibility of ATM functional inhibitor combined with immune checkpoint blockade therapies in the treatment of TNBC is also worthy of further exploration. Our study suggests that STAT3 has different impacts on tumor progression in different tumors.
Collapse
|
4
|
Tuli HS, Sak K, Iqubal A, Garg VK, Varol M, Sharma U, Chauhan A, Yerer MB, Dhama K, Jain M, Jain A. STAT signaling as a target for intervention: from cancer inflammation and angiogenesis to non-coding RNAs modulation. Mol Biol Rep 2022; 49:8987-8999. [PMID: 35474053 DOI: 10.1007/s11033-022-07399-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022]
Abstract
As a landmark, scientific investigation in cytokine signaling and interferon-related anti-viral activity, signal transducer and activator of transcription (STAT) family of proteins was first discovered in the 1990s. Today, we know that the STAT family consists of several transcription factors which regulate various molecular and cellular processes, including proliferation, angiogenesis, and differentiation in human carcinoma. STAT family members play an active role in transducing signals from cell membrane to nucleus through intracellular signaling and thus activating gene transcription. Additionally, they are also associated with the development and progression of human cancer by facilitating inflammation, cell survival, and resistance to therapeutic responses. Accumulating evidence suggests that not all STAT proteins are associated with the progression of human malignancy; however, STAT3/5 are constitutively activated in various cancers, including multiple myeloma, lymphoma, breast cancer, prostate hepatocellular carcinoma, and non-small cell lung cancer. The present review highlights how STAT-associated events are implicated in cancer inflammation, angiogenesis and non-coding RNA (ncRNA) modulation to highlight potential intervention into carcinogenesis-related cellular processes.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), 133 207, Mullana- Ambala, Haryana, India.
| | | | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly, Faculty of Pharmacy), Jamia Hamdard (Deemed to be University), Delhi, India
| | - Vivek Kumar Garg
- Department of Medical Laboratory Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, 140413, Gharuan, Punjab, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, TR48000, Mugla, Turkey
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, 151401, Village-Ghudda, Punjab, India
| | - Abhishek Chauhan
- Amity Institute of Environment Toxicology Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, 38039, Kayseri, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, 243122, Bareilly, Uttar Pradesh, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, 151401, Village-Ghudda, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, 151401, Village-Ghudda, Punjab, India.
| |
Collapse
|
5
|
STAT3 in medulloblastoma: a key transcriptional regulator and potential therapeutic target. Mol Biol Rep 2022; 49:10635-10652. [PMID: 35716286 DOI: 10.1007/s11033-022-07694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
Medulloblastoma is the most common malignant brain tumor of childhood accounting for about 60% of all pediatric embryonal tumors. Despite improvements in the overall survival rate, this tumor still lacks an efficient, reliable, and less toxic therapeutic approach. Characterization of the molecular mechanisms involved in medulloblastoma initiation and progression is a crucial step for the development of effective therapies. Signal transducer and activator of transcription 3 is a convergence point for several signaling cascades that are implicated in medulloblastoma tumorigenesis. Accumulated evidence has revealed the pivotal role of signal transducer and activator of transcription 3 in medulloblastoma pathogenesis such as proliferation, survival, angiogenesis, and immunosuppression as well as maintenance, drug resistance, and recurrence. In this review, we focus on the role of signal transducer and activator of transcription 3 in medulloblastoma tumorigenesis and discuss the recent advances of signal transducer and activator of transcription 3 inhibition as a promising developed strategy for medulloblastoma therapy.
Collapse
|
6
|
Maurya A, Patel UK, Yadav JK, Singh VP, Agarwal A. Challenges and Recent Advances of Novel Chemical Inhibitors in Medulloblastoma Therapy. Methods Mol Biol 2022; 2423:123-140. [PMID: 34978695 DOI: 10.1007/978-1-0716-1952-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Medulloblastoma is a common term used for the juvenile malignant brain tumor, and its treatment is exciting due to different genetic origins, improper transportation of drug across the blood-brain barrier, and chemo-resistance with various side effects. Currently, medulloblastoma divided into four significant subsections (Wnt, Shh, Group 3, and Group 4) is based on their hereditary modulation and histopathological advancement. In this chapter, we tried to combine several novel chemical therapeutic agents active toward medulloblastoma therapy. All these compounds have potent activity to inhibit the medulloblastoma.
Collapse
Affiliation(s)
- Anand Maurya
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Upendra Kumar Patel
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jitendra Kumar Yadav
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Virender Pratap Singh
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
7
|
Shi W, Men L, Pi X, Jiang T, Peng D, Huo S, Luo P, Wang M, Guo J, Jiang Y, Peng L, Lin L, Li S, Lv J. Shikonin suppresses colon cancer cell growth and exerts synergistic effects by regulating ADAM17 and the IL‑6/STAT3 signaling pathway. Int J Oncol 2021; 59:99. [PMID: 34726248 PMCID: PMC8577797 DOI: 10.3892/ijo.2021.5279] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) activation is associated with drug resistance induced by anti-epidermal growth factor receptor (anti-EGFR) therapy in the treatment of colon cancer. Thus, the combined inhibition of EGFR and STAT3 may prove beneficial for this type of cancer. STAT3 has been proven to play a critical role in colon cancer initiation and progression, and is considered the primary downstream effector driven by interleukin-6 (IL-6). A disintegrin and metalloproteinase 17 (ADAM17), documented as an oncogene, catalyzes the cleavage of both EGF and IL-6R, inducing EGFR signaling and enabling IL-6 trans-signaling to activate STAT3 in a wide range of cell types to promote inflammation and cancer development. As a natural product, shikonin (SKN) has been found to function as an antitumor agent; however, its role in the regulation of ADAM17 and IL-6/STAT3 signaling in colon cancer cells remains unknown. In the present study, it was found that SKN inhibited colon cancer cell growth, suppressed both constitutive and IL-6-induced STAT3 phosphorylation, and downregulated the expression of ADAM17. ADAM17 expression was not altered in response to STAT3 knockdown, while IL-6-induced STAT3 activation did not induce ADAM17 transcripts. Furthermore, it was demonstrated that SKN did not affect the expression of key proteins involved in the maturation and degradation of ADAM17. SKN decreased ADAM17 expression possibly through reactive oxygen species (ROS)-mediated translational inhibition, as evidenced by the increased ADAM17 mRNA and phosphorylation levels of eukaryotic initiation factor 2α (eIF2α). The expression of ADAM17 and p-eIF2α was reversed by N-acetylcysteine (NAC, a ROS scavenger). Taken together, these results indicate that the concurrent inhibition of ADAM17 and IL-6/STAT3 signaling by SKN may synergistically contribute to the suppression of colon cancer cell growth.
Collapse
Affiliation(s)
- Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lintong Men
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiu Pi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Tao Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dewei Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Pengcheng Luo
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Moran Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Junyi Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yue Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Lulu Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
8
|
Yuan L, Zhang H, Liu J, Malhotra A, Dey A, Yu B, Jella KK, McSwain LF, Schniederjan MJ, MacDonald TJ. STAT3 is required for Smo-dependent signaling and mediates Smo-targeted treatment resistance and tumorigenesis in Shh medulloblastoma. Mol Oncol 2021; 16:1009-1025. [PMID: 34482626 PMCID: PMC8847987 DOI: 10.1002/1878-0261.13097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 01/05/2023] Open
Abstract
Sonic hedgehog (Shh)‐driven medulloblastoma (Shh MB) cells are dependent on constitutive Shh signaling, but targeted treatment of Shh MB has been ineffective due to drug resistance. The purpose of this study was to address the critical role of signal transducer and activator of transcription 3 (STAT3) in Shh signaling and drug resistance in Shh MB cells. Herein, we show that STAT3 is required for Smoothened (Smo)‐dependent Shh signaling and, in turn, is reciprocally regulated by Shh signaling, and demonstrate that STAT3 activity is critical for expression of HCK proto‐oncogene, Src family tyrosine kinase (Hck) in Shh MB. We also demonstrate that maintained STAT3 activity suppresses p21 expression and promotes colony formation of Shh MB cells, whereas dual treatment with inhibitors of both Smo and STAT3 results in marked synergistic killing and overcomes drug resistance in vitro of Smo antagonist‐resistant Shh MB cells. Finally, STAT3 inhibitor treatment significantly prevents in vivo tumor formation in genetically engineered Shh MB mice. Collectively, we show that STAT3 is necessary to maintain Shh signaling and thus is a potential therapeutic target to treat Shh MB and overcome anti‐Smo drug resistance.
Collapse
Affiliation(s)
- Liangping Yuan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hongying Zhang
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jingbo Liu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anshu Malhotra
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Abhinav Dey
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Bing Yu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Kishore Kumar Jella
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Leon F McSwain
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew J Schniederjan
- Department of Pathology and Laboratory Medicine, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Tobey J MacDonald
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
9
|
Targeting cancer stem cells in medulloblastoma by inhibiting AMBRA1 dual function in autophagy and STAT3 signalling. Acta Neuropathol 2021; 142:537-564. [PMID: 34302498 PMCID: PMC8357694 DOI: 10.1007/s00401-021-02347-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is a childhood malignant brain tumour comprising four main subgroups characterized by different genetic alterations and rate of mortality. Among MB subgroups, patients with enhanced levels of the c-MYC oncogene (MBGroup3) have the poorest prognosis. Here we identify a previously unrecognized role of the pro-autophagy factor AMBRA1 in regulating MB. We demonstrate that AMBRA1 expression depends on c-MYC levels and correlates with Group 3 patient poor prognosis; also, knockdown of AMBRA1 reduces MB stem potential, growth and migration of MBGroup3 stem cells. At a molecular level, AMBRA1 mediates these effects by suppressing SOCS3, an inhibitor of STAT3 activation. Importantly, pharmacological inhibition of autophagy profoundly affects both stem and invasion potential of MBGroup3 stem cells, and a combined anti-autophagy and anti-STAT3 approach impacts the MBGroup3 outcome. Taken together, our data support the c-MYC/AMBRA1/STAT3 axis as a strong oncogenic signalling pathway with significance for both patient stratification strategies and targeted treatments of MBGroup3.
Collapse
|
10
|
Wang Z, Hui C, Xie Y. Natural STAT3 inhibitors: A mini perspective. Bioorg Chem 2021; 115:105169. [PMID: 34333418 DOI: 10.1016/j.bioorg.2021.105169] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays pivotal role in several cellular processes such as cell proliferation and survival and has been found to be aberrantly activated in many cancers. STAT3 is largely believed to be one of the key oncogenes and crucial therapeutic targets. Much research has suggested the leading mechanisms for regulating the STAT3 pathway and its role in promoting tumorigenesis. Therefore, intensive efforts have been devoted to develop potent STAT3 inhibitors and several of them are currently undergoing clinical trials. Nevertheless, many natural products were identified as STAT3 inhibitors but attract less attention compared to the small molecule counterpart. In this review, the development of natural STAT3 inhibitors with an emphasis on their biological profile and chemical synthesis are detailed. The current state of STAT3 inhibitors and the future directions and opportunities for STAT3 inhibitor are discussed.
Collapse
Affiliation(s)
- Zhuo Wang
- Southern University of Science and Technology, School of Medicine, Shenzhen 518055, People's Republic of China.
| | - Chunngai Hui
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
11
|
Pan L, Zhang R, Ma L, Pierson CR, Finlay JL, Li C, Lin J. STAT3 inhibitor in combination with irradiation significantly inhibits cell viability, cell migration, invasion and tumorsphere growth of human medulloblastoma cells. Cancer Biol Ther 2021; 22:430-439. [PMID: 34254873 DOI: 10.1080/15384047.2021.1951573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Persistent activation of signal transducer and activator of transcription 3 (STAT3) is frequently reported in cancers and plays important roles in tumor progression. Therefore, directly targeting persistent STAT3 signaling is an attractive cancer therapeutic strategy. The aim of this study is to test the inhibitory efficacy of novel STAT3 small molecule inhibitors, LLY17 and LLL12B, in combination with irradiation in human medulloblastoma cells. Both LLY17 and LLL12B inhibit the IL-6-induced and persistent STAT3 phosphorylation in human medulloblastoma cells. Irradiation using 4 Gy alone exhibits some inhibitory effects on medulloblastoma cell viability, and these effects are further enhanced by combining with either STAT3 inhibitor. Irradiation alone also shows certain inhibitory effects on medulloblastoma cell migration and invasion and the combination of LLY17 or LLL12B with irradiation further demonstrates greater inhibitory effects than monotherapy. STAT3 inhibitor alone or irradiation alone exhibits some suppression of medulloblastoma tumorsphere growth, and the combination of LLY17 or LLL12B and irradiation exhibits greater suppression of tumorsphere growth than monotherapy. Combining either STAT3 inhibitor with irradiation reduces the expression of STAT3 downstream targets, Cyclin D1 and Survivin, and induces apoptosis in medulloblastoma cells. These results support that combination of a potent STAT3 inhibitor such as LLY17 or LLL12B with irradiation is an effective and novel therapeutic approach for medulloblastoma.
Collapse
Affiliation(s)
- Li Pan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ruijie Zhang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ling Ma
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Department of Pathology and Department of Biomedical Education & Anatomy, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Jonathan L Finlay
- Division of Hematology, Oncology and BMT, the Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
A novel small molecule LLL12B inhibits STAT3 signaling and sensitizes ovarian cancer cell to paclitaxel and cisplatin. PLoS One 2021; 16:e0240145. [PMID: 33909625 PMCID: PMC8081214 DOI: 10.1371/journal.pone.0240145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/01/2021] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer is the fifth most common cause of cancer deaths among American women. Platinum and taxane combination chemotherapy represents the first-line approach for ovarian cancer, but treatment success is often limited by chemoresistance. Therefore, it is necessary to find new drugs to sensitize ovarian cancer cells to chemotherapy. Persistent activation of Signal Transducer and Activator of Transcription 3 (STAT3) signaling plays an important role in oncogenesis. Using a novel approach called advanced multiple ligand simultaneous docking (AMLSD), we developed a novel nonpeptide small molecule, LLL12B, which targets the STAT3 pathway. In this study, LLL12B inhibited STAT3 phosphorylation (tyrosine 705) and the expression of its downstream targets, which are associated with cancer cell proliferation and survival. We showed that LLL12B also inhibits cell viability, migration, and proliferation in human ovarian cancer cells. LLL12B combined with either paclitaxel or with cisplatin demonstrated synergistic inhibitory effects relative to monotherapy in inhibiting cell viability and LLL12B-paclitaxel or LLL12B-cisplatin combination exhibited greater inhibitory effects than cisplatin-paclitaxel combination in ovarian cancer cells. Furthermore, LLL12B-paclitaxel or LLL12B-cisplatin combination showed more significant in inhibiting cell migration and growth than monotherapy in ovarian cancer cells. In summary, our results support the novel small molecule LLL12B as a potent STAT3 inhibitor in human ovarian cancer cells and suggest that LLL12B in combination with the current front-line chemotherapeutic drugs cisplatin and paclitaxel may represent a promising approach for ovarian cancer therapy.
Collapse
|
13
|
Xu J, Wu Z, Huang J. Flavopereirine Suppresses the Progression of Human Oral Cancer by Inhibiting the JAK-STAT Signaling Pathway via Targeting LASP1. Drug Des Devel Ther 2021; 15:1705-1716. [PMID: 33935493 PMCID: PMC8076722 DOI: 10.2147/dddt.s284213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Objective Flavopereirine has been identified to be a potential anti-cancer agent in several types of human cancer. This study aimed to investigate the anti-cancer activity of flavopereirine in oral cancer. Methods The effect of flavopereirine on cell viability of human oral cancer cell lines (BcaCD885 and Tca8113) was evaluated by MTT assay and colony formation assay. Cell apoptosis and cell cycle distribution were detected by flow cytometry. Cell invasion and migration were evaluated by Transwell assay. The expression of LASP1, JAK2, p-JAK2, STST3, p-STST3, STST5 and p-STST5 was evaluated by qRT-PCR and Western blot. In addition, the xenograft mouse model was constructed to determine the anti-cancer role of flavopereirine in vivo. Results Flavopereirine significantly inhibited cell proliferation, invasion, migration and EMT process of BcaCD885 and Tca8113 cells, while promoted cell apoptosis in vitro. Flavopereirine markedly decreased the expression levels of p-JAK2, p-STST3 and p-STST5, while increased the expression levels of LASP1. In addition, downregulation of LASP1 significantly increased the expression levels of p-JAK2, p-STAT3 and p-STAT5 compared with si-NC in BcaCD885 cells. Moreover, flavopereirine was found to decrease tumor weight and volume of xenograft tumors in vivo. Conclusion Flavopereirine inhibited the progression of oral cancer through inactivating the JAK/STAT signaling pathway by upregulating LASP1, suggesting that flavopereirine might be a potential anti-cancer agent for oral cancer.
Collapse
Affiliation(s)
- Junwu Xu
- Department of Oral and Maxillofacial Surgery, Fujian Provincial Hospital, Fuzhou City, Fujian Province, 350001, People's Republic of China
| | - Zhiyuan Wu
- Department of Oral and Maxillofacial Surgery, Fujian Provincial Hospital, Fuzhou City, Fujian Province, 350001, People's Republic of China
| | - Jian Huang
- Department of Oral and Maxillofacial Surgery, Fujian Provincial Hospital, Fuzhou City, Fujian Province, 350001, People's Republic of China
| |
Collapse
|
14
|
Chen X, Pan L, Wei J, Zhang R, Yang X, Song J, Bai RY, Fu S, Pierson CR, Finlay JL, Li C, Lin J. LLL12B, a small molecule STAT3 inhibitor, induces growth arrest, apoptosis, and enhances cisplatin-mediated cytotoxicity in medulloblastoma cells. Sci Rep 2021; 11:6517. [PMID: 33753770 PMCID: PMC7985203 DOI: 10.1038/s41598-021-85888-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor and an oncogene product, which plays a pivotal role in tumor progression. Therefore, targeting persistent STAT3 signaling directly is an attractive anticancer strategy. The aim of this study is to test the efficacy of a novel STAT3 small molecule inhibitor, LLL12B, in suppressing medulloblastoma cells in vitro and tumor growth in vivo. LLL12B selectively inhibited the induction of STAT3 phosphorylation by interleukin-6 but not induction of STAT1 phosphorylation by INF-γ. LLL12B also induced apoptosis in human medulloblastoma cells. In addition, LLL12B exhibited good oral bioavailability in vivo and potent suppressive activity in tumor growth of medulloblastoma cells in vivo. Besides, combining LLL12B with cisplatin showed greater inhibition of cell viability and tumorsphere formation as well as induction of apoptosis comparing to single agent treatment in medulloblastoma cells. Furthermore, LLL12B and cisplatin combination exhibited greater suppression of medulloblastoma tumor growth than monotherapy in vivo. The present study supported that LLL12B is a novel therapeutic agent for medulloblastoma and the combination of LLL12B with a chemotherapeutic agent cisplatin may be an effective approach for medulloblastoma therapy.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Li Pan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jia Wei
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ruijie Zhang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaozhi Yang
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA
| | - Jinhua Song
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA
| | - Ren-Yuan Bai
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Shengling Fu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, The Department of Pathology and Department of Biomedical Education and Anatomy, The College of Medicine, The Ohio State University, Columbus, OH, 43205, USA
| | - Jonathan L Finlay
- Division of Hematology, Oncology and BMT, Department of Pediatrics, College of Medicine, The Research Institute At Nationwide Children's Hospital, The Ohio State University, Columbus, OH, 43205, USA
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, The University of Florida, Gainesville, FL, 32610, USA.
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Direito R, Rocha J, Sepodes B, Eduardo-Figueira M. Phenolic Compounds Impact on Rheumatoid Arthritis, Inflammatory Bowel Disease and Microbiota Modulation. Pharmaceutics 2021; 13:pharmaceutics13020145. [PMID: 33499333 PMCID: PMC7912052 DOI: 10.3390/pharmaceutics13020145] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Non-communicable chronic diseases (NCDs) are nowadays the principal cause of death, especially in most industrialized nations. These illnesses have increased exponentially with the consumption of diets very high in fat and sugar, not to mention stress and physical inactivity among other factors. The potential impact of suboptimal diets on NCDs’ morbidity and mortality rates brings to the forefront the necessity for a new way of improving dietary habits. The literature provides extensive scientific work that presents evidence that phenolic compounds from diets have antioxidant, anti-inflammatory and antiproliferative activities that impact human health. Gut microbiota modulation by some phenolic compounds leads to favorable changes in abundance, diversity, and in the immune system. However, polyphenol’s limited bioavailability needs to be overcome, highlighting their application in new delivery systems and providing their health benefits in well-established ways such as health maintenance, treatment or adjuvant to conventional pharmacological treatments. In this context, novel dietary approaches, including new food supplements, have emerged to prevent diseases and preserve health.
Collapse
Affiliation(s)
- Rosa Direito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Correspondence: ; Tel.: +351-96-3654-899
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Maria Eduardo-Figueira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
16
|
Sreenivasan L, Wang H, Yap SQ, Leclair P, Tam A, Lim CJ. Autocrine IL-6/STAT3 signaling aids development of acquired drug resistance in Group 3 medulloblastoma. Cell Death Dis 2020; 11:1035. [PMID: 33279931 PMCID: PMC7719195 DOI: 10.1038/s41419-020-03241-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Medulloblastoma (MB) is a high-grade pediatric brain malignancy that originates from neuronal precursors located in the posterior cranial fossa. In this study, we evaluated the role of STAT3 and IL-6 in a tumor microenvironment mediated drug resistance in human MBs. We established that the Group 3 MB cell line, Med8A, is chemosensitive (hence Med8A-S), and this is correlated with a basal low phosphorylated state of STAT3, while treatment with IL-6 induced robust increases in pY705-STAT3. Via incremental selection with vincristine, we derived the stably chemoresistant variant, Med8A-R, that exhibited multi-drug resistance, enhanced IL-6 induced pY705-STAT3 levels, and increased IL6R expression. Consequently, abrogation of STAT3 or IL6R expression in Med8A-R led to restored chemosensitivity to vincristine, highlighting a prominent role for canonical IL-6/STAT3 signaling in acquired drug resistance. Furthermore, Med8A-S subjected to conditioning exposure with IL-6, termed Med8A-IL6+ cells, exhibited enhanced vincristine resistance, increased expression of pY705-STAT3 and IL6R, and increased secretion of IL-6. When cocultured with Med8A-IL6+ cells, Med8A-S cells exhibited increased pY705-STAT3 and increased IL-6 secretion, suggesting a cytokine feedback loop responsible for amplifying STAT3 activity. Similar IL-6 induced phenomena were also observed in the Group 3 MB cell lines, D283 and D341, including increased pY705-STAT3, drug resistance, IL-6 secretion and IL6R expression. Our study unveiled autocrine IL-6 as a promoter of STAT3 signaling in development of drug resistance, and suggests therapeutic benefits for targeting the IL-6/STAT3 signaling axis in Group 3 MBs.
Collapse
Affiliation(s)
- Lakshana Sreenivasan
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Hui Wang
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, Jinan University, Guangzhou, People's Republic of China
| | - Shyong Quin Yap
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Pascal Leclair
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Anthony Tam
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Chinten James Lim
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada. .,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
SS Pindiprolu SK, Krishnamurthy PT, Ghanta VR, Chintamaneni PK. Phenyl boronic acid-modified lipid nanocarriers of niclosamide for targeting triple-negative breast cancer. Nanomedicine (Lond) 2020; 15:1551-1565. [DOI: 10.2217/nnm-2020-0003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To study the active targeting efficacy of phenylboronic acid-modified niclosamide solid lipid nanoparticles (PBA-Niclo-SLN) in triple-negative breast cancer (TNBC). Materials & methods: PBA-Niclo-SLNs were formulated by an emulsification-solvent evaporation method using PBA-associated stearylamine (PBSA) as lipid. The drug uptake and the anticancer propensity of PBA-Niclo-SLN were studied in TNBC (MDA-MB231) cells and tumor-bearing mice. Results: PBA-Niclo-SLN formulation resulted in greater antitumor efficacy by inducing G0/G1 cell cycle arrest and apoptosis. Besides, PBA-Niclo-SLN effectively inhibited STAT3, CD44+/CD24- TNBC stem cell subpopulation, epithelial–mesenchymal transition markers. Besides, PBA-Niclo-SLN selectively accumulated at the tumor site with more significant tumor regression and improved the survivability in TNBC tumor-bearing mice. Conclusion: PBA-Niclo-SLN formulation would be an effective strategy to eradicate TNBC cells (breast cancer stem cells and nonbreast cancer stem cells) efficiently.
Collapse
Affiliation(s)
- Sai Kiran SS Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| | - Venkata Rao Ghanta
- Synthetic Organic Chemistry Division, GVK Biosciences Private Limited, IDA Nacharam, Hyderabad, 500076, Telangana, India
| | - Pavan Kumar Chintamaneni
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, 643001, Tamil Nadu, India
| |
Collapse
|
18
|
Zhao C, Yang L, Zhou F, Yu Y, Du X, Xiang Y, Li C, Huang X, Xie C, Liu Z, Lin J, Wang L, Liang G, Cui R. Feedback activation of EGFR is the main cause for STAT3 inhibition-irresponsiveness in pancreatic cancer cells. Oncogene 2020; 39:3997-4013. [PMID: 32242147 DOI: 10.1038/s41388-020-1271-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 11/09/2022]
Abstract
Pancreatic cancer is one of the world's leading causes of cancer-related death. Activation of STAT3 has been reported as a major contributor in pancreatic cancer tumorigenesis and chemoresistance. However, treatment of advanced pancreatic cancer patients with STAT3 inhibitors often meets drug resistance and heterogeneous response. We found that EGFR activation is a main cause for resistance to STAT3 inhibitors in pancreatic cancer cells, regardless of KRAS mutation status. Mechanistically, inhibition of STAT3 promotes STAT1- and STAT4-mediated TGF-α expression, leading to activation of the EGFR pathway. Combined treatment of pancreatic cancer cells with EGFR and STAT3 inhibitors persistently blocks EGFR and STAT3 signaling, and exerts synergistic antitumor activity both in vitro and in vivo, with or without KRAS mutation. Our results indicate that reciprocal cross-talk between STAT3 and EGFR pathways is a key molecular mechanism leading to resistance in pancreatic cancer cells. Furthermore, the study shows that combined inhibition of both EGFR and STAT3 might overcome drug resistance encountered during treatment with single agent alone. This study suggests an improved therapeutic strategy, through combined treatment with STAT3 and EGFR inhibitors, for pancreatic cancer patients.
Collapse
Affiliation(s)
- Chengguang Zhao
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, 325035, Zhejiang, China
| | - Lehe Yang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Feng Zhou
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yun Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaojing Du
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Youqun Xiang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Chenglong Li
- College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Congying Xie
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhiguo Liu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Liangxing Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Guang Liang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. .,Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, 325035, Zhejiang, China.
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. .,The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China. .,Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
19
|
Abstract
Even though the treatment of childhood cancer has evolved significantly in recent decades, aggressive central nervous system (CNS) tumors are still a leading cause of morbidity and mortality in this population. Consequently, the identification of molecular targets that can be incorporated into diagnostic practice, effectively predict prognosis, follow treatment response, and materialize into potential targeted therapeutic approaches are still warranted. Since the first evidence of the participation of miRNAs in cancer development and progression 20 years ago, notable progress has been made in the basic understanding of the contribution of their dysregulation as epigenetic driver of tumorigenesis. Nevertheless, among the plethora of articles in the literature, microRNA profiling of pediatric tumors are scarce. This article gives an overview of the recent advances in the diagnostic/prognostic potential of miRNAs in a selection of pediatric CNS tumors: medulloblastoma, ependymoma, pilocytic astrocytoma, glioblastoma, diffuse intrinsic pontine glioma, atypical teratoid/rhabdoid tumors, and choroid plexus tumors.
Collapse
|
20
|
Gu Y, Mohammad IS, Liu Z. Overview of the STAT-3 signaling pathway in cancer and the development of specific inhibitors. Oncol Lett 2020; 19:2585-2594. [PMID: 32218808 PMCID: PMC7068531 DOI: 10.3892/ol.2020.11394] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins represent novel therapeutic targets for the treatment of cancer. In particular, STAT-3 serves critical roles in several cellular processes, including the cell cycle, cell proliferation, cellular apoptosis and tumorigenesis. Persistent activation of STAT-3 has been reported in a variety of cancer types, and a poor prognosis of cancer may be associated with the phosphorylation level of STAT-3. Furthermore, elevated STAT-3 activity has been demonstrated in a variety of mammalian cancers, both in vitro and in vivo. This indicates that STAT-3 serves an important role in the progression of numerous cancer types. A significant obstacle in developing STAT-3 inhibitors is the demonstration of the antitumor efficacy in in vivo systems and the lack of animal models for human tumors. Therefore, it is crucial to determine whether available STAT-3 inhibitors are suitable for clinical trials. Moreover, further preclinical studies are necessary to focus on the impact of STAT-3 inhibitors on tumor cells. When considering STAT-3 hyper-activation in human cancer, selective targeting to these proteins holds promise for significant advancement in cancer treatment. In the present study, advances in our knowledge of the structure of STAT-3 protein and its regulatory mechanisms are summarized. Moreover, the STAT-3 signaling pathway and its critical role in malignancy are discussed, in addition to the development of STAT-3 inhibitors in various cancer types.
Collapse
Affiliation(s)
- Yuchen Gu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China.,College of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Imran Shair Mohammad
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Zhe Liu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, P.R. China.,College of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| |
Collapse
|
21
|
Hu B, Cai H, Yang S, Tu J, Huang X, Chen G. Berbamine Enhances the Efficacy of Gefitinib by Suppressing STAT3 Signaling in Pancreatic Cancer Cells. Onco Targets Ther 2019; 12:11437-11451. [PMID: 31920333 PMCID: PMC6935307 DOI: 10.2147/ott.s223242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022] Open
Abstract
Background Small molecular inhibitors such as gefitinib (Gefi), which target EGF receptor (EGFR), are considered to be a viable pathway for the selective inhibition of pancreatic cancer (PC) development. However, the large difference in Gefi response between PC patient individuals and PC cell lines severely limits the clinical efficacy of Gefi. Berbamine (BBM) is a well-known natural-derived antitumor agent. However, no study yet exists on whether BBM can enhance the sensitivity of PC cells to Gefi or its underlying mechanisms. Methods MTS assay and clonogenic assay were used to determine whether BBM could enhance the anti-PC activity of Gefi by. Flow cytometric analysis was performed to study the cell cycle progression and rate of apoptosis after combined treatment with BBM and Gefi. Surface plasmon resonance (SPR) and Western blot experiments were carried out to detect the STAT3 binding affinity and the STAT3 inhibitory effect of BBM. Molecular docking and Molecular dynamic simulation were used to predicting the dominant interaction between BBM and STAT3. Results This study found that BBM synergizes with Gefi to inhibit cell growth and induce cell cycle arrest and PC cell apoptosis. Mechanistically, our results showed that BBM and Gefi have synergistic inhibitory effects on STAT3 phosphorylation, but have little effect on other EGFR downstream pathways, suggesting that BBM may exert sensitization through the inhibition of STAT3. Besides, BBM has a high affinity for STAT3 and a good inhibitory effect on STAT3 activation, further indicating that BBM was a potent direct STAT3 inhibitor. Molecular modeling between STAT3 and BBM suggested that BBM formed several key hydrophilic interactions with STAT3. Conclusion Our findings suggest that the combination of BBM and Gefi could be further developed as a potential PC therapy.
Collapse
Affiliation(s)
- Bingren Hu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Huajie Cai
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Shouzhang Yang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Jinfu Tu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Xiaming Huang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Gang Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Wenzhou, Zhejiang 325000, People's Republic of China
| |
Collapse
|
22
|
Orlova A, Wagner C, de Araujo ED, Bajusz D, Neubauer HA, Herling M, Gunning PT, Keserű GM, Moriggl R. Direct Targeting Options for STAT3 and STAT5 in Cancer. Cancers (Basel) 2019; 11:E1930. [PMID: 31817042 PMCID: PMC6966570 DOI: 10.3390/cancers11121930] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Signal transducer and activator of transcription (STAT)3 and STAT5 are important transcription factors that are able to mediate or even drive cancer progression through hyperactivation or gain-of-function mutations. Mutated STAT3 is mainly associated with large granular lymphocytic T-cell leukemia, whereas mutated STAT5B is associated with T-cell prolymphocytic leukemia, T-cell acute lymphoblastic leukemia and γδ T-cell-derived lymphomas. Hyperactive STAT3 and STAT5 are also implicated in various hematopoietic and solid malignancies, such as chronic and acute myeloid leukemia, melanoma or prostate cancer. Classical understanding of STAT functions is linked to their phosphorylated parallel dimer conformation, in which they induce gene transcription. However, the functions of STAT proteins are not limited to their phosphorylated dimerization form. In this review, we discuss the functions and the roles of unphosphorylated STAT3/5 in the context of chromatin remodeling, as well as the impact of STAT5 oligomerization on differential gene expression in hematopoietic neoplasms. The central involvement of STAT3/5 in cancer has made these molecules attractive targets for small-molecule drug development, but currently there are no direct STAT3/5 inhibitors of clinical grade available. We summarize the development of inhibitors against the SH2 domains of STAT3/5 and discuss their applicability as cancer therapeutics.
Collapse
Affiliation(s)
- Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| | - Christina Wagner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| | - Elvin D. de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (E.D.d.A.); (P.T.G.)
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Heidi A. Neubauer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), and Center for Molecular Medicine Cologne (CMMC), Cologne University, 50937 Cologne, Germany;
| | - Patrick T. Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; (E.D.d.A.); (P.T.G.)
- Centre for Medicinal Chemistry, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (D.B.); (G.M.K.)
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria; (A.O.); (C.W.); (H.A.N.)
| |
Collapse
|
23
|
Gelain A, Mori M, Meneghetti F, Villa S. Signal Transducer and Activator of Transcription Protein 3 (STAT3): An Update on its Direct Inhibitors as Promising Anticancer Agents. Curr Med Chem 2019; 26:5165-5206. [PMID: 30027840 DOI: 10.2174/0929867325666180719122729] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/08/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Since Signal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor which plays an important role in multiple aspects of cancer, including progression and migration, and it is constitutively activated in various human tumors, STAT3 inhibition has emerged as a validated strategy for the treatment of several malignancies. The aim of this review is to provide an update on the identification of new promising direct inhibitors targeting STAT3 domains, as potential anticancer agents. METHODS A thorough literature search focused on recently reported STAT3 direct inhibitors was undertaken. We considered the relevant developments regarding the STAT3 domains, which have been identified as potential drug targets. RESULTS In detail, 135 peer-reviewed papers and 7 patents were cited; the inhibitors we took into account targeted the DNA binding domain (compounds were grouped into natural derivatives, small molecules, peptides, aptamers and oligonucleotides), the SH2 binding domain (natural, semi-synthetic and synthetic compounds) and specific residues, like cysteines (natural, semi-synthetic, synthetic compounds and dual inhibitors) and tyrosine 705. CONCLUSION The huge number of direct STAT3 inhibitors recently identified demonstrates a strong interest in the investigation of this target, although it represents a challenging task considering that no drug targeting this enzyme is currently available for anticancer therapy. Notably, many studies on the available inhibitors evidenced that some of them possess a dual mechanism of action.
Collapse
Affiliation(s)
- Arianna Gelain
- Dipartimento di Scienze Farmaceutiche, Universita degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Universita degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche, Universita degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche, Universita degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| |
Collapse
|
24
|
Ding X, Zheng L, Yang B, Wang X, Ying Y. Luteolin Attenuates Atherosclerosis Via Modulating Signal Transducer And Activator Of Transcription 3-Mediated Inflammatory Response. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3899-3911. [PMID: 31819365 PMCID: PMC6874161 DOI: 10.2147/dddt.s207185] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022]
Abstract
Background Inflammatory factors play a crucial role throughout the development and progression of atherosclerosis, which has been considered as a chronic vascular inflammatory disease. Luteolin, a natural flavonoid which exists in many natural medicinal materials, has anti-inflammatory, anti-fibrotic and other pharmacological effects. Recently, the protective effects of luteolin on the cardiovascular disease have been reported. However, there is a paucity of studies on anti-atherosclerosis. Therefore, the anti-atherosclerosis potential of luteolin remains to be elucidated. Method ApoE-/- mice were fed with a high-fat diet to induce atherosclerosis in an animal model, where they were treated with oral administration of luteolin for 12 weeks. Primary mouse peritoneal macrophages challenged with oxidized low-density lipoprotein (oxLDL) were used for in vitro mechanistic study. The effectiveness of luteolin in the ApoE-/- mouse model of atherosclerosis was estimated in the aortic sinus and enface, and the underlying mechanisms were explored by molecular modeling study and siRNA-induced gene silencing. Results Our results showed that luteolin remarkably attenuated atherosclerosis in high-fat diet-induced ApoE-/- mouse via alleviating inflammation. We further found that luteolin decreased oxLDL-induced inflammation by inhibiting signal transducer and activator of transcription 3 (STAT3) in vitro, respectively. Further molecular modeling analysis indicated that luteolin interacted with STAT3 primarily through hydrogen bond interaction. Conclusion Luteolin could be a promising candidate molecule for atherosclerosis, and STAT3 may be a potential therapeutic target that could prevent the development of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoji Ding
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Lulu Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Bo Yang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Xiaodong Wang
- Department of Vascular Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| | - Yin Ying
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang, People's Republic of China
| |
Collapse
|
25
|
Genistein inhibits angiogenesis developed during rheumatoid arthritis through the IL-6/JAK2/STAT3/VEGF signalling pathway. J Orthop Translat 2019; 22:92-100. [PMID: 32440504 PMCID: PMC7231959 DOI: 10.1016/j.jot.2019.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 12/16/2022] Open
Abstract
Background Angiogenesis plays an important role in the development of rheumatoid arthritis (RA), which increases the supply of nutrients, cytokines, and inflammatory cells to the synovial membrane. Genistein (GEN), a soy-derived isoflavone, has been validated that can effectively inhibit the angiogenesis of several tumours. We thus carried out a study in vitro to investigate the effect of GEN in vascular endothelial growth factor (VEGF) expression and angiogenesis induced by the inflammatory environment of RA. Methods MH7A cells were used to verify whether GEN can inhibit the expression of VEGF in MH7A cells under inflammatory conditions and demonstrate the mechanism. EA.hy926 cells were used to verify whether GEN can inhibit the migration and tube formation of vascular endothelial cells in inflammatory environment. Results GEN dose-dependently inhibited the expression and secretion of interleukin (IL)-6 and VEGF, as well as the nucleus translocation of Signal transducer and activator of transcription 3 (STAT3) in MH7A. Furthermore, GEN inhibited IL-6-induced vascular endothelial cell migration and tube formation in vitro. Conclusion GEN inhibits IL-6-induced VEGF expression and angiogenesis partially through the Janus kinase 2 (JAK2)/STAT3 pathway in RA, which has provided a novel insight into the antiangiogenic activity of GEN in RA. The translational potential of this article Our study provides scientific guidance for the clinical translational research of GEN in the RA treatment.
Collapse
|
26
|
Ji XL, He M. Sodium cantharidate targets STAT3 and abrogates EGFR inhibitor resistance in osteosarcoma. Aging (Albany NY) 2019; 11:5848-5863. [PMID: 31422383 PMCID: PMC6710037 DOI: 10.18632/aging.102193] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/10/2019] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor in children and adolescents. Overactive EGFR signaling is frequently seen in osteosarcoma cells, and represents a potential therapeutic target. However, feedback activation of STAT3 after EGFR inhibition is linked to treatment resistance, suggesting that combined EGFR/STAT3 inhibition may be needed to overcome this effect. Cantharidin and its analogues have shown strong anticancer effects, including STAT3 inhibition, in several tumor cells. Therefore, we investigated the effects of sodium cantharidate (SC), either as monotherapy and in combination with the EGFR inhibitor erlotinib, on STAT3 activation and osteosarcoma cell growth. Cell viability, migration, and apoptosis assays were performed in human MG63 and U2OS cells, and MG63 xenografts were generated in nude mice to verify the suppression of tumor growth in vivo. Additionally, western blotting and immunohistochemistry were used to verify the STAT3 and EGFR phosphorylation statuses in xenografts. We found that SC repressed cell viability and migration and induced apoptosis in vitro, while combined SC and erlotinib treatment enhanced osteosarcoma growth suppression by preventing feedback activation of STAT3. These data support further development of cantharidin-based combination therapies for metastatic and recurrent/refractory osteosarcoma.
Collapse
Affiliation(s)
- Xiang Lu Ji
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Ming He
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
27
|
Thomaz A, Pinheiro KDV, Souza BK, Gregianin L, Brunetto AL, Brunetto AT, de Farias CB, Jaeger MDC, Ramaswamy V, Nör C, Taylor MD, Roesler R. Antitumor Activities and Cellular Changes Induced by TrkB Inhibition in Medulloblastoma. Front Pharmacol 2019; 10:698. [PMID: 31297057 PMCID: PMC6606946 DOI: 10.3389/fphar.2019.00698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins are critically involved in regulating normal neural development and plasticity. Brain-derived neurotrophic factor (BDNF), a neurotrophin that acts by binding to the tropomyosin receptor kinase B (TrkB) receptor, has also been implicated in the progression of several types of cancer. However, its role in medulloblastoma (MB), the most common type of malignant brain tumor afflicting children, remains unclear. Here we show that selective TrkB inhibition with the small molecule compound ANA-12 impaired proliferation and viability of human UW228 and D283 MB cells, and slowed the growth of MB tumors xenografted into nude mice. These effects were accompanied by increased apoptosis, reduced extracellular-regulated kinase (ERK) activity, increased expression of signal transducer and activator of transcription 3 (STAT3), and differential modulation of p21 expression dependent on the cell line. In addition, MB cells treated with ANA-12 showed morphological alterations consistent with differentiation, increased levels of the neural differentiation marker β-III Tubulin (TUBB3), and reduced expression of the stemness marker Nestin. These findings are consistent with the possibility that selective TrkB inhibition can display consistent anticancer effects in MB, possibly by modulating intracellular signaling and gene expression related to tumor progression, apoptosis, and differentiation.
Collapse
Affiliation(s)
- Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Kelly de Vargas Pinheiro
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Bárbara Kunzler Souza
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Algemir L Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - André T Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Mariane da Cunha Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Children's Cancer Institute, Porto Alegre, Brazil
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
28
|
Xu L, Qiu S, Yang L, Xu H, Liu X, Fan S, Cui R, Fu W, Zhao C, Shen L, Wang L, Huang X. Aminocyanopyridines as anti‐lung cancer agents by inhibiting the STAT3 pathway. Mol Carcinog 2019; 58:1512-1525. [PMID: 31069881 DOI: 10.1002/mc.23038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Lingyuan Xu
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical UniversityKey Laboratory of Heart and LungWenzhou Zhejiang China
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou Zhejiang China
| | - Sensen Qiu
- College of Chemistry and Chemical EngineeringGuangxi University for NationalitiesNanning China
| | - Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical UniversityKey Laboratory of Heart and LungWenzhou Zhejiang China
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou Zhejiang China
| | - Haitang Xu
- College of Chemistry and Chemical EngineeringGuangxi University for NationalitiesNanning China
| | - Xu Liu
- School of MedicineGuangxi UniversityNanning Guangxi China
| | - Shiqian Fan
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical UniversityKey Laboratory of Heart and LungWenzhou Zhejiang China
| | - Ri Cui
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou Zhejiang China
| | - Weitao Fu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhou Zhejiang China
| | - Chengguang Zhao
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhou Zhejiang China
| | - Liqun Shen
- College of Chemistry and Chemical EngineeringGuangxi University for NationalitiesNanning China
| | - Liangxing Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical UniversityKey Laboratory of Heart and LungWenzhou Zhejiang China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical UniversityKey Laboratory of Heart and LungWenzhou Zhejiang China
| |
Collapse
|
29
|
Ma H, Yan D, Wang Y, Shi W, Liu T, Zhao C, Huo S, Duan J, Tao J, Zhai M, Luo P, Guo J, Tian L, Mageta L, Jou D, Zhang C, Li C, Lin J, Lv J, Li S, Lin L. Bazedoxifene exhibits growth suppressive activity by targeting interleukin-6/glycoprotein 130/signal transducer and activator of transcription 3 signaling in hepatocellular carcinoma. Cancer Sci 2019; 110:950-961. [PMID: 30648776 PMCID: PMC6398888 DOI: 10.1111/cas.13940] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/19/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
The interleukin (IL)‐6/glycoprotein (GP)130/signal transducer and activator of transcription (STAT)3 pathway is emerging as a target for the treatment of hepatocellular carcinoma. IL‐6 binds to IL‐6R, forming a binary complex, which further combines with GP130 to transduce extracellular signaling by activating STAT3. Therefore, blocking the interaction between IL‐6 and GP130 may inhibit the IL‐6/GP130/STAT3 signaling pathway and its biological effects. It has been reported that bazedoxifene acetate (BAZ), a selective estrogen receptor modulator approved by the US Food and Drug Administration, could inhibit IL‐6/GP130 protein‐protein interactions. Western blot, immunofluorescence staining, wound healing and colony formation assays were used to detect the effect of BAZ on liver cancer cells. Cell viability was evaluated by MTT assay. Apoptosis of cells was determined using the Annexin V‐FITC detection kit. Mouse xenograft tumor models were utilized to evaluate the effect of BAZ in vivo. Our data showed that BAZ inhibited STAT3 phosphorylation (P‐STAT3) and expression of STAT3 downstream genes, inducing apoptosis in liver cancer cells. BAZ inhibited P‐STAT3 induced by IL‐6, but not by leukemia inhibitory factor. BAZ inhibited P‐STAT1 and P‐STAT6 less significantly as elicited by interferon‐α, interferon‐γ and IL‐4. In addition, pretreatment of BAZ impeded the translocation of STAT3 to nuclei induced by IL‐6. BAZ inhibited cell viability, wound healing and colony formation in vitro. Furthermore, tumor growth in HEPG2 mouse xenografts were significantly inhibited by daily intragastric gavage of BAZ. Our results suggest that BAZ inhibited the growth of hepatocellular carcinoma in vitro and in vivo, indicating another potential strategy for HCC prevention and therapy.
Collapse
Affiliation(s)
- Haiyan Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Division of Cardiology, Departments of Internal Medicine, First People's Hospital of ShangQiu, Shangqiu, China
| | - Dan Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yina Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Division of Cardiology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianshu Liu
- Division of Cardiology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongqiang Zhao
- Division of Cardiology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Division of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Shengqi Huo
- Division of Cardiology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialin Duan
- Division of Cardiology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwen Tao
- Division of Cardiology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maocai Zhai
- Division of Cardiology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Luo
- Division of Cardiology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Guo
- Division of Cardiology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Tian
- Division of Cardiology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Mageta
- Division of Cardiology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - David Jou
- Center for Childhood Cancer, Department of Pediatrics, The Research Institute at Nationwide Children's Hospital, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Cuntai Zhang
- Departments of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jiagao Lv
- Division of Cardiology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Li
- Division of Cardiology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Division of Cardiology, Departments of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Wang M, Niu W, Hu R, Wang Y, Liu Y, Liu L, Zhong J, Zhang C, You H, Zhang J, Lu L, Wei L, Xiao W. POLR1D promotes colorectal cancer progression and predicts poor prognosis of patients. Mol Carcinog 2019; 58:735-748. [PMID: 30582221 DOI: 10.1002/mc.22966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022]
Abstract
RNA polymerase I subunit D (POLR1D), which is involved in synthesis of ribosomal RNA precursors and small RNAs, has been shown to be overexpressed in several human cancer types. Nevertheless, the role of POLR1D in the progression of colorectal cancer (CRC) remains unknown. The following study aimed to investigate the role and underlying mechanism of POLR1D in CRC progression. In this report, we found that POLR1D was significantly up-regulated in CRC through data mining of oncomine database. Furthermore, the immunohistochemistry (IHC) staining of a tissue microarray (TMA) of 75 human CRC patients showed that the expression level of POLR1D was positively correlated to tumor size and poor survival of CRC patients. Aberrant expression of POLR1D significantly promoted cell proliferation and migration in vitro, as well as tumor growth in vivo. Conversely, POLR1D knockdown displayed the opposite effects. The flow Cytometry assays showed that POLR1D fostered cell cycle progression at G1-S transition and inhibited cell apoptosis. Finally, at the molecular level, we demonstrated that POLR1D-induced the promotion of G1-S cell cycle transition was mediated by activation of wnt-β-catenin signaling and inactivation of p53 signaling. Our results suggested that POLR1D may function as a risk factor for predicting the outcome of CRC patients, as well as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Mingqing Wang
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenbo Niu
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Rong Hu
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanjing Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yangyang Liu
- Zhongshan Huangpu People's Hospital, Zhongshan, Guangdong, China
| | - Lingyu Liu
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Juan Zhong
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Cha Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haiyan You
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiaxing Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lianbo Wei
- Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Wei J, Ma L, Li C, Pierson CR, Finlay JL, Lin J. Targeting Upstream Kinases of STAT3 in Human Medulloblastoma Cells. Curr Cancer Drug Targets 2019; 19:571-582. [PMID: 30332965 PMCID: PMC6533162 DOI: 10.2174/1568009618666181016165604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/21/2018] [Accepted: 09/28/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Medulloblastoma is the most common malignant brain tumor in children. Despite improvement in overall survival rate, it still lacks an effective targeted treatment strategy. The Janus family of cytoplasmic tyrosine kinases (JAKs) and Src kinases, upstream protein kinases of signal transducer and activator of transcription 3 (STAT3), play important roles in medulloblastoma pathogenesis and therefore represent potential therapeutic targets. METHODS In this report, we examined the inhibitory efficacy of the JAK1/2 inhibitor, ruxolitinib, the JAK3 inhibitor, tofacitinib and two Src inhibitors, KX2-391 and dasatinib. RESULTS These small molecule drugs significantly reduce cell viability and inhibit cell migration and colony formation in human medulloblastoma cells in vitro. Src inhibitors have more potent efficacy than JAK inhibitors in inhibiting medulloblastoma cell migration ability. The Src inhibitors can inhibit both phosphorylation of STAT3 and Src while JAK inhibitors reduce JAK/STAT3 phosphorylation. We also investigated the combined effect of the Src inhibitor, dasatinib with cisplatin. The results show that dasatinib exerts synergistic effects with cisplatin in human medulloblastoma cells through the inhibition of STAT3 and Src. CONCLUSION Our results suggest that the small molecule inhibitors of STAT3 upstream kinases, ruxolitinib, tofacitinib, KX2-391, and dasatinib could be novel and attractive candidate drugs for the treatment of human medulloblastoma.
Collapse
Affiliation(s)
- Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Ling Ma
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Chenglong Li
- College of Pharmacy, University of Florida, Gainesville, FL 32610
| | - Christopher R. Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children ‘s Hospital, The Department of Pathology and Department of Biomedical Education & Anatomy, The College of Medicine, The Ohio State University, Columbus,OH 43205, USA
| | - Jonathan L. Finlay
- Division of Hematology, Oncology and BMT, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
32
|
Zhang W, Xing L, Xu L, Jin X, Du Y, Feng X, Liu S, Liu Q. Nudel involvement in the high-glucose-induced epithelial-mesenchymal transition of tubular epithelial cells. Am J Physiol Renal Physiol 2018; 316:F186-F194. [PMID: 30539652 DOI: 10.1152/ajprenal.00218.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nudel is a newly discovered factor related to cell migration. The tubular epithelial-mesenchymal transition (EMT) includes four steps: the loss of the adhesive properties of epithelial cells, the acquisition of a mesenchymal cell phenotype, the destruction of the tubular basal membrane, and the migration into the renal interstitium. The purpose of this study was to investigate the role of Nudel in the high-glucose-induced EMT of tubular epithelial cells. Human renal proximal tubular epithelial cells (HKCs) were treated with Nudel shRNA to clarify the role and mechanism of Nudel in tubular EMT induced by high glucose. We found that Nudel was expressed at a high level in high-glucose-stimulated HKCs, and the expression of Nudel was associated with the activation of signal transducer and activator of transcription 3. After transfection with Nudel shRNA, we detected the expression levels of E-cadherin, α-smooth muscle actin (α-SMA), and the Wiskott-Aldrich syndrome family of proteins (including WASP, N-WASP, WAVE1, WAVE2, and WAVE3) via assay. Cell migration was analyzed by the scratching method. The results showed that high glucose downregulated E-cadherin expression, upregulated α-SMA expression, and promoted the migration of HKCs. The expression levels of N-WASP, WAVE1, and WAVE2 were also elevated in HKCs treated with high glucose. All changes induced by high glucose were ameliorated by Nudel depletion. We conclude that Nudel participates in the transition and the migration of tubular epithelial cells via the regulation of WASP family proteins.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province , Shijiazhuang, Hebei , China
| | - Lingling Xing
- Department of Nephrology, The Second Affiliated Hospital of Hebei Medical University , Shijiazhuang, Hebei , China
| | - Lu Xu
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province , Shijiazhuang, Hebei , China
| | - Xiaoxue Jin
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province , Shijiazhuang, Hebei , China
| | - Yunxia Du
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province , Shijiazhuang, Hebei , China
| | - Xiaojuan Feng
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province , Shijiazhuang, Hebei , China
| | - Shuxia Liu
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province , Shijiazhuang, Hebei , China
| | - Qingjuan Liu
- Department of Pathology, Hebei Medical University, Key Laboratory of Kidney Diseases of Hebei Province , Shijiazhuang, Hebei , China
| |
Collapse
|
33
|
Yamanaka K, Eldeiry M, Aftab M, Ryan TJ, Roda G, Meng X, Weyant MJ, Cleveland JC, Fullerton DA, Reece TB. Pretreatment With Diazoxide Attenuates Spinal Cord Ischemia-Reperfusion Injury Through Signaling Transducer and Activator of Transcription 3 Pathway. Ann Thorac Surg 2018; 107:733-739. [PMID: 30395862 DOI: 10.1016/j.athoracsur.2018.09.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/15/2018] [Accepted: 09/14/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Delayed paraplegia remains a feared complication of thoracoabdominal aortic intervention. Pharmacologic preconditioning with diazoxide (DZ), an adenosine 5'-triphosphate-sensitive potassium channel opener, results in neuroprotection against ischemic insult. However, the effects of DZ in spinal cord ischemia-reperfusion injury have not been fully elucidated. We hypothesized that DZ attenuates spinal cord ischemia-reperfusion injury through the signaling transducer and activator of transcription (STAT) 3 pathway. METHODS Adult male C57/BL6 mice received DZ (20 mg/kg) by oral gavage. Spinal cords were harvested at 0, 12, 24, 36, 48, and 60 hours after administration of DZ. The expression of phosphorylated STAT3 was assessed by Western blot analysis. Five groups were studied: DZ (DZ pretreatment, n = 8), ischemic control (phosphate-buffered saline pretreatment, n = 11), DZ + STAT3 inhibitor LY5 (DZ pretreatment + LY5, n = 8), LY5 (phosphate-buffered saline pretreatment + LY5, n = 8), and sham (without cross-clamping, n = 5). Spinal cord ischemia was induced by 4 minutes of thoracic aortic cross-clamp. Functional scoring (Basso Mouse Score) was done at 12-hour intervals until 48 hours, and spinal cords were harvested for the evaluation of B-cell lymphoma 2 expression and histologic changes. RESULTS The expression of phosphorylated STAT3 was significantly upregulated 36 hours after the administration of DZ. The motor function in the DZ group was significantly preserved compared with all other groups. The expression of B-cell lymphoma 2 in the DZ group was significantly higher than in the ischemic control, DZ + LY5, and LY5 groups 48 hours after reperfusion. CONCLUSIONS DZ preserves motor function in spinal cord ischemia-reperfusion injury by the STAT3 pathway. DZ may be beneficial clinically for use in spinal protection in aortic intervention.
Collapse
Affiliation(s)
- Katsuhiro Yamanaka
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado.
| | - Mohamed Eldeiry
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Muhammad Aftab
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Thomas J Ryan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Gavriel Roda
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Xianzhong Meng
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Michael J Weyant
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Joseph C Cleveland
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - David A Fullerton
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - T Brett Reece
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| |
Collapse
|
34
|
Two decades of research in discovery of anticancer drugs targeting STAT3, how close are we? Pharmacol Ther 2018; 191:74-91. [DOI: 10.1016/j.pharmthera.2018.06.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Sun X, Wang J, Huang M, Chen T, Chen J, Zhang F, Zeng H, Xu Z, Ke Y. STAT3 promotes tumour progression in glioma by inducing FOXP1 transcription. J Cell Mol Med 2018; 22:5629-5638. [PMID: 30134017 PMCID: PMC6201216 DOI: 10.1111/jcmm.13837] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 01/25/2023] Open
Abstract
Objective This paper investigated the effects of STAT3 through promoting FOXP1 transcription on proliferation, apoptosis and invasion in glioma cells. Methods Quantitative real‐time PCR (qRT‐PCR) and Western blot assay were administered to assess the mRNA and protein expression levels of STAT3 and FOXP1 in glioma tissues and cells, respectively. Luciferase reporter and Chromatin Immunoprecipitation (ChIP) assays were implemented to determine the correlation between STAT3 and FOXP1. MTT and colony formation assays were conducted to identify cell growth. Flow cytometry was run to detect the cell apoptosis rate of glioma cells. Transwell assays were conducted to reveal cell invasion ability. Results The mRNA and protein expression levels of STAT3 were highly expressed in glioma tissues and cells. After cells transfected with siRNA of STAT3, both STAT3 and FOXP1 were simultaneously downregulated. STAT3 directly regulated FOXP1 transcription. STAT3 promoted cell proliferation, inhibited cell apoptosis and enhanced cell invasion through promoting FOXP1 transcription in glioma cells. Conclusion In summary, STAT3 gene was a transcriptional regulator of FOXP1. Depleted STAT3 restrained cell proliferation and invasion, promoted cell apoptosis in glioma cells. This molecular mechanism between STAT3 and FOXP1 can serve as a therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Xinlin Sun
- National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jihui Wang
- National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Min Huang
- National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Taoliang Chen
- National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiansheng Chen
- National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fabing Zhang
- National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huijun Zeng
- National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhimin Xu
- Affiliated Bayi Brain Hospital, PLA General Army Hospital, Beijing, China
| | - Yiquan Ke
- National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
36
|
Lopez-Tapia F, Brotherton-Pleiss C, Yue P, Murakami H, Costa Araujo AC, Reis dos Santos B, Ichinotsubo E, Rabkin A, Shah R, Lantz M, Chen S, Tius MA, Turkson J. Linker Variation and Structure-Activity Relationship Analyses of Carboxylic Acid-based Small Molecule STAT3 Inhibitors. ACS Med Chem Lett 2018. [PMID: 29541369 DOI: 10.1021/acsmedchemlett.7b00544] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The molecular determinants for the activities of the reported benzoic acid (SH4-54), salicylic acid (BP-1-102), and benzohydroxamic acid (SH5-07)-based STAT3 inhibitors were investigated to design optimized analogues. All three leads are based on an N-methylglycinamide scaffold, with its two amine groups condensed with three different functionalities. The three functionalities and the CH2 group of the glycinamide scaffold were separately modified. The replacement of the pentafluorobenzene or cyclohexylbenzene, or replacing the benzene ring of the aromatic carboxylic or hydroxamic acid motif with heterocyclic components (containing nitrogen and oxygen elements) all decreased potency. Notably, the Ala-linker analogues, 1a and 2v, and the Pro-based derivative 5d, all with (R)-configuration at the chiral center, had improved inhibitory activity and selectivity against STAT3 DNA-binding activity in vitro, with IC50 of 3.0 ± 0.9, 1.80 ± 0.94, and 2.4 ± 0.2 μM, respectively. Compounds 1a, 2v, 5d, and other analogues inhibited constitutive STAT3 phosphorylation and activation in human breast cancer and melanoma lines, and blocked tumor cell viability, growth, colony formation, and migration in vitro. Pro-based analogue, 5h, with a relatively polar tetrahydropyranyl (THP) ring, instead of the cyclohexyl, showed improved permeability. In general, the (R)-configuration Pro-based analogs showed the overall best profile, including physicochemical properties (e.g., microsomal metabolic stability, Caco-2 permeability), and in particular, 5d showed improved tumor-cell specificity.
Collapse
Affiliation(s)
- Francisco Lopez-Tapia
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, Hawaii 96813, United States
- Department of Chemistry, University of Hawaii, Manoa, Honolulu, Hawaii 96825, United States
| | - Christine Brotherton-Pleiss
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, Hawaii 96813, United States
- Department of Chemistry, University of Hawaii, Manoa, Honolulu, Hawaii 96825, United States
| | - Peibin Yue
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, Hawaii 96813, United States
| | - Heide Murakami
- Department of Chemistry, University of Hawaii, Manoa, Honolulu, Hawaii 96825, United States
| | | | - Bruna Reis dos Santos
- Department of Chemistry, University of Hawaii, Manoa, Honolulu, Hawaii 96825, United States
| | - Erin Ichinotsubo
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, Hawaii 96813, United States
| | - Anna Rabkin
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Jersey 08854, United States
| | - Raj Shah
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Jersey 08854, United States
| | - Megan Lantz
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, Hawaii 96813, United States
| | - Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, New Jersey 08854, United States
| | - Marcus A. Tius
- Department of Chemistry, University of Hawaii, Manoa, Honolulu, Hawaii 96825, United States
| | - James Turkson
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii, Manoa, Honolulu, Hawaii 96813, United States
| |
Collapse
|
37
|
Guerra B, Martín-Rodríguez P, Díaz-Chico JC, McNaughton-Smith G, Jiménez-Alonso S, Hueso-Falcón I, Montero JC, Blanco R, León J, Rodríguez-González G, Estévez-Braun A, Pandiella A, Díaz-Chico BN, Fernández-Pérez L. CM363, a novel naphthoquinone derivative which acts as multikinase modulator and overcomes imatinib resistance in chronic myelogenous leukemia. Oncotarget 2018; 8:29679-29698. [PMID: 27557509 PMCID: PMC5444695 DOI: 10.18632/oncotarget.11425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/28/2016] [Indexed: 12/25/2022] Open
Abstract
Human Chronic Myelogenous Leukemia (CML) is a hematological stem cell disorder which is associated with activation of Bcr-Abl-Stat5 oncogenic pathway. Direct Bcr-Abl inhibitors are initially successful for the treatment of CML but over time many patients develop drug resistance. In the present study, the effects of CM363, a novel naphthoquinone (NPQ) derivative, were evaluated on human CML-derived K562 cells. CM363 revealed an effective cell growth inhibition (IC50 = 0.7 ± 0.5 μM) by inducing cancer cells to undergo cell cycle arrest and apoptosis. CM363 caused a dose- and time-dependent reduction of cells in G0/G1 and G2/M phases. This cell cycle arrest was associated with increased levels of cyclin E, pChk1 and pChk2 whereas CM363 downregulated cyclin B, cyclin D3, p27, pRB, Wee1, and BUBR1. CM363 increased the double-strand DNA break marker γH2AX. CM363 caused a time-dependent increase of annexin V-positive cells, DNA fragmentation and increased number of apoptotic nuclei. CM363 triggered the mitochondrial apoptotic pathway as reflected by a release of cytochrome C from mitochondria and induction of the cleavage of caspase-3 and -9, and PARP. CM363 showed multikinase modulatory effects through an early increased JNK phosphorylation followed by inhibition of pY-Bcrl-Abl and pY-Stat5. CM363 worked synergistically with imatinib to inhibit cell viability and maintained its activity in imatinib-resistant cells. Finally, CM363 (10 mg/Kg) suppressed the growth of K562 xenograft tumors in athymic mice. In summary, CM363 is a novel multikinase modulator that offers advantages to circumvent imanitib resistance and might be therapeutically effective in Bcrl-Abl-Stat5 related malignancies.
Collapse
Affiliation(s)
- Borja Guerra
- Instituto de Investigaciones Biomédicas y Sanitarias (IUIBS)-BioPharm Laboratory-Universidad de Las Palmas de Gran Canaria, Epaña.,Unidad de Apoyo a la Docencia en Enfermería-Fuerteventura, Universidad de Las Palmas de Gran Canaria, España.,Instituto Canario de Investigación sobre el Cáncer (ICIC), España
| | - Patricia Martín-Rodríguez
- Instituto de Investigaciones Biomédicas y Sanitarias (IUIBS)-BioPharm Laboratory-Universidad de Las Palmas de Gran Canaria, Epaña
| | - Juan Carlos Díaz-Chico
- Instituto de Investigaciones Biomédicas y Sanitarias (IUIBS)-BioPharm Laboratory-Universidad de Las Palmas de Gran Canaria, Epaña.,Instituto Canario de Investigación sobre el Cáncer (ICIC), España
| | | | - Sandra Jiménez-Alonso
- Instituto Canario de Investigación sobre el Cáncer (ICIC), España.,Departamento de Química Orgánica, Instituto de Bio-Orgánica Antonio González (CIBICAN), Universidad de la Laguna, España
| | | | | | - Rosa Blanco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), España
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), España
| | | | - Ana Estévez-Braun
- Instituto Canario de Investigación sobre el Cáncer (ICIC), España.,Departamento de Química Orgánica, Instituto de Bio-Orgánica Antonio González (CIBICAN), Universidad de la Laguna, España
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, España
| | - Bonifacio Nicolás Díaz-Chico
- Instituto de Investigaciones Biomédicas y Sanitarias (IUIBS)-BioPharm Laboratory-Universidad de Las Palmas de Gran Canaria, Epaña.,Instituto Canario de Investigación sobre el Cáncer (ICIC), España.,Centro Atlántico del Medicamento (CEAMED), España
| | - Leandro Fernández-Pérez
- Instituto de Investigaciones Biomédicas y Sanitarias (IUIBS)-BioPharm Laboratory-Universidad de Las Palmas de Gran Canaria, Epaña.,Instituto Canario de Investigación sobre el Cáncer (ICIC), España
| |
Collapse
|
38
|
Ray S, Coulter DW, Gray SD, Sughroue JA, Roychoudhury S, McIntyre EM, Chaturvedi NK, Bhakat KK, Joshi SS, McGuire TR, Sharp JG. Suppression of STAT3 NH 2 -terminal domain chemosensitizes medulloblastoma cells by activation of protein inhibitor of activated STAT3 via de-repression by microRNA-21. Mol Carcinog 2018; 57:536-548. [PMID: 29280516 DOI: 10.1002/mc.22778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is a malignant pediatric brain tumor with poor prognosis. Signal transducers and activators of transcription-3 (STAT3) is constitutively activated in MB where it functions as an oncoprotein, mediating cancer progression and metastasis. Here, we have delineated the functional role of activated STAT3 in MB, by using a cell permeable STAT3-NH2 terminal domain inhibitor (S3-NTDi) that specifically perturbs the structure/function of STAT3. We have implemented several biochemical experiments using human MB tumor microarray (TMA) and pediatric MB cell lines, derived from high-risk SHH-TP53-mutated and MYC-amplified Non-WNT/SHH tumors. Treatment of MB cells with S3-NTDi leads to growth inhibition, cell cycle arrest, and apoptosis. S3-NTDi downregulated expression of STAT3 target genes, delayed migration of MB cells, attenuated epithelial-mesenchymal transition (EMT) marker expressions and reduced cancer stem-cell associated protein expressions in MB-spheres. To elucidate mechanisms, we showed that S3-NTDi induce expression of pro-apoptotic gene, C/EBP-homologous protein (CHOP), and decrease association of STAT3 to the proximal promoter of CCND1 and BCL2. Of note, S3-NTDi downregulated microRNA-21, which in turn, de-repressed Protein Inhibitor of Activated STAT3 (PIAS3), a negative regulator of STAT3 signaling pathway. Furthermore, combination therapy with S3-NTDi and cisplatin significantly decreased highly aggressive MYC-amplified MB cell growth and induced apoptosis by downregulating STAT3 regulated proliferation and anti-apoptotic gene expression. Together, our results revealed an important role of STAT3 in regulating MB pathogenesis. Disruption of this pathway with S3-NTDi, therefore, may serves as a promising candidate for targeted MB therapy by enhancing chemosensitivity of MB cells and potentially improving outcomes in high-risk patients.
Collapse
Affiliation(s)
- Sutapa Ray
- Department of Pediatrics, Hematology and Oncology Division, University of Nebraska Medical Center, Omaha, Nebraska
| | - Don W Coulter
- Department of Pediatrics, Hematology and Oncology Division, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shawn D Gray
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jason A Sughroue
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shrabasti Roychoudhury
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Erin M McIntyre
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Hematology and Oncology Division, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kishor K Bhakat
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shantaram S Joshi
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Timothy R McGuire
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - John G Sharp
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
39
|
Qiu HY, Fu JY, Yang MK, Han HW, Wang PF, Zhang YH, Lin HY, Tang CY, Qi JL, Yang RW, Wang XM, Zhu HL, Yang YH. Identification of new shikonin derivatives as STAT3 inhibitors. Biochem Pharmacol 2017; 146:74-86. [DOI: 10.1016/j.bcp.2017.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/19/2017] [Indexed: 01/10/2023]
|
40
|
Qiu HY, Wang PF, Lin HY, Tang CY, Zhu HL, Yang YH. Naphthoquinones: A continuing source for discovery of therapeutic antineoplastic agents. Chem Biol Drug Des 2017; 91:681-690. [PMID: 29130595 DOI: 10.1111/cbdd.13141] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/10/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
Abstract
Naturally occurring naphthoquinones, usually in forms of botanical extracts, have been implicated with human life since ancient time, far earlier than their isolation and identification in modern era. The long use history of naphthoquinones has witnessed their functional shift from the original purposes as dyes and ornaments toward medicinal benefits. Hitherto, numerous studies have been carried out to elucidate the pharmacological profile of both natural and artificial naphthoquinones. A number of entities have been identified with promising therapeutic potential. Apart from the traditional effects of wound healing, anti-inflammatory, hemostatic, antifertility, insecticidal and antimicrobial, etc., the anticancer potential of naphthoquinones either in combination with other treatment approaches or on their own is being more and more realized. The molecular mechanisms of naphthoquinones in cells mainly fall into two categories as inducing oxidant stress by ROS (reactive oxygen species) generation and directly interacting with traditional therapeutic targets in a non-oxidant mechanism. Based on this knowledge, optimized agents with naphthoquinones scaffold have been acquired and further tested. Hereby, we summarize the explored biological mechanisms of naphthoquinones in cells and review the application perspective of promising naphthoquinones in cancer therapies.
Collapse
Affiliation(s)
- Han-Yue Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Peng-Fei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Yan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Cheng-Yi Tang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
41
|
Yu PY, Gardner HL, Roberts R, Cam H, Hariharan S, Ren L, LeBlanc AK, Xiao H, Lin J, Guttridge DC, Mo X, Bennett CE, Coss CC, Ling Y, Phelps MA, Houghton P, London CA. Target specificity, in vivo pharmacokinetics, and efficacy of the putative STAT3 inhibitor LY5 in osteosarcoma, Ewing's sarcoma, and rhabdomyosarcoma. PLoS One 2017; 12:e0181885. [PMID: 28750090 PMCID: PMC5531494 DOI: 10.1371/journal.pone.0181885] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
Background STAT3 is a transcription factor involved in cytokine and receptor kinase signal transduction that is aberrantly activated in a variety of sarcomas, promoting metastasis and chemotherapy resistance. The purpose of this work was to develop and test a novel putative STAT3 inhibitor, LY5. Methods and findings An in silico fragment-based drug design strategy was used to create LY5, a small molecule inhibitor that blocks the STAT3 SH2 domain phosphotyrosine binding site, inhibiting homodimerization. LY5 was evaluated in vitro demonstrating good biologic activity against rhabdomyosarcoma, osteosarcoma and Ewing’s sarcoma cell lines at high nanomolar/low micromolar concentrations, as well as specific inhibition of STAT3 phosphorylation without effects on other STAT3 family members. LY5 exhibited excellent oral bioavailability in both mice and healthy dogs, and drug absorption was enhanced in the fasted state with tolerable dosing in mice at 40 mg/kg BID. However, RNAi-mediated knockdown of STAT3 did not phenocopy the biologic effects of LY5 in sarcoma cell lines. Moreover, concentrations needed to inhibit ex vivo metastasis growth using the PuMA assay were significantly higher than those needed to inhibit STAT3 phosphorylation in vitro. Lastly, LY5 treatment did not inhibit the growth of sarcoma xenografts or prevent pulmonary metastasis in mice. Conclusions LY5 is a novel small molecule inhibitor that effectively inhibits STAT3 phosphorylation and cell proliferation at nanomolar concentrations. LY5 demonstrates good oral bioavailability in mice and dogs. However LY5 did not decrease tumor growth in xenograft mouse models and STAT3 knockdown did not induce concordant biologic effects. These data suggest that the anti-cancer effects of LY5 identified in vitro were not mediated through STAT3 inhibition.
Collapse
Affiliation(s)
- Peter Y. Yu
- Medical Student Research Program, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Heather L. Gardner
- Department of Veterinary Biosciences and Clinical Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Ryan Roberts
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Hakan Cam
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Seethalakshmi Hariharan
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Ling Ren
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amy K. LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hui Xiao
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jiayuh Lin
- Center for Childhood Cancer, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Denis C. Guttridge
- Arthur G. James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Chad E. Bennett
- Medicinal Chemistry Shared Resource, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Christopher C. Coss
- Pharmacoanalytic Shared Resource, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Yonghua Ling
- Pharmacoanalytic Shared Resource, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Mitch A. Phelps
- Pharmacoanalytic Shared Resource, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Peter Houghton
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Cheryl A. London
- Department of Veterinary Biosciences and Clinical Sciences, The Ohio State University, Columbus, Ohio, United States of America
- Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
42
|
Qiu HY, Zhu X, Luo YL, Lin HY, Tang CY, Qi JL, Pang YJ, Yang RW, Lu GH, Wang XM, Yang YH. Identification of New Shikonin Derivatives as Antitumor Agents Targeting STAT3 SH2 Domain. Sci Rep 2017; 7:2863. [PMID: 28588262 PMCID: PMC5460289 DOI: 10.1038/s41598-017-02671-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is hyper-activated in diversiform human tumors and has been validated as an attractive therapeutic target. Current research showed that a natural product, shikonin, along with its synthetic analogues, is able to inhibit the activity of STAT3 potently. The potential space of shikonin in developing novel anti-cancer agents encouraged us to carry out the investigation of the probable binding mode with STAT3. From this foundation, we have designed new types of STAT3 SH2 inhibitors. Combined simulations were performed to filter for the lead compound, which was then substituted, synthesized and evaluated by a variety of bioassays. Among the entities, PMM-172 exhibited the best anti-proliferative activity against MDA-MB-231 cells with IC50 value 1.98 ± 0.49 μM. Besides, it was identified to decrease luciferase activity, induce cell apoptosis and reduce mitochondrial transmembrane potential in MDA-MB-231 cells. Also, PMM-172 inhibited constitutive/inducible STAT3 activation without affecting STAT1 and STAT5 in MDA-MB-231 cells, and had no effect in non-tumorigenic MCF-10A cells. Moreover, PMM-172 suppressed STAT3 nuclear localization and STAT3 downstream target genes expression. Overall, these results indicate that the antitumor activity of PMM-172 is at least partially due to inhibition of STAT3 in breast cancer cells.
Collapse
Affiliation(s)
- Han-Yue Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, 210023, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, 210023, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yue-Lin Luo
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, 210023, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Hong-Yan Lin
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, 210023, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Cheng-Yi Tang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, 210023, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, 210023, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan-Jun Pang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, 210023, China
| | - Rong-Wu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, 210023, China
| | - Gui-Hua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, 210023, China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiao-Ming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, 210023, China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU-NJFU Joint Institute of Plant Molecular Biology, Nanjing University, Nanjing, 210023, China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
43
|
Tian J, Xiao H, Wu R, Cao Y, Li C, Xu R, Pierson CR, Finlay JL, Yang F, Gu N, Lin J. The Antiproliferative and Colony-suppressive Activities of STAT3 Inhibitors in Human Cancer Cells Is Compromised Under Hypoxic Conditions. Anticancer Res 2017; 37:547-553. [PMID: 28179300 DOI: 10.21873/anticanres.11347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022]
Abstract
Constitutive activation of signal transducer and activator of transcription 3 (STAT3) has been indicated as a novel cancer drug target, since it plays an important role in diverse oncogenic processes including survival, cell proliferation and migration. Emerging STAT3 inhibitors have demonstrated efficacy in cancer cells and animal tumor models. It is well known that most solid tumors are characterized by hypoxia, but it is not clear if hypoxic conditions affect activity of STAT3 inhibitors. To examine this, two STAT3 inhibitors were tested to investigate their inhibitory efficacy in cancer cells grown under hypoxic conditions compared with those without hypoxia. Cell proliferation, colony formation and western blot assays were performed to examine the differences in the cell viability, proliferation and proteins in the STAT3 pathway. Under hypoxic conditions, the half-maximal inhibitory concentration values for both STAT3 inhibitors were increased compared to normoxic conditions in human pancreatic cancer, medulloblastoma and sarcoma cell lines. In addition, the ability of both STAT3 inhibitors to inhibit colony formation in pancreatic cancer, medulloblastoma and sarcoma cell lines was reduced under hypoxic conditions when compared to cells under normoxic conditions. Furthermore, there was an increase in phosphorylated STAT3 levels in cancer cells under hypoxic conditions, suggesting this may be one of the mechanisms of resistance. In summary, the results presented here provide a novel finding of STAT3 inhibitor activity under hypoxic conditions and indicate that under such low oxygen conditions, the anticancer efficacy of STAT3 inhibitors was indeed hampered. These results highlight the need to develop new therapeutic strategies to overcome the resistance of cancer cells to STAT3 inhibitors under hypoxic conditions.
Collapse
Affiliation(s)
- Jilai Tian
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, P.R. China.,Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies, Suzhou, Jiangsu, P.R. China.,Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, U.S.A
| | - Hui Xiao
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Ruohan Wu
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Yang Cao
- Department of Hematology & Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Chenglong Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, U.S.A
| | - Ronald Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, P.R. China.,Department of Biomedical Engineering, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, U.S.A
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, and Departments of Pathology and Biomedical Education & Anatomy, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Jonathan L Finlay
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, U.S.A.,Hematology and Oncology, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, U.S.A
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, P.R. China.,Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies, Suzhou, Jiangsu, P.R. China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, P.R. China.,Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies, Suzhou, Jiangsu, P.R. China
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, U.S.A.
| |
Collapse
|
44
|
Li C, Li H, Zhang P, Yu LJ, Huang TM, Song X, Kong QY, Dong JL, Li PN, Liu J. SHP2, SOCS3 and PIAS3 Expression Patterns in Medulloblastomas: Relevance to STAT3 Activation and Resveratrol-Suppressed STAT3 Signaling. Nutrients 2016; 9:nu9010003. [PMID: 28035977 PMCID: PMC5295047 DOI: 10.3390/nu9010003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Activated STAT3 signaling is critical for human medulloblastoma cells. SHP2, SOCS3 and PIAS3 are known as the negative regulators of STAT3 signaling, while their relevance to frequent STAT3 activation in medulloblastomas remains unknown. METHODS Tissue microarrays were constructed with 17 tumor-surrounding noncancerous brain tissues and 61 cases of the classic medulloblastomas, 44 the large-cell medulloblastomas, and 15 nodular medulloblastomas, which were used for immunohistochemical profiling of STAT3, SHP2, SOCS3 and PIAS3 expression patterns and the frequencies of STAT3 nuclear translocation. Three human medulloblastoma cell lines (Daoy, UW228-2 and UW228-3) were cultured with and without 100 μM resveratrol supplementation. The influences of resveratrol in SHP2, SOCS3 and PIAS3 expression and SOCS3 knockdown in STAT3 activation were analyzed using multiple experimental approaches. RESULTS SHP2, SOCS3 and PIAS3 levels are reduced in medulloblastomas in vivo and in vitro, of which PIAS3 downregulation is more reversely correlated with STAT3 activation. In resveratrol-suppressed medulloblastoma cells with STAT3 downregulation and decreased incidence of STAT3 nuclear translocation, PIAS3 is upregulated, the SHP2 level remains unchanged and SOCS3 is downregulated. SOCS3 proteins are accumulated in the distal ends of axon-like processes of resveratrol-differentiated medulloblastoma cells. Knockdown of SOCS3 expression by siRNA neither influences cell proliferation nor STAT3 activation or resveratrol sensitivity but inhibits resveratrol-induced axon-like process formation. CONCLUSION Our results suggest that (1) the overall reduction of SHP2, SOCS3 and PIAS3 in medulloblastoma tissues and cell lines; (2) the more inverse relevance of PIAS3 expression with STAT3 activation; (3) the favorable prognostic values of PIAS3 for medulloblastomas and (4) the involvement of SOCS3 in resveratrol-promoted axon regeneration of medulloblastoma cells.
Collapse
Affiliation(s)
- Cong Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian 116044, China.
| | - Hong Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian 116044, China.
| | - Peng Zhang
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian 116044, China.
| | - Li-Jun Yu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian 116044, China.
| | - Tian-Miao Huang
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian 116044, China.
| | - Xue Song
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian 116044, China.
| | - Qing-You Kong
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian 116044, China.
| | - Jian-Li Dong
- Department of Orthopedic Surgery, Second Hospital of Dalian Medical University, Dalian 116011, China.
| | - Pei-Nan Li
- Department of Orthopedic Surgery, Second Hospital of Dalian Medical University, Dalian 116011, China.
| | - Jia Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
45
|
Garg N, Bakhshinyan D, Venugopal C, Mahendram S, Rosa DA, Vijayakumar T, Manoranjan B, Hallett R, McFarlane N, Delaney KH, Kwiecien JM, Arpin CC, Lai PS, Gómez-Biagi RF, Ali AM, de Araujo ED, Ajani OA, Hassell JA, Gunning PT, Singh SK. CD133 + brain tumor-initiating cells are dependent on STAT3 signaling to drive medulloblastoma recurrence. Oncogene 2016; 36:606-617. [PMID: 27775079 PMCID: PMC5541269 DOI: 10.1038/onc.2016.235] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 04/27/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB), the most common malignant paediatric brain tumor, is currently treated using a combination of surgery, craniospinal radiotherapy and chemotherapy. Owing to MB stem cells (MBSCs), a subset of MB patients remains untreatable despite standard therapy. CD133 is used to identify MBSCs although its functional role in tumorigenesis has yet to be determined. In this work, we showed enrichment of CD133 in Group 3 MB is associated with increased rate of metastasis and poor clinical outcome. The signal transducers and activators of transcription-3 (STAT3) pathway are selectively activated in CD133+ MBSCs and promote tumorigenesis through regulation of c-MYC, a key genetic driver of Group 3 MB. We screened compound libraries for STAT3 inhibitors and treatment with the selected STAT3 inhibitors resulted in tumor size reduction in vivo. We propose that inhibition of STAT3 signaling in MBSCs may represent a potential therapeutic strategy to treat patients with recurrent MB.
Collapse
Affiliation(s)
- N Garg
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - D Bakhshinyan
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - C Venugopal
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - S Mahendram
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - D A Rosa
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - T Vijayakumar
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - B Manoranjan
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - R Hallett
- McMaster Centre for Functional Genomics, McMaster University, Hamilton, Ontario, Canada
| | - N McFarlane
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - K H Delaney
- Departement of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - J M Kwiecien
- Departement of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - C C Arpin
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - P-S Lai
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - R F Gómez-Biagi
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - A M Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - E D de Araujo
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - O A Ajani
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - J A Hassell
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,McMaster Centre for Functional Genomics, McMaster University, Hamilton, Ontario, Canada.,Departments of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - P T Gunning
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - S K Singh
- McMaster Stem Cell and Cancer Research Institute, Hamilton, Ontario, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.,Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
46
|
Bharadwaj U, Kasembeli MM, Tweardy DJ. STAT3 Inhibitors in Cancer: A Comprehensive Update. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-42949-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Zhao C, Xiao H, Wu X, Li C, Liang G, Yang S, Lin J. Rational combination of MEK inhibitor and the STAT3 pathway modulator for the therapy in K-Ras mutated pancreatic and colon cancer cells. Oncotarget 2016; 6:14472-87. [PMID: 25961376 PMCID: PMC4546480 DOI: 10.18632/oncotarget.3991] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
Abstract
K-Ras mutations are frequently detected in pancreatic and colon cancers, which are associated with the resistance to MEK inhibitors targeting the Ras pathway. Identifying the underlying mechanisms for the acquired resistance is essential for the future clinical development of MEK inhibitors. Here, we identified that Signal Transducer and Activator of Transcription 3 (STAT3) was significantly activated following the MEK inhibition using AZD6244, PD98059 and Trametinib in K-Ras mutant pancreatic and colon cancer cells. The STAT3 activation may be important for the MEK inhibitor resistance in these K-Ras mutant cancer cells. We have shown that dual inhibition of STAT3 and MEK using the STAT3 inhibitor LY5 and MEK inhibitor Trametinib exerts significant anti-tumor cell efficacy in K-Ras mutant pancreatic and colon cancer cells in vitro. In addition, Trametinib showed increased suppression on tumor growth in vivo in STAT3 knockdown pancreatic cancer cells compared with tumor growth of control cells without STAT3 knockdown. Taken together, our results suggest the induced STAT3 activation as a possible mechanism for the resistance to MEK inhibitor and demonstrate the potentials of a combination therapy using MEK and STAT3 inhibitors in pancreatic and colon cancers harboring K-Ras mutant proteins.
Collapse
Affiliation(s)
- Chengguang Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, People's Republic of China.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, People's Republic of China
| | - Hui Xiao
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Xiaojuan Wu
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Chenglong Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang, People's Republic of China
| | - Shulin Yang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, People's Republic of China
| | - Jiayuh Lin
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
48
|
Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer 2016; 16:245. [PMID: 27012679 PMCID: PMC4806492 DOI: 10.1186/s12885-016-2265-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 03/10/2016] [Indexed: 12/28/2022] Open
Abstract
Background Eliminating cancer stem cells (CSCs) has been suggested for prevention of tumor recurrence and metastasis. Honokiol, an active compound of Magnolia officinalis, had been proposed to be a potential candidate drug for cancer treatment. We explored its effects on the elimination of oral CSCs both in vitro and in vivo. Methods By using the Hoechst side population (SP) technique, CSCs-like SP cells were isolated from human oral squamous cell carcinoma (OSCC) cell lines, SAS and OECM-1. Effects of honokiol on the apoptosis and signaling pathways of SP-derived spheres were examined by Annexin V/Propidium iodide staining and Western blotting, respectively. The in vivo effectiveness was examined by xenograft mouse model and immunohistochemical tissue staining. Results The SP cells possessed higher stemness marker expression (ABCG2, Ep-CAM, Oct-4 and Nestin), clonogenicity, sphere formation capacity as well as tumorigenicity when compared to the parental cells. Treatment of these SP-derived spheres with honokiol resulted in apoptosis induction via Bax/Bcl-2 and caspase-3-dependent pathway. This apoptosis induction was associated with marked suppression of JAK2/STAT3, Akt and Erk signaling pathways in honokiol-treated SAS spheres. Consistent with its effect on JAK2/STAT3 suppression, honokiol also markedly inhibited IL-6-mediated migration of SAS cells. Accordingly, honokiol dose-dependently inhibited the growth of SAS SP xenograft and markedly reduced the immunohistochemical staining of PCNA and endothelial marker CD31 in the xenograft tumor. Conclusions Honokiol suppressed the sphere formation and xenograft growth of oral CSC-like cells in association with apoptosis induction and inhibition of survival/proliferation signaling pathways as well as angiogenesis. These results suggest its potential as an integrative medicine for combating oral cancer through targeting on CSCs. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2265-6) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Ho WS, Feldman MJ, Maric D, Amable L, Hall MD, Feldman GM, Ray-Chaudhury A, Lizak MJ, Vera JC, Robison RA, Zhuang Z, Heiss JD. PP2A inhibition with LB100 enhances cisplatin cytotoxicity and overcomes cisplatin resistance in medulloblastoma cells. Oncotarget 2016; 7:12447-63. [PMID: 26799670 PMCID: PMC4914297 DOI: 10.18632/oncotarget.6970] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/01/2016] [Indexed: 02/04/2023] Open
Abstract
The protein phosphatase 2A (PP2A) inhibitor, LB100, has been shown in pre-clinical studies to be an effective chemo- and radio-sensitizer for treatment of various cancers. We investigated effects associated with LB100 treatment alone and in combination with cisplatin for medulloblastoma (MB) in vitro and in vivo in an intracranial xenograft model. We demonstrated that LB100 had a potent effect on MB cells. By itself, LB100 inhibited proliferation and induced significant apoptosis in a range of pediatric MB cell lines. It also attenuated MB cell migration, a pre-requirement for invasion. When used in combination, LB100 enhanced cisplatin-mediated cytotoxic effects. Cell viability in the presence of 1 uM cisplatin alone was 61% (DAOY), 100% (D341), and 58% (D283), but decreased with the addition of 2 μM of LB100 to 26% (DAOY), 67% (D341), and 27% (D283), (p < 0.005). LB100 suppressed phosphorylation of the STAT3 protein and several STAT3 downstream targets. Also, LB100 directly increased cisplatin uptake and overcame cisplatin-resistance in vitro. Finally, LB100 exhibited potent in vivo anti-neoplastic activity in combination with cisplatin in an intracranial xenograft model.
Collapse
Affiliation(s)
- Winson S. Ho
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Michael J. Feldman
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Dragan Maric
- NINDS Flow Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Lauren Amable
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD 20892
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Gerald M. Feldman
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Abhik Ray-Chaudhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Martin J. Lizak
- In Vivo NMR Center, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD 20892
| | | | - R. Aaron Robison
- Division of Neurosurgery, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - John D. Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
50
|
Yuan J, Zhang F, Niu R. Multiple regulation pathways and pivotal biological functions of STAT3 in cancer. Sci Rep 2015; 5:17663. [PMID: 26631279 PMCID: PMC4668392 DOI: 10.1038/srep17663] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/03/2015] [Indexed: 02/07/2023] Open
Abstract
STAT3 is both a transcription activator and an oncogene that is tightly regulated under normal physiological conditions. However, abundant evidence indicates that STAT3 is persistently activated in several cancers, with a crucial position in tumor onset and progression. In addition to its traditional role in cancer cell proliferation, invasion, and migration, STAT3 also promotes cancer through altering gene expression via epigenetic modification, inducing epithelial–mesenchymal transition (EMT) phenotypes in cancer cells, regulating the tumor microenvironment, and promoting cancer stem cells (CSCs) self-renewal and differentiation. STAT3 is regulated not only by the canonical cytokines and growth factors, but also by the G-protein-coupled receptors, cadherin engagement, Toll-like receptors (TLRs), and microRNA (miRNA). Despite the presence of diverse regulators and pivotal biological functions in cancer, no effective therapeutic inventions are available for inhibiting STAT3 and acquiring potent antitumor effects in the clinic. An improved understanding of the complex roles of STAT3 in cancer is required to achieve optimal therapeutic effects.
Collapse
Affiliation(s)
- Jie Yuan
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, People's Republic of China
| | - Fei Zhang
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, People's Republic of China
| | - Ruifang Niu
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, People's Republic of China
| |
Collapse
|