1
|
Iacovelli R, He S, Sokolova N, Lokhorst I, Borg M, Fodran P, Haslinger K. Discovery and Heterologous Expression of Functional 4- O-Dimethylallyl-l-tyrosine Synthases from Lichen-Forming Fungi. JOURNAL OF NATURAL PRODUCTS 2024; 87:2243-2254. [PMID: 39255066 PMCID: PMC11443524 DOI: 10.1021/acs.jnatprod.4c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Fungal aromatic prenyltransferases are a family of biosynthetic enzymes that catalyze the prenylation of a range of aromatic substrates during the biosynthesis of bioactive indole alkaloids, diketopiperazines, and meroterpenoids. Their broad substrate scope and soluble nature make these enzymes particularly adept for applications in biocatalysis; for example, the enzymatic derivatization of aromatic drugs improves their bioactivity. Here, we investigated four putative aromatic prenyltransferases from lichen-forming fungi, an underexplored group of organisms that produce more than 1,000 unique metabolites. We successfully expressed two enzymes, annotated as dimethylallyltryptophan synthases, from two lichen species in the heterologous host A. oryzae. Based on their in vivo activity, we hypothesize that these enzymes are in fact 4-O-dimethylallyl-l-tyrosine synthases. Our extensive bioinformatic analysis further confirmed that these and related lichen aromatic prenyltransferases are likely not active on indoles but rather on aromatic polyketides and phenylpropanoids, major metabolites in lichens. Overall, our work provides new insights into fungal aromatic prenyltransferases at the family level and enables future efforts aimed at identifying new candidates for biocatalytic transformations of aromatic compounds.
Collapse
Affiliation(s)
| | | | | | - Iris Lokhorst
- Department of Chemical and
Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Maikel Borg
- Department of Chemical and
Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Peter Fodran
- Department of Chemical and
Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Kristina Haslinger
- Department of Chemical and
Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
2
|
Schäfer T, Haun F, Gressler M, Spiteller P, Hoffmeister D. Parallel Evolution of Asco- and Basidiomycete O-Prenyltransferases. JOURNAL OF NATURAL PRODUCTS 2024; 87:576-582. [PMID: 38231181 DOI: 10.1021/acs.jnatprod.3c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Prenyltransferases (PTs) are involved in the biosynthesis of a multitude of pharmaceutically and agriculturally important plant, bacterial, and fungal compounds. Although numerous prenylated compounds have been isolated from Basidiomycota (mushroom-forming fungi), knowledge of the PTs catalyzing the transfer reactions in this group of fungi is scarce. Here, we report the biochemical characterization of an O- and C-prenylating dimethylallyltryptophan synthase (DMATS)-like enzyme LpTyrPT from the scurfy deceiver Laccaria proxima. This PT transfers dimethylallyl moieties to l-tyrosine at the para-O position and to l-tryptophan at atom C-7 and represents the first basidiomycete l-tyrosine PT described so far. Phylogenetic analysis of PTs in fungi revealed that basidiomycete l-tyrosine PTs have evolved independently from their ascomycete counterparts and might represent the evolutionary origin of PTs acting on phenolic compounds in secondary metabolism.
Collapse
Affiliation(s)
- Tim Schäfer
- Institute of Pharmacy, Friedrich Schiller University, Winzerlaer Strasse 2, 07745 Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Fabian Haun
- Institute of Pharmacy, Friedrich Schiller University, Winzerlaer Strasse 2, 07745 Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Markus Gressler
- Institute of Pharmacy, Friedrich Schiller University, Winzerlaer Strasse 2, 07745 Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Peter Spiteller
- Institute of Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Friedrich Schiller University, Winzerlaer Strasse 2, 07745 Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| |
Collapse
|
3
|
Miller ET, Tsodikov OV, Garneau-Tsodikova S. Structural insights into the diverse prenylating capabilities of DMATS prenyltransferases. Nat Prod Rep 2024; 41:113-147. [PMID: 37929638 DOI: 10.1039/d3np00036b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Covering: 2009 up to August 2023Prenyltransferases (PTs) are involved in the primary and the secondary metabolism of plants, bacteria, and fungi, and they are key enzymes in the biosynthesis of many clinically relevant natural products (NPs). The continued biochemical and structural characterization of the soluble dimethylallyl tryptophan synthase (DMATS) PTs over the past two decades have revealed the significant promise that these enzymes hold as biocatalysts for the chemoenzymatic synthesis of novel drug leads. This is a comprehensive review of DMATSs describing the structure-function relationships that have shaped the mechanistic underpinnings of these enzymes, as well as the application of this knowledge to the engineering of DMATSs. We summarize the key findings and lessons learned from these studies over the past 14 years (2009-2023). In addition, we identify current gaps in our understanding of these fascinating enzymes.
Collapse
Affiliation(s)
- Evan T Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| |
Collapse
|
4
|
Aoun AR, Mupparapu N, Nguyen DN, Kim TH, Nguyen CM, Pan Z, Elshahawi SI. Structure-guided Mutagenesis Reveals the Catalytic Residue that Controls the Regiospecificity of C6-Indole Prenyltransferases. ChemCatChem 2023; 15:e202300423. [PMID: 37366495 PMCID: PMC10292028 DOI: 10.1002/cctc.202300423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 06/28/2023]
Abstract
Indole is a significant structural moiety and functionalization of the C-H bond in indole-containing molecules expands their chemical space, and modifies their properties and/or activities. Indole prenyltransferases (IPTs) catalyze the direct regiospecific installation of prenyl, C5 carbon units, on indole-derived compounds. IPTs have shown relaxed substrate flexibility enabling them to be used as tools for indole functionalization. However, the mechanism by which certain IPTs target a specific carbon position is not fully understood. Herein, we use structure-guided site-directed mutagenesis, in vitro enzymatic reactions, kinetics and structural-elucidation of analogs to verify the key catalytic residues that control the regiospecificity of all characterized regiospecific C6 IPTs. Our results also demonstrate that substitution of PriB_His312 to Tyr leads to the synthesis of analogs prenylated at different positions than C6. This work contributes to understanding of how certain IPTs can access a challenging position in indole-derived compounds.
Collapse
Affiliation(s)
- Ahmed R Aoun
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Nagaraju Mupparapu
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Diem N Nguyen
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Tae Ho Kim
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Christopher M Nguyen
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Zhengfeiyue Pan
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618
| |
Collapse
|
5
|
Leveson‐Gower RB, Roelfes G. Biocatalytic Friedel-Crafts Reactions. ChemCatChem 2022; 14:e202200636. [PMID: 36606067 PMCID: PMC9804301 DOI: 10.1002/cctc.202200636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/10/2022] [Indexed: 01/07/2023]
Abstract
Friedel-Crafts alkylation and acylation reactions are important methodologies in synthetic and industrial chemistry for the construction of aryl-alkyl and aryl-acyl linkages that are ubiquitous in bioactive molecules. Nature also exploits these reactions in many biosynthetic processes. Much work has been done to expand the synthetic application of these enzymes to unnatural substrates through directed evolution. The promise of such biocatalysts is their potential to supersede inefficient and toxic chemical approaches to these reactions, with mild operating conditions - the hallmark of enzymes. Complementary work has created many bio-hybrid Friedel-Crafts catalysts consisting of chemical catalysts anchored into biomolecular scaffolds, which display many of the same desirable characteristics. In this Review, we summarise these efforts, focussing on both mechanistic aspects and synthetic considerations, concluding with an overview of the frontiers of this field and routes towards more efficient and benign Friedel-Crafts reactions for the future of humankind.
Collapse
Affiliation(s)
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of Groningen9747 AGGroningenThe Netherlands
| |
Collapse
|
6
|
Isogai S, Okahashi N, Asama R, Nakamura T, Hasunuma T, Matsuda F, Ishii J, Kondo A. Synthetic production of prenylated naringenins in yeast using promiscuous microbial prenyltransferases. Metab Eng Commun 2021; 12:e00169. [PMID: 33868922 PMCID: PMC8040282 DOI: 10.1016/j.mec.2021.e00169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/19/2021] [Accepted: 03/01/2021] [Indexed: 11/29/2022] Open
Abstract
Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l-phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. In vitro screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3′ prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. In vivo, the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3′-prenylnaringenin (3′-PN), in contrast to the previously reported in vivo production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer. Promiscuous microbial prenyltransferases replaced regiospecific botanical enzymes. A stable yeast strain that produced naringenin from l-phenylalanine was constructed. A fungal prenyltransferase (AnaPT) catalyzed C-3′ prenylation of naringenin. AnaPT catalyzed the first microbial production of 3′-prenylnaringenin. Microbial prenyltransferases permit the production of various prenylated compounds.
Collapse
Affiliation(s)
- Shota Isogai
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ririka Asama
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomomi Nakamura
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| |
Collapse
|
7
|
Recent advances in biocatalytic derivatization of L-tyrosine. Appl Microbiol Biotechnol 2020; 104:9907-9920. [PMID: 33067683 DOI: 10.1007/s00253-020-10949-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 01/29/2023]
Abstract
L-Tyrosine is an aromatic, polar, non-essential amino acid that contains a highly reactive α-amino, α-carboxyl, and phenolic hydroxyl group. Derivatization of these functional groups can produce chemicals, such as L-3,4-dihydroxyphenylalanine, tyramine, 4-hydroxyphenylpyruvic acid, and benzylisoquinoline alkaloids, which are widely employed in the pharmaceutical, food, and cosmetics industries. In this review, we summarize typical L-tyrosine derivatizations catalyzed by enzymatic biocatalysts, as well as the strategies and challenges associated with their production processes. Finally, we discuss future perspectives pertaining to the enzymatic production of L-tyrosine derivatives.Key points• Summary of recent advances in enzyme-catalyzed L-tyrosine derivatization.• Highlights of relevant strategies involved in L-tyrosine derivatives biosynthesis.• Future perspectives on industrial applications of L-tyrosine derivatization.
Collapse
|
8
|
Malico AA, Calzini MA, Gayen AK, Williams GJ. Synthetic biology, combinatorial biosynthesis, and chemo‑enzymatic synthesis of isoprenoids. J Ind Microbiol Biotechnol 2020; 47:675-702. [PMID: 32880770 PMCID: PMC7666032 DOI: 10.1007/s10295-020-02306-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Isoprenoids are a large class of natural products with myriad applications as bioactive and commercial compounds. Their diverse structures are derived from the biosynthetic assembly and tailoring of their scaffolds, ultimately constructed from two C5 hemiterpene building blocks. The modular logic of these platforms can be harnessed to improve titers of valuable isoprenoids in diverse hosts and to produce new-to-nature compounds. Often, this process is facilitated by the substrate or product promiscuity of the component enzymes, which can be leveraged to produce novel isoprenoids. To complement rational enhancements and even re-programming of isoprenoid biosynthesis, high-throughput approaches that rely on searching through large enzymatic libraries are being developed. This review summarizes recent advances and strategies related to isoprenoid synthetic biology, combinatorial biosynthesis, and chemo-enzymatic synthesis, focusing on the past 5 years. Emerging applications of cell-free biosynthesis and high-throughput tools are included that culminate in a discussion of the future outlook and perspective of isoprenoid biosynthetic engineering.
Collapse
Affiliation(s)
| | - Miles A Calzini
- Department of Chemistry, NC State University, Raleigh, NC, 27695, USA
| | - Anuran K Gayen
- Department of Chemistry, NC State University, Raleigh, NC, 27695, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC, 27695, USA.
- Comparative Medicine Institute, NC State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
9
|
Vib-PT, an Aromatic Prenyltransferase Involved in the Biosynthesis of Vibralactone from Stereum vibrans. Appl Environ Microbiol 2020; 86:AEM.02687-19. [PMID: 32144102 DOI: 10.1128/aem.02687-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/03/2020] [Indexed: 02/01/2023] Open
Abstract
Vibralactone, a hybrid compound derived from phenols and a prenyl group, is a strong pancreatic lipase inhibitor with a rare fused bicyclic β-lactone skeleton. Recently, a researcher reported a vibralactone derivative (compound C1) that caused inhibition of pancreatic lipase with a half-maximal inhibitory concentration of 14 nM determined by structure-based optimization, suggesting a potential candidate as a new antiobesity treatment. In the present study, we sought to identify the main gene encoding prenyltransferase in Stereum vibrans, which is responsible for the prenylation of phenol leading to vibralactone synthesis. Two RNA silencing transformants of the identified gene (vib-PT) were obtained through Agrobacterium tumefaciens-mediated transformation. Compared to wild-type strains, the transformants showed a decrease in vib-PT expression ranging from 11.0 to 56.0% at 5, 10, and 15 days in reverse transcription-quantitative PCR analysis, along with a reduction in primary vibralactone production of 37 to 64% at 15 and 21 days, respectively, as determined using ultra-high-performance liquid chromatography-mass spectrometry analysis. A soluble and enzymatically active fusion Vib-PT protein was obtained by expressing vib-PT in Escherichia coli, and the enzyme's optimal reaction conditions and catalytic efficiency (Km /k cat) were determined. In vitro experiments established that Vib-PT catalyzed the C-prenylation at C-3 of 4-hydroxy-benzaldehyde and the O-prenylation at the 4-hydroxy of 4-hydroxy-benzenemethanol in the presence of dimethylallyl diphosphate. Moreover, Vib-PT shows promiscuity toward aromatic compounds and prenyl donors.IMPORTANCE Vibralactone is a lead compound with a novel skeleton structure that shows strong inhibitory activity against pancreatic lipase. Vibralactone is not encoded by the genome directly but rather is synthesized from phenol, followed by prenylation and other enzyme reactions. Here, we used an RNA silencing approach to identify and characterize a prenyltransferase in a basidiomycete species that is responsible for the synthesis of vibralactone. The identified gene, vib-PT, was expressed in Escherichia coli to obtain a soluble and enzymatically active fusion Vib-PT protein. In vitro characterization of the enzyme demonstrated the catalytic mechanism of prenylation and broad substrate range for different aromatic acceptors and prenyl donors. These characteristics highlight the possibility of Vib-PT to generate prenylated derivatives of aromatics and other compounds as improved bioactive agents or potential prodrugs.
Collapse
|
10
|
Johnson BP, Scull EM, Dimas DA, Bavineni T, Bandari C, Batchev AL, Gardner ED, Nimmo SL, Singh S. Acceptor substrate determines donor specificity of an aromatic prenyltransferase: expanding the biocatalytic potential of NphB. Appl Microbiol Biotechnol 2020; 104:4383-4395. [PMID: 32189045 PMCID: PMC7190591 DOI: 10.1007/s00253-020-10529-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
Abstract Aromatic prenyltransferases are known for their extensive promiscuity toward aromatic acceptor substrates and their ability to form various carbon-carbon and carbon-heteroatom bonds. Of particular interest among the prenyltransferases is NphB, whose ability to geranylate cannabinoid precursors has been utilized in several in vivo and in vitro systems. It has therefore been established that prenyltransferases can be utilized as biocatalysts for the generation of useful compounds. However, recent observations of non-native alkyl-donor promiscuity among prenyltransferases indicate the role of NphB in biocatalysis could be expanded beyond geranylation reactions. Therefore, the goal of this study was to elucidate the donor promiscuity of NphB using different acceptor substrates. Herein, we report distinct donor profiles between NphB-catalyzed reactions involving the known substrate 1,6-dihydroxynaphthalene and an FDA-approved drug molecule sulfabenzamide. Furthermore, we report the first instance of regiospecific, NphB-catalyzed N-alkylation of sulfabenzamide using a library of non-native alkyl-donors, indicating the biocatalytic potential of NphB as a late-stage diversification tool. Key Points • NphB can utilize the antibacterial drug sulfabenzamide as an acceptor. • The donor profile of NphB changes dramatically with the choice of acceptor. • NphB performs a previously unknown regiospecific N-alkylation on sulfabenzamide. • Prenyltransferases like NphB can be utilized as drug-alkylating biocatalysts. Electronic supplementary material The online version of this article (10.1007/s00253-020-10529-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bryce P Johnson
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Erin M Scull
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Dustin A Dimas
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Tejaswi Bavineni
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Chandrasekhar Bandari
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Andrea L Batchev
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Eric D Gardner
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Susan L Nimmo
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Shanteri Singh
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA.
| |
Collapse
|
11
|
Abstract
Aromatic prenyltransferases (PTases), including ABBA-type and dimethylallyl tryptophan synthase (DMATS)-type enzymes from bacteria and fungi, play important role for diversification of the natural products and improvement of the biological activities. For a decade, the characterization of enzymes and enzymatic synthesis of prenylated compounds by using ABBA-type and DMATS-type PTases have been demonstrated. Here, I introduce several examples of the studies on chemoenzymatic synthesis of unnatural prenylated compounds and the enzyme engineering of ABBA-type and DMATS-type PTases.
Collapse
|
12
|
Burkhardt I, Ye Z, Janevska S, Tudzynski B, Dickschat JS. Biochemical and Mechanistic Characterization of the Fungal Reverse N-1-Dimethylallyltryptophan Synthase DMATS1 Ff. ACS Chem Biol 2019; 14:2922-2931. [PMID: 31756078 DOI: 10.1021/acschembio.9b00828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dimethylallyltryptophan synthases catalyze the regiospecific transfer of (oligo)prenylpyrophosphates to aromatic substrates like tryptophan derivatives. These reactions are key steps in many biosynthetic pathways of fungal and bacterial secondary metabolites. In vitro investigations on recombinant DMATS1Ff from Fusarium fujikuroi identified the enzyme as the first selective reverse tryptophan-N-1 prenyltransferase of fungal origin. The enzyme was also able to catalyze the reverse N-geranylation of tryptophan. DMATS1Ff was shown to be phylogenetically related to fungal tyrosine O-prenyltransferases and fungal 7-DMATS. Like these enzymes, DMATS1Ff was able to convert tyrosine into its regularly O-prenylated derivative. Investigation of the binding sites of DMATS1Ff by homology modeling and comparison to the crystal structure of 4-DMATS FgaPT2 showed an almost identical site for DMAPP binding but different residues for tryptophan coordination. Several putative active site residues were verified by site directed mutagenesis of DMATS1Ff. Homology models of the phylogenetically related enzymes showed similar tryptophan binding residues, pointing to a unified substrate binding orientation of tryptophan and DMAPP, which is distinct from that in FgaPT2. Isotopic labeling experiments showed the reaction catalyzed by DMATS1Ff to be nonstereospecific. Based on these data, a detailed mechanism for DMATS1Ff catalysis is proposed.
Collapse
Affiliation(s)
- Immo Burkhardt
- Kekulé Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Zhongfeng Ye
- Kekulé Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Slavica Janevska
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Bettina Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Jeroen S. Dickschat
- Kekulé Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| |
Collapse
|
13
|
Zheng L, Mai P, Fan A, Li SM. Switching a regular tryptophan C4-prenyltransferase to a reverse tryptophan-containing cyclic dipeptide C3-prenyltransferase by sequential site-directed mutagenesis. Org Biomol Chem 2019; 16:6688-6694. [PMID: 30178787 DOI: 10.1039/c8ob01735b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
FgaPT2 from Aspergillus fumigatus catalyzes a regular C4- and its mutant K174A a reverse C3-prenylation of l-tryptophan in the presence of dimethylallyl diphosphate. FgaPT2 also uses tryptophan-containing cyclic dipeptides for C4-prenylation, while FgaPT2_K174A showed almost no activity toward these substrates. In contrast, Arg244 mutants of FgaPT2 accept very well cyclic dipeptides for regular C4-prenylation. In this study, we demonstrate that FgaPT2_K174F, which catalyzes a regular C3-prenylation on tyrosine, can also use cyclo-l-Trp-l-Ala, cyclo-l-Trp-l-Trp, cyclo-l-Trp-Gly, cyclo-l-Trp-l-Phe, cyclo-l-Trp-l-Pro, and cyclo-l-Trp-l-Tyr as substrates, but only with low activity. Combinational mutation on Lys174 and Arg244 increases significantly the acceptance of these cyclic dipeptides. With the exception of cyclo-l-Trp-l-Trp, the tested dipeptides were much better accepted by FgaPT2_K174F_R244X (X = L, N, Q, Y) than FgaPT2, with an increase of two- to six-fold activity. In comparison to FgaPT2_K174F, even two- to ten-fold conversion yields were calculated for the double mutants. Isolation and structural elucidation of the enzyme products revealed stereospecific reverse C3-prenylation on the indole ring, resulting in the formation of syn-cis configured hexahydropyrroloindole derivatives. The results presented in this study highlight the convenience of site-directed mutagenesis for creating new biocatalysts.
Collapse
Affiliation(s)
- Liujuan Zheng
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany.
| | | | | | | |
Collapse
|
14
|
Zhao W, Fan A, Tarcz S, Zhou K, Yin WB, Liu XQ, Li SM. Mutation on Gly115 and Tyr205 of the cyclic dipeptide C2-prenyltransferase FtmPT1 increases its catalytic activity toward hydroxynaphthalenes. Appl Microbiol Biotechnol 2016; 101:1989-1998. [DOI: 10.1007/s00253-016-7966-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/28/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022]
|
15
|
Schmidt NG, Eger E, Kroutil W. Building Bridges: Biocatalytic C-C-Bond Formation toward Multifunctional Products. ACS Catal 2016; 6:4286-4311. [PMID: 27398261 PMCID: PMC4936090 DOI: 10.1021/acscatal.6b00758] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Indexed: 12/12/2022]
Abstract
Carbon-carbon bond formation is the key reaction for organic synthesis to construct the carbon framework of organic molecules. The review gives a selection of biocatalytic C-C-bond-forming reactions which have been investigated during the last 5 years and which have already been proven to be applicable for organic synthesis. In most cases, the reactions lead to products functionalized at the site of C-C-bond formation (e.g., α-hydroxy ketones, aminoalcohols, diols, 1,4-diketones, etc.) or allow to decorate aromatic and heteroaromatic molecules. Furthermore, examples for cyclization of (non)natural precursors leading to saturated carbocycles are given as well as the stereoselective cyclopropanation of olefins affording cyclopropanes. Although many tools are already available, recent research also makes it clear that nature provides an even broader set of enzymes to perform specific C-C coupling reactions. The possibilities are without limit; however, a big library of variants for different types of reactions is required to have the specific enzyme for a desired specific (stereoselective) reaction at hand.
Collapse
Affiliation(s)
- Nina G. Schmidt
- ACIB
GmbH c/o, Department of Chemistry, University
of Graz, Heinrichstrasse
28, 8010 Graz, Austria
| | - Elisabeth Eger
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- ACIB
GmbH c/o, Department of Chemistry, University
of Graz, Heinrichstrasse
28, 8010 Graz, Austria
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
16
|
Zhou K, Zhao W, Liu XQ, Li SM. Saturation mutagenesis on Tyr205 of the cyclic dipeptide C2-prenyltransferase FtmPT1 results in mutants with strongly increased C3-prenylating activity. Appl Microbiol Biotechnol 2016; 100:9943-9953. [PMID: 27311563 DOI: 10.1007/s00253-016-7663-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/22/2016] [Accepted: 06/02/2016] [Indexed: 11/28/2022]
Abstract
The fungal indole prenyltransferase FtmPT1 is involved in the biosynthesis of fumitremorgins and catalyzes, in the presence of dimethylallyl diphosphate, a predominant regular prenylation of cyclo-L-Trp-L-Pro (brevianamide F) at position C-2 of the indole nucleus. Analysis of the substrate-bound structure of FtmPT1 revealed that brevianamide F forms a hydrogen bond via its carbonyl oxygen in the diketopiperazine moiety with the hydroxyl group of Tyr205 near the center of the prenyltransferase (PT) barrel. In this study, Tyr205 was mutated to 19 other proteinogenic amino acids by one-step site-directed mutagenesis. The obtained mutants were assayed in the presence of dimethylallyl diphosphate with brevianamide F. The enzyme products were isolated on HPLC and their structures were elucidated by NMR and MS analyses. Mutation of Tyr205 to Phe or Met did not change the behavior of FtmPT1 significantly, with regularly C2-prenylated brevianamide F as the predominant product. Interestingly, 15 of the obtained mutants also produced regularly C3-prenylated brevianamide F, with relative yields between 33 and 110 % of those of the regularly C2-prenylated derivatives. Among them, Y205C, Y205L, Y205N, Y205I, and Y205S showed similar brevianamide F consumption. Y205H, Y205Q, Y205V, Y205G, and Y205E showed activities between 47 and 77 % of that of the wild type. These results provide a solid basis for the construction of a brevianamide F regular C3-prenyltransferase by site-directed mutagenesis. Assaying stereoisomers of brevianamide F, cyclo-D-Trp-D-Pro, cyclo-L-Trp-D-Pro, and cyclo-D-Trp-L-Pro, with two selected mutants Y205N and Y205L resulted in the formation of reversely C3-prenylated derivatives as predominant products, being in sharp contrast to their regularly C2- and C3-prenylated derivatives with cyclo-L-Trp-L-Pro.
Collapse
Affiliation(s)
- Kang Zhou
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, 35037, Marburg, Germany
| | - Wei Zhao
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan Beilu, Beijing, 100048, China
| | - Xiao-Qing Liu
- College of Life Sciences, Capital Normal University, No. 105 Xisanhuan Beilu, Beijing, 100048, China.
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, 35037, Marburg, Germany.
| |
Collapse
|
17
|
Fan A, Xie X, Li SM. Tryptophan prenyltransferases showing higher catalytic activities for Friedel-Crafts alkylation of o- and m-tyrosines than tyrosine prenyltransferases. Org Biomol Chem 2016; 13:7551-7. [PMID: 26077893 DOI: 10.1039/c5ob01040c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tryptophan prenyltransferases FgaPT2, 5-DMATS, 6-DMATSSv and 7-DMATS catalyse regiospecific C-prenylations on the indole ring, while tyrosine prenyltransferases SirD and TyrPT catalyse the O-prenylation of the phenolic hydroxyl group. In this study, we report the Friedel-Crafts alkylation of L-o-tyrosine by these enzymes. Surprisingly, no conversion was detected with SirD and three tryptophan prenyltransferases showed significantly higher activity than another tyrosine prenyltransferase TyrPT. C5-prenylated L-o-tyrosine was identified as a unique product of these enzymes. Using L-m-tyrosine as the prenylation substrate, product formation was only observed with the tryptophan prenyltransferases FgaPT2 and 7-DMATS. C4- and C6-prenylated derivatives were identified in the reaction mixture of FgaPT2. These results provided additional evidence for the similarities and differences between these two subgroups within the DMATS superfamily in their catalytic behaviours.
Collapse
Affiliation(s)
- Aili Fan
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, 35037 Marburg, Germany.
| | | | | |
Collapse
|
18
|
Fan A, Li SM. Saturation mutagenesis on Arg244 of the tryptophan C4-prenyltransferase FgaPT2 leads to enhanced catalytic ability and different preferences for tryptophan-containing cyclic dipeptides. Appl Microbiol Biotechnol 2016; 100:5389-99. [DOI: 10.1007/s00253-016-7365-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/27/2015] [Accepted: 01/30/2016] [Indexed: 01/27/2023]
|
19
|
Fan A, Winkelblech J, Li SM. Impacts and perspectives of prenyltransferases of the DMATS superfamily for use in biotechnology. Appl Microbiol Biotechnol 2015; 99:7399-415. [PMID: 26227408 DOI: 10.1007/s00253-015-6813-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/22/2022]
Abstract
Prenylated compounds are ubiquitously found in nature and demonstrate interesting biological and pharmacological activities. Prenyltransferases catalyze the attachment of prenyl moieties from different prenyl donors to various acceptors and contribute significantly to the structural and biological diversity of natural products. In the last decade, significant progress has been achieved for the prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily. More than 40 members of these soluble enzymes are identified in microorganisms and characterized biochemically. These enzymes were also successfully used for production of a large number of prenylated derivatives. N1-, C4-, C5-, C6-, and C7-prenylated tryptophan and N1-, C2-, C3-, C4-, and C7-prenylated tryptophan-containing peptides were obtained by using DMATS enzymes as biocatalysts. Tyrosine and xanthone prenyltransferases were used for production of prenylated derivatives of their analogs. More interestingly, the members of the DMATS superfamily demonstrated intriguing substrate and catalytic promiscuity and also used structurally quite different compounds as prenyl acceptors. Prenylated hydroxynaphthalenes, flavonoids, indolocarbazoles, and acylphloroglucinols, which are typical bacterial or plant metabolites, were produced by using several fungal DMATS enzymes. Furthermore, the potential usage of these enzymes was further expanded by using natural or unnatural DMAPP analogs as well as by coexpression with other genes like NRPS and by development of whole cell biocatalyst.
Collapse
Affiliation(s)
- Aili Fan
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, D-35037, Marburg, Germany
| | | | | |
Collapse
|
20
|
Tyrosine O-prenyltransferases TyrPT and SirD displaying similar behavior toward unnatural alkyl or benzyl diphosphate as their natural prenyl donor dimethylallyl diphosphate. Appl Microbiol Biotechnol 2015; 99:7115-24. [DOI: 10.1007/s00253-015-6452-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/23/2015] [Accepted: 01/31/2015] [Indexed: 01/28/2023]
|