1
|
Sun J, Morishima K, Inoue R, Sugiyama M, Takata T. Characterization of βB2-crystallin tryptophan mutants reveals two different folding states in solution. Protein Sci 2024; 33:e5092. [PMID: 38924206 PMCID: PMC11201810 DOI: 10.1002/pro.5092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Conserved tryptophan residues are critical for the structure and the stability of β/γ-crystallin in the lenses of vertebrates. During aging, in which the lenses are continuously exposed to ultraviolet irradiation and other environmental stresses, oxidation of tryptophan residues in β/γ-crystallin is triggered and impacts the lens proteins to varying degrees. Kynurenine derivatives, formed by oxidation of tryptophan, accumulate, resulting in destabilization and insolubilization of β/γ-crystallin, which correlates with age-related cataract formation. To understand the contribution of tryptophan modification on the structure and stability of human βB2-crystallin, five tryptophan residues were mutated to phenylalanine considering its similarity in structure and hydrophilicity to kynurenine. Among all mutants, W59F and W151F altered the stability and homo-oligomerization of βB2-crystallin-W59F promoted tetramerization whereas W151F blocked oligomerization. Most W59F dimers transformed into tetramer in a month, and the separated dimer and tetramer of W59F demonstrated different structures and hydrophobicity, implying that the biochemical properties of βB2-crystallin vary over time. By using SAXS, we found that the dimer of βB2-crystallin in solution resembled the lattice βB1-crystallin dimer (face-en-face), whereas the tetramer of βB2-crystallin in solution resembled its lattice tetramer (domain-swapped). Our results suggest that homo-oligomerization of βB2-crystallin includes potential inter-subunit reactions, such as dissociation, unfolding, and re-formation of the dimers into a tetramer in solution. The W>F mutants are useful in studying different folding states of βB2-crystallin in lens.
Collapse
Affiliation(s)
- Jiayue Sun
- Department of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear ScienceKyoto UniversityOsakaJapan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear ScienceKyoto UniversityOsakaJapan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear ScienceKyoto UniversityOsakaJapan
| | - Takumi Takata
- Institute for Integrated Radiation and Nuclear ScienceKyoto UniversityOsakaJapan
| |
Collapse
|
2
|
Sharma S, Deep S. Inhibition of fibril formation by polyphenols: molecular mechanisms, challenges, and prospective solutions. Chem Commun (Camb) 2024; 60:6717-6727. [PMID: 38835221 DOI: 10.1039/d4cc00822g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Fibril formation is a key feature in neurodegenerative diseases like Alzheimer's, Parkinson's, and systemic amyloidosis. Polyphenols, found in plant-based foods, show promise in inhibiting fibril formation and disrupting disease progression. The ability of polyphenols to break the amyloid fibrils of many disease-linked proteins has been tested in numerous studies. Polyphenols have their distinctive mechanism of action. They behave differently on various events in the aggregation pathway. Their action also differs for different proteins. Some polyphenols only inhibit the formation of fibrils whereas others break the preformed fibrils. Some break the fibrils into smaller species, and some change them to other morphologies. This article delves into the intricate molecular mechanisms underlying the inhibitory effects of polyphenols on fibrillogenesis, shedding light on their interactions with amyloidogenic proteins and the disruption of fibril assembly pathways. However, addressing the challenges associated with solubility, stability, and bioavailability of polyphenols is crucial. The current strategies involve nanotechnology to improve the solubility and bioavailability, thus showing the potential to enhance the efficacy of polyphenols as therapeutics. Advancements in structural biology, computational modeling, and biophysics have provided insights into polyphenol-fibril interactions, offering hope for novel therapies for neurodegenerative diseases and amyloidosis.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, Wisconsin, USA
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
3
|
Kacirani A, Uralcan B, Domingues TS, Haji-Akbari A. Effect of Pressure on the Conformational Landscape of Human γD-Crystallin from Replica Exchange Molecular Dynamics Simulations. J Phys Chem B 2024; 128:4931-4942. [PMID: 38685567 DOI: 10.1021/acs.jpcb.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Human γD-crystallin belongs to a crucial family of proteins known as crystallins located in the fiber cells of the human lens. Since crystallins do not undergo any turnover after birth, they need to possess remarkable thermodynamic stability. However, their sporadic misfolding and aggregation, triggered by environmental perturbations or genetic mutations, constitute the molecular basis of cataracts, which is the primary cause of blindness in the globe according to the World Health Organization. Here, we investigate the impact of high pressure on the conformational landscape of wild-type HγD-crystallin using replica exchange molecular dynamics simulations augmented with principal component analysis. We find pressure to have a modest impact on global measures of protein stability, such as root-mean-square displacement and radius of gyration. Upon projecting our trajectories along the first two principal components from principal component analysis, however, we observe the emergence of distinct free energy basins at high pressures. By screening local order parameters previously shown or hypothesized as markers of HγD-crystallin stability, we establish correlations between a tyrosine-tyrosine aromatic contact within the N-terminal domain and the protein's end-to-end distance with projections along the first and second principal components, respectively. Furthermore, we observe the simultaneous contraction of the hydrophobic core and its intrusion by water molecules. This exploration sheds light on the intricate responses of HγD-crystallin to elevated pressures, offering insights into potential mechanisms underlying its stability and susceptibility to environmental perturbations, crucial for understanding cataract formation.
Collapse
Affiliation(s)
- Arlind Kacirani
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, United States
| | - Betül Uralcan
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemical Engineering, Boğaziçi University, Istanbul 34342, Turkey
| | - Tiago S Domingues
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Graduate Program in Applied Mathematics, Yale University, New Haven, Connecticut 06520, United States
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
4
|
Serebryany E, Martin RW, Takahashi GR. The Functional Significance of High Cysteine Content in Eye Lens γ-Crystallins. Biomolecules 2024; 14:594. [PMID: 38786000 PMCID: PMC11118217 DOI: 10.3390/biom14050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Cataract disease is strongly associated with progressively accumulating oxidative damage to the extremely long-lived crystallin proteins of the lens. Cysteine oxidation affects crystallin folding, interactions, and light-scattering aggregation especially strongly due to the formation of disulfide bridges. Minimizing crystallin aggregation is crucial for lifelong lens transparency, so one might expect the ubiquitous lens crystallin superfamilies (α and βγ) to contain little cysteine. Yet, the Cys content of γ-crystallins is well above the average for human proteins. We review literature relevant to this longstanding puzzle and take advantage of expanding genomic databases and improved machine learning tools for protein structure prediction to investigate it further. We observe remarkably low Cys conservation in the βγ-crystallin superfamily; however, in γ-crystallin, the spatial positioning of Cys residues is clearly fine-tuned by evolution. We propose that the requirements of long-term lens transparency and high lens optical power impose competing evolutionary pressures on lens βγ-crystallins, leading to distinct adaptations: high Cys content in γ-crystallins but low in βB-crystallins. Aquatic species need more powerful lenses than terrestrial ones, which explains the high methionine content of many fish γ- (and even β-) crystallins. Finally, we discuss synergies between sulfur-containing and aromatic residues in crystallins and suggest future experimental directions.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Physiology & Biophysics, Stony Brook University, SUNY, Stony Brook, NY 11794, USA
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, SUNY, Stony Brook, NY 11794, USA
| | - Rachel W. Martin
- Department of Chemistry, UCI Irvine, Irvine, CA 92697-2025, USA
- Department of Molecular Biology & Biochemistry, UCI Irvine, Irvine, CA 92697-3900, USA
| | - Gemma R. Takahashi
- Department of Molecular Biology & Biochemistry, UCI Irvine, Irvine, CA 92697-3900, USA
| |
Collapse
|
5
|
Basha S, Mukunda DC, Rodrigues J, Gail D'Souza M, Gangadharan G, Pai AR, Mahato KK. A comprehensive review of protein misfolding disorders, underlying mechanism, clinical diagnosis, and therapeutic strategies. Ageing Res Rev 2023; 90:102017. [PMID: 37468112 DOI: 10.1016/j.arr.2023.102017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Proteins are the most common biological macromolecules in living system and are building blocks of life. They are extremely dynamic in structure and functions. Due to several modifications, proteins undergo misfolding, leading to aggregation and thereby developing neurodegenerative and systemic diseases. Understanding the pathology of these diseases and the techniques used to diagnose them is therefore crucial for their effective management . There are several techniques, currently being in use to diagnose them and those will be discussed in this review. AIM/OBJECTIVES Current review aims to discuss an overview of protein aggregation and the underlying mechanisms linked to neurodegeneration and systemic diseases. Also, the review highlights protein misfolding disorders, their clinical diagnosis, and treatment strategies. METHODOLOGY Literature related to neurodegenerative and systemic diseases was explored through PubMed, Google Scholar, Scopus, and Medline databases. The keywords used for literature survey and analysis are protein aggregation, neurodegenerative disorders, Alzheimer's disease, Parkinson's disease, systemic diseases, protein aggregation mechanisms, etc. DISCUSSION /CONCLUSION: This review summarises the pathogenesis of neurodegenerative and systemic disorders caused by protein misfolding and aggregation. The clinical diagnosis and therapeutic strategies adopted for the management of these diseases are also discussed to aid in a better understanding of protein misfolding disorders. Many significant concerns about the role, characteristics, and consequences of protein aggregates in neurodegenerative and systemic diseases are not clearly understood to date. Regardless of technological advancements, there are still great difficulties in the management and cure of these diseases. Therefore, for better understanding, diagnosis, and treatment of neurodegenerative and systemic diseases, more studies to identify novel drugs that may aid in their treatment and management are required.
Collapse
Affiliation(s)
- Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Meagan Gail D'Souza
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College - Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
6
|
Diessner EM, Freites JA, Tobias DJ, Butts CT. Network Hamiltonian Models for Unstructured Protein Aggregates, with Application to γD-Crystallin. J Phys Chem B 2023; 127:685-697. [PMID: 36637342 PMCID: PMC10437096 DOI: 10.1021/acs.jpcb.2c07672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Network Hamiltonian models (NHMs) are a framework for topological coarse-graining of protein-protein interactions, in which each node corresponds to a protein, and edges are drawn between nodes representing proteins that are noncovalently bound. Here, this framework is applied to aggregates of γD-crystallin, a structural protein of the eye lens implicated in cataract disease. The NHMs in this study are generated from atomistic simulations of equilibrium distributions of wild-type and the cataract-causing variant W42R in solution, performed by Wong, E. K.; Prytkova, V.; Freites, J. A.; Butts, C. T.; Tobias, D. J. Molecular Mechanism of Aggregation of the Cataract-Related γD-Crystallin W42R Variant from Multiscale Atomistic Simulations. Biochemistry2019, 58 (35), 3691-3699. Network models are shown to successfully reproduce the aggregate size and structure observed in the atomistic simulation, and provide information about the transient protein-protein interactions therein. The system size is scaled from the original 375 monomers to a system of 10000 monomers, revealing a lowering of the upper tail of the aggregate size distribution of the W42R variant. Extrapolation to higher and lower concentrations is also performed. These results provide an example of the utility of NHMs for coarse-grained simulation of protein systems, as well as their ability to scale to large system sizes and high concentrations, reducing computational costs while retaining topological information about the system.
Collapse
Affiliation(s)
- Elizabeth M Diessner
- Department of Chemistry, University of California, Irvine, California92697, United States
| | - J Alfredo Freites
- Department of Chemistry, University of California, Irvine, California92697, United States
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California92697, United States
| | - Carter T Butts
- Departments of Sociology, Statistics, Computer Science, and EECS, University of California, Irvine, California92697, United States
| |
Collapse
|
7
|
Islam S, Do M, Frank BS, Hom GL, Wheeler S, Fujioka H, Wang B, Minocha G, Sell DR, Fan X, Lampi KJ, Monnier VM. α-Crystallin chaperone mimetic drugs inhibit lens γ-crystallin aggregation: potential role for cataract prevention. J Biol Chem 2022; 298:102417. [PMID: 36037967 PMCID: PMC9525908 DOI: 10.1016/j.jbc.2022.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Γ-Crystallins play a major role in age-related lens transparency. Their destabilization by mutations and physical chemical insults are associated with cataract formation. Therefore, drugs that increase their stability should have anticataract properties. To this end, we screened 2560 Federal Drug Agency–approved drugs and natural compounds for their ability to suppress or worsen H2O2 and/or heat-mediated aggregation of bovine γ-crystallins. The top two drugs, closantel (C), an antihelminthic drug, and gambogic acid (G), a xanthonoid, attenuated thermal-induced protein unfolding and aggregation as shown by turbidimetry fluorescence spectroscopy dynamic light scattering and electron microscopy of human or mouse recombinant crystallins. Furthermore, binding studies using fluorescence inhibition and hydrophobic pocket–binding molecule bis-8-anilino-1-naphthalene sulfonic acid revealed static binding of C and G to hydrophobic sites with medium-to-low affinity. Molecular docking to HγD and other γ-crystallins revealed two binding sites, one in the “NC pocket” (residues 50–150) of HγD and one spanning the “NC tail” (residues 56–61 to 168–174 in the C-terminal domain). Multiple binding sites overlap with those of the protective mini αA-crystallin chaperone MAC peptide. Mechanistic studies using bis-8-anilino-1-naphthalene sulfonic acid as a proxy drug showed that it bound to MAC sites, improved Tm of both H2O2 oxidized and native human gamma D, and suppressed turbidity of oxidized HγD, most likely by trapping exposed hydrophobic sites. The extent to which these drugs act as α-crystallin mimetics and reduce cataract progression remains to be demonstrated. This study provides initial insights into binding properties of C and G to γ-crystallins.
Collapse
Affiliation(s)
- Sidra Islam
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Michael Do
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Brett S Frank
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Grant L Hom
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Samuel Wheeler
- Dept of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR 97239
| | - Hisashi Fujioka
- Cryo-EM Core Facility, School of Medicine, Case Western Reserve University, Case Western Reserve University, Cleveland, OH 44016
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Dept of Nutrition, Case Western Reserve University, Cleveland, OH 44106
| | - Geeta Minocha
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - David R Sell
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Xingjun Fan
- Dept of Cell Biology and Anatomy, Augusta University, Georgia, GA 30912
| | - Kirsten J Lampi
- Dept of Integrative Biosciences, Oregon Health & Sciences University, Portland, OR 97239
| | - Vincent M Monnier
- Dept of Pathology and Biochemistry, Case Western Reserve University, Cleveland, OH 44106; Dept of Biochemistry, Case Western Reserve University, Cleveland OH 44106.
| |
Collapse
|
8
|
Serebryany E, Chowdhury S, Woods CN, Thorn DC, Watson NE, McClelland AA, Klevit RE, Shakhnovich EI. A native chemical chaperone in the human eye lens. eLife 2022; 11:76923. [PMID: 35723573 PMCID: PMC9246369 DOI: 10.7554/elife.76923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Cataract is one of the most prevalent protein aggregation disorders and still the most common cause of vision loss worldwide. The metabolically quiescent core region of the human lens lacks cellular or protein turnover; it has therefore evolved remarkable mechanisms to resist light-scattering protein aggregation for a lifetime. We now report that one such mechanism involves an unusually abundant lens metabolite, myo-inositol, suppressing aggregation of lens crystallins. We quantified aggregation suppression using our previously well-characterized in vitro aggregation assays of oxidation-mimicking human γD-crystallin variants and investigated myo-inositol’s molecular mechanism of action using solution NMR, negative-stain TEM, differential scanning fluorometry, thermal scanning Raman spectroscopy, turbidimetry in redox buffers, and free thiol quantitation. Unlike many known chemical chaperones, myo-inositol’s primary target was not the native, unfolded, or final aggregated states of the protein; rather, we propose that it was the rate-limiting bimolecular step on the aggregation pathway. Given recent metabolomic evidence that it is severely depleted in human cataractous lenses compared to age-matched controls, we suggest that maintaining or restoring healthy levels of myo-inositol in the lens may be a simple, safe, and globally accessible strategy to prevent or delay lens opacification due to age-onset cataract.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Sourav Chowdhury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Christopher N Woods
- Department of Biochemistry, University of Washington, Seattle, United States
| | - David C Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Nicki E Watson
- Center for Nanoscale Systems, Harvard University, Cambridge, United States
| | | | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
9
|
Serebryany E, Thorn DC, Quintanar L. Redox chemistry of lens crystallins: A system of cysteines. Exp Eye Res 2021; 211:108707. [PMID: 34332989 PMCID: PMC8511183 DOI: 10.1016/j.exer.2021.108707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 11/28/2022]
Abstract
The nuclear region of the lens is metabolically quiescent, but it is far from inert chemically. Without cellular renewal and with decades of environmental exposures, the lens proteome, lipidome, and metabolome change. The lens crystallins have evolved exquisite mechanisms for resisting, slowing, adapting to, and perhaps even harnessing the effects of these cumulative chemical modifications to minimize the amount of light-scattering aggregation in the lens over a lifetime. Redox chemistry is a major factor in these damages and mitigating adaptations, and as such, it is likely to be a key component of any successful therapeutic strategy for preserving or rescuing lens transparency, and perhaps flexibility, during aging. Protein redox chemistry is typically mediated by Cys residues. This review will therefore focus primarily on the Cys-rich γ-crystallins of the human lens, taking care to extend these findings to the β- and α-crystallins where pertinent.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - David C Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Liliana Quintanar
- Department of Chemistry, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City, Mexico
| |
Collapse
|
10
|
Rocha MA, Sprague-Piercy MA, Kwok AO, Roskamp KW, Martin RW. Chemical Properties Determine Solubility and Stability in βγ-Crystallins of the Eye Lens. Chembiochem 2021; 22:1329-1346. [PMID: 33569867 PMCID: PMC8052307 DOI: 10.1002/cbic.202000739] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Indexed: 11/10/2022]
Abstract
βγ-Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post-translational modifications can reduce crystallin protein stability and alter intermolecular interactions. Common post-translational modifications that can cause age-related cataracts include deamidation, oxidation, and tryptophan derivatization. Metal ion binding can also trigger reduced crystallin solubility through a variety of mechanisms. Interprotein interactions are critical to maintaining lens transparency: crystallins can undergo domain swapping, disulfide bonding, and liquid-liquid phase separation, all of which can cause opacity depending on the context. Important experimental techniques for assessing crystallin conformation in the absence of a high-resolution structure include dye-binding assays, circular dichroism, fluorescence, light scattering, and transition metal FRET.
Collapse
Affiliation(s)
- Megan A. Rocha
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Marc A. Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| | - Ashley O. Kwok
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA 92697-2025 (USA)
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697-2525
| |
Collapse
|
11
|
Proteinaceous Transformers: Structural and Functional Variability of Human sHsps. Int J Mol Sci 2020; 21:ijms21155448. [PMID: 32751672 PMCID: PMC7432308 DOI: 10.3390/ijms21155448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/04/2023] Open
Abstract
The proteostasis network allows organisms to support and regulate the life cycle of proteins. Especially regarding stress, molecular chaperones represent the main players within this network. Small heat shock proteins (sHsps) are a diverse family of ATP-independent molecular chaperones acting as the first line of defense in many stress situations. Thereby, the promiscuous interaction of sHsps with substrate proteins results in complexes from which the substrates can be refolded by ATP-dependent chaperones. Particularly in vertebrates, sHsps are linked to a broad variety of diseases and are needed to maintain the refractive index of the eye lens. A striking key characteristic of sHsps is their existence in ensembles of oligomers with varying numbers of subunits. The respective dynamics of these molecules allow the exchange of subunits and the formation of hetero-oligomers. Additionally, these dynamics are closely linked to the chaperone activity of sHsps. In current models a shift in the equilibrium of the sHsp ensemble allows regulation of the chaperone activity, whereby smaller oligomers are commonly the more active species. Different triggers reversibly change the oligomer equilibrium and regulate the activity of sHsps. However, a finite availability of high-resolution structures of sHsps still limits a detailed mechanistic understanding of their dynamics and the correlating recognition of substrate proteins. Here we summarize recent advances in understanding the structural and functional relationships of human sHsps with a focus on the eye-lens αA- and αB-crystallins.
Collapse
|
12
|
Fernández-Silva A, French-Pacheco L, Rivillas-Acevedo L, Amero C. Aggregation pathways of human γ D crystallin induced by metal ions revealed by time dependent methods. PeerJ 2020; 8:e9178. [PMID: 32566392 PMCID: PMC7295030 DOI: 10.7717/peerj.9178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Cataract formation is a slow accumulative process due to protein aggregates promoted by different factors over time. Zinc and copper ions have been reported to induce the formation of aggregates opaque to light in the human gamma D crystallin (HγD) in a concentration and temperature dependent manner. In order to gain insight into the mechanism of metal-induced aggregation of HγD under conditions that mimic more closely the slow, accumulative process of the disease, we have studied the non-equilibrium process with the minimal metal dose that triggers HγD aggregation. Using a wide variety of biophysics techniques such as turbidimetry, dynamic light scattering, fluorescence, nuclear magnetic resonance and computational methods, we obtained information on the molecular mechanisms for the formation of aggregates. Zn(II) ions bind to different regions at the protein, probably with similar affinities. This binding induces a small conformational rearrangement within and between domains and aggregates via the formation of metal bridges without any detectable unfolded intermediates. In contrast, Cu(II)-induced aggregation includes a lag time, in which the N-terminal domain partially unfolds while the C-terminal domain and parts of the N-terminal domain remain in a native-like conformation. This partially unfolded intermediate is prone to form the high-molecular weight aggregates. Our results clearly show that different external factors can promote protein aggregation following different pathways.
Collapse
Affiliation(s)
- Arline Fernández-Silva
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Leidys French-Pacheco
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.,Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Lina Rivillas-Acevedo
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Carlos Amero
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
13
|
Rana S, Ghosh KS. Inhibition of fibrillation of human γd-crystallin by a flavonoid morin. J Biomol Struct Dyn 2020; 39:4279-4289. [PMID: 32469293 DOI: 10.1080/07391102.2020.1775701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To inhibit the formation of amyloid fibrils by human γd-crystallin (HGD), a series of four flavonoids (quercertin, rutin, morin and hesperetin) was tested. Only morin had demonstrated significant inhibition of HGD fibrillation. Results from fluorimetric assay techniques (using thioflavin T and ANS), FTIR, circular dichroism and microscopic imaging (fluorescence microscopy and transmission electron microscopy) confirmed HGD fibrillation inhibition by morin. HGD-morin complex formation at ground state resulted tryptophan fluorescence quenching through static mechanism, which was also confirmed by determining the excited-state life time of HGD tryptophan residues. Förster resonance energy transfer occurs from HGD to morin. Synchronous, three-dimensional fluorescence, FTIR and circular dichroism results suggest that major changes in HGD conformation did not occur on binding with morin. The interactions between HGD and morin involve hydrogen bonding and/or van der Waals forces. Docking predictions also support experimental results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shiwani Rana
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, Himachal Pradesh, India
| |
Collapse
|
14
|
Roskamp KW, Paulson CN, Brubaker WD, Martin RW. Function and Aggregation in Structural Eye Lens Crystallins. Acc Chem Res 2020; 53:863-874. [PMID: 32271004 DOI: 10.1021/acs.accounts.0c00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Crystallins are transparent, refractive proteins that contribute to the focusing power of the vertebrate eye lens. These proteins are extremely soluble and resist aggregation for decades, even under crowded conditions. Crystallins have evolved to avoid strong interprotein interactions and have unusual hydration properties. Crystallin aggregation resulting from mutation, damage, or aging can lead to cataract, a disease state characterized by opacity of the lens.Different aggregation mechanisms can occur, following multiple pathways and leading to aggregates with varied morphologies. Studies of variant proteins found in individuals with childhood-onset cataract have provided insight into the molecular factors underlying crystallin stability and solubility. Modulation of exposed hydrophobic surface is critical, as is preventing specific intermolecular interactions that could provide nucleation sites for aggregation. Biophysical measurements and structural biology techniques are beginning to provide a detailed picture of how crystallins crowd into the lens, providing high refractivity while avoiding excessively tight binding that would lead to aggregation.Despite the central biological importance of refractivity, relatively few experimental measurements have been made for lens crystallins. Our work and that of others have shown that hydration is important to the high refractive index of crystallin proteins, as are interactions between pairs of aromatic residues and potentially other specific structural features.This Account describes our efforts to understand both the functional and disease states of vertebrate eye lens crystallins, particularly the γ-crystallins. We use a variety of biophysical techniques, notably NMR spectroscopy, to investigate crystallin stability and solubility. In the first section, we describe efforts to understand the relative stability and aggregation propensity of different γS-crystallin variants. The second section focuses on interactions of these proteins with the holdase chaperone αB-crystallin. The third, fourth, and fifth sections explore different modes of aggregation available to crystallin proteins, and the final section highlights the importance of refractive index and the sometimes conflicting demands of selection for refractivity and solubility.
Collapse
Affiliation(s)
- Kyle W. Roskamp
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Carolyn N. Paulson
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - William D. Brubaker
- SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025, United States
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
15
|
Rana S, Sarmah S, Singha Roy A, Ghosh KS. Elucidation of molecular interactions between human γD-crystallin and quercetin, an inhibitor against tryptophan oxidation. J Biomol Struct Dyn 2020; 39:1811-1818. [DOI: 10.1080/07391102.2020.1738960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shiwani Rana
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh, India
| | - Sharat Sarmah
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh, India
| |
Collapse
|
16
|
Aguayo-Ortiz R, Dominguez L. Effects of Mutating Trp42 Residue on γD-Crystallin Stability. J Chem Inf Model 2020; 60:777-785. [PMID: 31747273 DOI: 10.1021/acs.jcim.9b00747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oligomerization and aggregation of γD-crystallins (HγDC) in the eye lens is one of the main causes of cataract development. To date, several congenital mutations related to this protein are known to promote the formation of aggregates. Previous studies have demonstrated that mutations in W42 residue of HγDC lead to the generation of partially unfolded intermediates that are more prone to aggregate. To understand the role of W42 in the stability of HγDC, we performed alchemical free-energy calculations and all-atom molecular dynamics simulations of different W42 mutant models. Our results suggest that substitution of W42 by small size and/or polar residues promotes HγDC denaturation due to the entry of water molecules into the hydrophobic core of the N-terminal domain. Similar behavior was observed in the C-terminal domain of HγDC when mutating the W130 residue located in a homologous position. Moreover, the exposure of the hydrophobic core residues could lead to the formation of aggregation-prone partially unfolded species. Overall, this study takes a step toward understanding the role of HγDC in cataract development.
Collapse
Affiliation(s)
- Rodrigo Aguayo-Ortiz
- Facultad de Química, Departamento de Fisicoquímica , Universidad Nacional Autónoma de México , Mexico City 04510 , Mexico.,Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica , Universidad Nacional Autónoma de México , Mexico City 04510 , Mexico
| |
Collapse
|
17
|
Rana S, Ghosh KS. Protective role of hesperetin against posttranslational oxidation of tryptophan residue of human γD-crystallin: A molecular level study. Arch Biochem Biophys 2019; 679:108204. [PMID: 31758928 DOI: 10.1016/j.abb.2019.108204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/30/2019] [Accepted: 11/19/2019] [Indexed: 11/19/2022]
Abstract
Crystallin proteins undergo various posttranslational modifications with aging of eye lens. Oxidation of tryptophan (Trp) residues of a major γ-crystallin namely human γD-crystallin (HGD) was found to be inhibited by a naturally occurring flavonoid hesperetin at relatively low concentration mostly due to its antioxidant activity. Further the molecular interactions between HGD and hesperetin were elucidated on the basis of the quenching of Trp fluorescence of the protein by the flavonoid. Ground state complexation between HGD and hesperetin caused static quenching of the Trp fluorescence of HGD. Binding and quenching constants were in the order of (103- 104 M-1). Energy transfer from protein to hesperetin was suggested by FRET calculations. Thermodynamic parameters reveal significant hydrophobic association between the protein and hesperetin. Synchronous fluorescence and CD spectroscopic results had ruled out conformational changes in the protein due to binding of hesperetin. Docking studies suggested the proximity of hesperetin with Trp 42, which largely corroborates our experimental findings.
Collapse
Affiliation(s)
- Shiwani Rana
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh, 177005, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology Hamirpur, Himachal Pradesh, 177005, India.
| |
Collapse
|
18
|
Aguayo-Ortiz R, González-Navejas A, Palomino-Vizcaino G, Rodriguez-Meza O, Costas M, Quintanar L, Dominguez L. Thermodynamic Stability of Human γD-Crystallin Mutants Using Alchemical Free-Energy Calculations. J Phys Chem B 2019; 123:5671-5677. [PMID: 31199646 DOI: 10.1021/acs.jpcb.9b01818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
γD-Crystallin (HγDC) is a key structural protein in the human lens, whose aggregation has been associated with the development of cataracts. Single-point mutations and post-translational modifications destabilize HγDC interactions, forming partially folded intermediates, where hydrophobic residues are exposed and thus triggering its aggregation. In this work, we used alchemical free-energy calculations to predict changes in thermodynamic stability (ΔΔG) of 10 alanine-scanning variants and 12 HγDC mutations associated with the development of congenital cataract. Our results show that W42R is the most destabilizing mutation in HγDC. This has been corroborated through experimental determination of ΔΔG employing differential scanning calorimetry. Calculations of hydration free energies from the HγDC WT and the W42R mutant suggested that the mutant has a higher aggregation propensity. Our combined theoretical and experimental results contribute to understand HγDC destabilization and aggregation mechanisms in age-onset cataracts.
Collapse
Affiliation(s)
| | | | - Giovanni Palomino-Vizcaino
- Departamento de Química , Centro de Investigación y de Estudios Avanzados (Cinvestav) , Mexico City 07360 , Mexico
| | | | | | - Liliana Quintanar
- Departamento de Química , Centro de Investigación y de Estudios Avanzados (Cinvestav) , Mexico City 07360 , Mexico
| | | |
Collapse
|
19
|
Zhang K, Zhao WJ, Yao K, Yan YB. Dissimilarity in the Contributions of the N-Terminal Domain Hydrophobic Core to the Structural Stability of Lens β/γ-Crystallins. Biochemistry 2019; 58:2499-2508. [PMID: 31037943 DOI: 10.1021/acs.biochem.8b01164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vertebrate lens β/γ-crystallins share a conserved tertiary structure consisting of four Greek-key motifs divided into two globular domains. Numerous inherited mutations in β/γ-crystallins have been linked to cataractogenesis. In this research, the folding mechanism underlying cataracts caused by the I21N mutation in βB2 was investigated by comparing the effect of mutagenesis on the structural features and stability of four β/γ-crystallins, βB1, βB2, γC, and γD. Our results showed that the four β/γ-crystallins differ greatly in solubility and stability against various stresses. The I21N mutation greatly impaired βB2 solubility and native structure as well as its stability against denaturation induced by guanidine hydrochloride, heat treatment, and ultraviolet irradiation. However, the deleterious effects were much weaker for mutations at the corresponding sites in βB1, γC, and γD. Molecular dynamics simulations indicated that the introduction of a nonnative hydrogen bond contributed to twisting Greek-key motif I outward, which might direct the misfolding of the I21N mutant of βB2. Meanwhile, partial hydration of the hydrophobic interior of the domain induced by the mutation destabilized βB1, γC, and γD. Our findings highlight the importance of nonnative hydrogen bond formation and hydrophobic core hydration in crystallin misfolding caused by inherited mutations.
Collapse
Affiliation(s)
- Kai Zhang
- Eye Center of the Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310009 , China
| | - Wei-Jie Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences , Tsinghua University , Beijing 100084 , China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310009 , China
| | - Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
20
|
Serebryany E, Yu S, Trauger SA, Budnik B, Shakhnovich EI. Dynamic disulfide exchange in a crystallin protein in the human eye lens promotes cataract-associated aggregation. J Biol Chem 2018; 293:17997-18009. [PMID: 30242128 DOI: 10.1074/jbc.ra118.004551] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
Increased light scattering in the eye lens due to aggregation of the long-lived lens proteins, crystallins, is the cause of cataract disease. Several mutations in the gene encoding human γD-crystallin (HγD) cause misfolding and aggregation. Cataract-associated substitutions at Trp42 cause the protein to aggregate in vitro from a partially unfolded intermediate locked by an internal disulfide bridge, and proteomic evidence suggests a similar aggregation precursor is involved in age-onset cataract. Surprisingly, WT HγD can promote aggregation of the W42Q variant while itself remaining soluble. Here, a search for a biochemical mechanism for this interaction has revealed a previously unknown oxidoreductase activity in HγD. Using in vitro oxidation, mutational analysis, cysteine labeling, and MS, we have assigned this activity to a redox-active internal disulfide bond that is dynamically exchanged among HγD molecules. The W42Q variant acts as a disulfide sink, reducing oxidized WT and forming a distinct internal disulfide that kinetically traps the aggregation-prone intermediate. Our findings suggest a redox "hot potato" competition among WT and mutant or modified polypeptides wherein variants with the lowest kinetic stability are trapped in aggregation-prone intermediate states upon accepting disulfides from more stable variants. Such reactions may occur in other long-lived proteins that function in oxidizing environments. In these cases, aggregation may be forestalled by inhibiting disulfide flow toward mutant or damaged polypeptides.
Collapse
Affiliation(s)
- Eugene Serebryany
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Shuhuai Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu, China
| | | | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Eugene I Shakhnovich
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138.
| |
Collapse
|
21
|
Domínguez-Calva JA, Pérez-Vázquez ML, Serebryany E, King JA, Quintanar L. Mercury-induced aggregation of human lens γ-crystallins reveals a potential role in cataract disease. J Biol Inorg Chem 2018; 23:1105-1118. [DOI: 10.1007/s00775-018-1607-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/22/2018] [Indexed: 01/17/2023]
|
22
|
Ramkumar S, Fan X, Wang B, Yang S, Monnier VM. Reactive cysteine residues in the oxidative dimerization and Cu 2+ induced aggregation of human γD-crystallin: Implications for age-related cataract. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3595-3604. [PMID: 30251679 DOI: 10.1016/j.bbadis.2018.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/14/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Cysteine (Cys) residues are major causes of crystallin disulfide formation and aggregation in aging and cataractous human lenses. We recently found that disulfide linkages are highly and partly conserved in β- and γ-crystallins, respectively, in human age-related nuclear cataract and glutathione depleted LEGSKO mouse lenses, and could be mimicked by in vitro oxidation. Here we determined which Cys residues are involved in disulfide-mediated crosslinking of recombinant human γD-crystallin (hγD). In vitro diamide oxidation revealed dimer formation by SDS-PAGE and LC-MS analysis with Cys 111-111 and C111-C19 as intermolecular disulfides and Cys 111-109 as intramolecular sites. Mutation of Cys111 to alanine completely abolished dimerization. Addition of αB-crystallin was unable to protect Cys 111 from dimerization. However, Cu2+-induced hγD-crystallin aggregation was suppressed up to 50% and 80% by mutants C109A and C111A, respectively, as well as by total glutathionylation. In contrast to our recently published results using ICAT-labeling method, manual mining of the same database confirmed the specific involvement of Cys111 in disulfides with no free Cys111 detectable in γD-crystallin from old and cataractous human lenses. Surface accessibility studies show that Cys111 in hγD is the most exposed Cys residue (29%), explaining thereby its high propensity toward oxidation and polymerization in the aging lens.
Collapse
Affiliation(s)
| | - Xingjun Fan
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Benlian Wang
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sichun Yang
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Vincent M Monnier
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
23
|
Kang H, Yang Z, Zhou R. Lanosterol Disrupts Aggregation of Human γD-Crystallin by Binding to the Hydrophobic Dimerization Interface. J Am Chem Soc 2018; 140:8479-8486. [DOI: 10.1021/jacs.8b03065] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hongsuk Kang
- Institute of Quantitative Biology, Department of Physics, Zhejiang University, Hangzhou 310027, China
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Zaixing Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Department of Physics, Zhejiang University, Hangzhou 310027, China
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| |
Collapse
|
24
|
Zhao WJ, Yan YB. Increasing susceptibility to oxidative stress by cataract-causing crystallin mutations. Int J Biol Macromol 2018; 108:665-673. [DOI: 10.1016/j.ijbiomac.2017.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 11/24/2022]
|
25
|
Roskamp KW, Montelongo DM, Anorma CD, Bandak DN, Chua JA, Malecha KT, Martin RW. Multiple Aggregation Pathways in Human γS-Crystallin and Its Aggregation-Prone G18V Variant. Invest Ophthalmol Vis Sci 2017; 58:2397-2405. [PMID: 28444328 PMCID: PMC5407245 DOI: 10.1167/iovs.16-20621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Purpose Cataract results from the formation of light-scattering precipitates due to point mutations or accumulated damage in the structural crystallins of the eye lens. Although excised cataracts are predominantly amorphous, in vitro studies show that crystallins are capable of adopting a variety of morphologies depending on the preparation method. Here we characterize thermal, pH-dependent, and UV-irradiated aggregates from wild-type human γS-crystallin (γS-WT) and its aggregation-prone variant, γS-G18V. Methods Aggregates of γS-WT and γS-G18V were prepared under acidic, neutral, and basic pH conditions and held at 25°C or 37°C for 48 hours. UV-induced aggregates were produced by irradiation with a 355-nm laser. Aggregation and fibril formation were monitored via turbidity and thioflavin T (ThT) assays. Aggregates were characterized using intrinsic aromatic fluorescence, powder x-ray diffraction, and mass spectrometry. Results γS-crystallin aggregates displayed different characteristics depending on the preparation method. γS-G18V produced a larger amount of detectable aggregates than did γS-WT and at less-extreme conditions. Aggregates formed under basic and acidic conditions yielded elevated ThT fluorescence; however, aggregates formed at low pH did not produce strongly turbid solutions. UV-induced aggregates produced highly turbid solutions but displayed only moderate ThT fluorescence. X-ray diffraction confirms amyloid character in low-pH samples and UV-irradiated samples, although the relative amounts vary. Conclusions γS-G18V demonstrates increased aggregation propensity compared to γS-WT when treated with heat, acid, or UV light. The resulting aggregates differ in their ThT fluorescence and turbidity, suggesting that at least two different aggregation pathways are accessible to both proteins under the conditions tested.
Collapse
Affiliation(s)
- Kyle W Roskamp
- Department of Chemistry, University of California, Irvine, Irvine, California, United States
| | - David M Montelongo
- Department of Chemistry, University of California, Irvine, Irvine, California, United States
| | - Chelsea D Anorma
- Department of Chemistry, University of California, Irvine, Irvine, California, United States
| | - Diana N Bandak
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, United States
| | - Janine A Chua
- Department of Chemistry, University of California, Irvine, Irvine, California, United States
| | - Kurtis T Malecha
- Department of Chemistry, University of California, Irvine, Irvine, California, United States
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, Irvine, California, United States 2Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, United States
| |
Collapse
|
26
|
Serebryany E, Woodard JC, Adkar BV, Shabab M, King JA, Shakhnovich EI. An Internal Disulfide Locks a Misfolded Aggregation-prone Intermediate in Cataract-linked Mutants of Human γD-Crystallin. J Biol Chem 2016; 291:19172-83. [PMID: 27417136 DOI: 10.1074/jbc.m116.735977] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Indexed: 11/06/2022] Open
Abstract
Considerable mechanistic insight has been gained into amyloid aggregation; however, a large number of non-amyloid protein aggregates are considered "amorphous," and in most cases, little is known about their mechanisms. Amorphous aggregation of γ-crystallins in the eye lens causes cataract, a widespread disease of aging. We combined simulations and experiments to study the mechanism of aggregation of two γD-crystallin mutants, W42R and W42Q: the former a congenital cataract mutation, and the latter a mimic of age-related oxidative damage. We found that formation of an internal disulfide was necessary and sufficient for aggregation under physiological conditions. Two-chain all-atom simulations predicted that one non-native disulfide in particular, between Cys(32) and Cys(41), was likely to stabilize an unfolding intermediate prone to intermolecular interactions. Mass spectrometry and mutagenesis experiments confirmed the presence of this bond in the aggregates and its necessity for oxidative aggregation under physiological conditions in vitro Mining the simulation data linked formation of this disulfide to extrusion of the N-terminal β-hairpin and rearrangement of the native β-sheet topology. Specific binding between the extruded hairpin and a distal β-sheet, in an intermolecular chain reaction similar to domain swapping, is the most probable mechanism of aggregate propagation.
Collapse
Affiliation(s)
- Eugene Serebryany
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Jaie C Woodard
- the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Bharat V Adkar
- the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Mohammed Shabab
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Jonathan A King
- From the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Eugene I Shakhnovich
- the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
27
|
Serebryany E, Takata T, Erickson E, Schafheimer N, Wang Y, King JA. Aggregation of Trp > Glu point mutants of human gamma-D crystallin provides a model for hereditary or UV-induced cataract. Protein Sci 2016; 25:1115-28. [PMID: 26991007 DOI: 10.1002/pro.2924] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/21/2022]
Abstract
Numerous mutations and covalent modifications of the highly abundant, long-lived crystallins of the eye lens cause their aggregation leading to progressive opacification of the lens, cataract. The nature and biochemical mechanisms of the aggregation process are poorly understood, as neither amyloid nor native-state polymers are commonly found in opaque lenses. The βγ-crystallin fold contains four highly conserved buried tryptophans, which can be oxidized to more hydrophilic products, such as kynurenine, upon UV-B irradiation. We mimicked this class of oxidative damage using Trp→Glu point mutants of human γD-crystallin. Such substitutions may represent a model of UV-induced photodamage-introduction of a charged group into the hydrophobic core generating "denaturation from within." The effects of Trp→Glu substitutions were highly position dependent. While each was destabilizing, only the two located in the bottom of the double Greek key fold-W42E and W130E-yielded robust aggregation of partially unfolded intermediates at 37°C and pH 7. The αB-crystallin chaperone suppressed aggregation of W130E, but not W42E, indicating distinct aggregation pathways from damage in the N-terminal vs C-terminal domain. The W130E aggregates had loosely fibrillar morphology, yet were nonamyloid, noncovalent, showed little surface hydrophobicity, and formed at least 20°C below the melting temperature of the native β-sheets. These features are most consistent with domain-swapped polymerization. Aggregation of partially destabilized crystallins under physiological conditions, as occurs in this class of point mutants, could provide a simple in vitro model system for drug discovery and optimization.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Takumi Takata
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Erika Erickson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Nathaniel Schafheimer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Yongting Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Jonathan A King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| |
Collapse
|
28
|
Quintanar L, Domínguez-Calva JA, Serebryany E, Rivillas-Acevedo L, Haase-Pettingell C, Amero C, King JA. Copper and Zinc Ions Specifically Promote Nonamyloid Aggregation of the Highly Stable Human γ-D Crystallin. ACS Chem Biol 2016; 11:263-72. [PMID: 26579725 DOI: 10.1021/acschembio.5b00919] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cataract is the leading cause of blindness in the world. It results from aggregation of eye lens proteins into high-molecular-weight complexes, causing light scattering and lens opacity. Copper and zinc concentrations in cataractous lens are increased significantly relative to a healthy lens, and a variety of experimental and epidemiological studies implicate metals as potential etiological agents for cataract. The natively monomeric, β-sheet rich human γD (HγD) crystallin is one of the more abundant proteins in the core of the lens. It is also one of the most thermodynamically stable proteins in the human body. Surprisingly, we found that both Cu(II) and Zn(II) ions induced rapid, nonamyloid aggregation of HγD, forming high-molecular-weight light-scattering aggregates. Unlike Zn(II), Cu(II) also substantially decreased the thermal stability of HγD and promoted the formation of disulfide-bridged dimers, suggesting distinct aggregation mechanisms. In both cases, however, metal-induced aggregation depended strongly on temperature and was suppressed by the human lens chaperone αB-crystallin (HαB), implicating partially folded intermediates in the aggregation process. Consistently, distinct site-specific interactions of Cu(II) and Zn(II) ions with the protein and conformational changes in specific hinge regions were identified by nuclear magnetic resonance. This study provides insights into the mechanisms of metal-induced aggregation of one of the more stable proteins in the human body, and it reveals a novel and unexplored bioinorganic facet of cataract disease.
Collapse
Affiliation(s)
- Liliana Quintanar
- Departamento
de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360 Mexico City, México
| | - José A. Domínguez-Calva
- Departamento
de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360 Mexico City, México
| | - Eugene Serebryany
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lina Rivillas-Acevedo
- Centro
de Investigaciones Químicas, Instituto de Investigación
en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62209 Cuernavaca, México
| | - Cameron Haase-Pettingell
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Carlos Amero
- Centro
de Investigaciones Químicas, Instituto de Investigación
en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62209 Cuernavaca, México
| | - Jonathan A. King
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Biophysical chemistry of the ageing eye lens. Biophys Rev 2015; 7:353-368. [PMID: 28510099 DOI: 10.1007/s12551-015-0176-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/23/2015] [Indexed: 12/24/2022] Open
Abstract
This review examines both recent and historical literature related to the biophysical chemistry of the proteins in the ageing eye, with a particular focus on cataract development. The lens is a vital component of the eye, acting as an optical focusing device to form clear images on the retina. The lens maintains the necessary high transparency and refractive index by expressing crystallin proteins in high concentration and eliminating all large cellular structures that may cause light scattering. This has the consequence of eliminating lens fibre cell metabolism and results in mature lens fibre cells having no mechanism for protein expression and a complete absence of protein recycling or turnover. As a result, the crystallins are some of the oldest proteins in the human body. Lack of protein repair or recycling means the lens tends to accumulate damage with age in the form of protein post-translational modifications. The crystallins can be subject to a wide range of age-related changes, including isomerisation, deamidation and racemisation. Many of these modification are highly correlated with cataract formation and represent a biochemical mechanism for age-related blindness.
Collapse
|