1
|
Hu J, Guan X, Zhao M, Xie P, Guo J, Tan J. Genome-wide CRISPR-Cas9 Knockout Screening Reveals a TSPAN3-mediated Endo-lysosome Pathway Regulating the Degradation of α-Synuclein Oligomers. Mol Neurobiol 2023; 60:6731-6747. [PMID: 37477766 DOI: 10.1007/s12035-023-03495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Misfolding and aggregation of α-Synuclein (α-Syn), which are hallmark pathological features of neurodegenerative diseases such as Parkinson's disease (PD) and dementia with Lewy Bodies, continue to be significant areas of research. Among the diverse forms of α-Syn - monomer, oligomer, and fibril, the oligomer is considered the most toxic. However, the mechanisms governing α-Syn oligomerization are not yet fully understood. In this study, we utilized genome-wide CRISPR/Cas9 loss-of-function screening in human HEK293 cells to identify negative regulators of α-Syn oligomerization. We found that tetraspanin 3 (TSPAN3), a presumptive four-pass transmembrane protein, but not its homolog TSPAN7, significantly modulates α-Syn oligomer levels. TSPAN3 was observed to interact with α-Syn oligomers, regulate the amount of α-Syn oligomers on the cell membrane, and promote their degradation via the clathrin-AP2 mediated endo-lysosome pathway. Our findings highlight TSPAN3 as a potential regulator of α-Syn oligomers, presenting a promising target for future PD prevention and treatment strategies.
Collapse
Affiliation(s)
- JunJian Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China
- Department of Central Laboratory, SSL Central Hospital of Dongguan City, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, China
| | - Xinjie Guan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Miao Zhao
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China
| | - Pengqing Xie
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Science, Central South University, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Murray KA, Hu CJ, Pan H, Lu J, Abskharon R, Bowler JT, Rosenberg GM, Williams CK, Elezi G, Balbirnie M, Faull KF, Vinters HV, Seidler PM, Eisenberg DS. Small molecules disaggregate alpha-synuclein and prevent seeding from patient brain-derived fibrils. Proc Natl Acad Sci U S A 2023; 120:e2217835120. [PMID: 36757890 PMCID: PMC9963379 DOI: 10.1073/pnas.2217835120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/31/2022] [Indexed: 02/10/2023] Open
Abstract
The amyloid aggregation of alpha-synuclein within the brain is associated with the pathogenesis of Parkinson's disease (PD) and other related synucleinopathies, including multiple system atrophy (MSA). Alpha-synuclein aggregates are a major therapeutic target for treatment of these diseases. We identify two small molecules capable of disassembling preformed alpha-synuclein fibrils. The compounds, termed CNS-11 and CNS-11g, disaggregate recombinant alpha-synuclein fibrils in vitro, prevent the intracellular seeded aggregation of alpha-synuclein fibrils, and mitigate alpha-synuclein fibril cytotoxicity in neuronal cells. Furthermore, we demonstrate that both compounds disassemble fibrils extracted from MSA patient brains and prevent their intracellular seeding. They also reduce in vivo alpha-synuclein aggregates in C. elegans. Both compounds also penetrate brain tissue in mice. A molecular dynamics-based computational model suggests the compounds may exert their disaggregating effects on the N terminus of the fibril core. These compounds appear to be promising therapeutic leads for targeting alpha-synuclein for the treatment of synucleinopathies.
Collapse
Affiliation(s)
- Kevin A. Murray
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| | - Carolyn J. Hu
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| | - Hope Pan
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| | - Jiahui Lu
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| | - Romany Abskharon
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| | - Jeannette T. Bowler
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| | - Gregory M. Rosenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| | - Christopher K. Williams
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA90095
| | - Gazmend Elezi
- Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, UCLA, Los Angeles, CA90095
| | - Melinda Balbirnie
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| | - Kym F. Faull
- Pasarow Mass Spectrometry Laboratory, David Geffen School of Medicine, UCLA, Los Angeles, CA90095
| | - Harry V. Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA90095
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA90095
| | - Paul M. Seidler
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA90089
| | - David S. Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, UCLA, Los Angeles, CA90095
- HHMI, UCLA, Los Angeles, CA90095
| |
Collapse
|
3
|
Vidović M, Rikalovic MG. Alpha-Synuclein Aggregation Pathway in Parkinson's Disease: Current Status and Novel Therapeutic Approaches. Cells 2022; 11:cells11111732. [PMID: 35681426 PMCID: PMC9179656 DOI: 10.3390/cells11111732] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
Following Alzheimer’s, Parkinson’s disease (PD) is the second-most common neurodegenerative disorder, sharing an unclear pathophysiology, a multifactorial profile, and massive social costs worldwide. Despite this, no disease-modifying therapy is available. PD is tightly associated with α-synuclein (α-Syn) deposits, which become organised into insoluble, amyloid fibrils. As a typical intrinsically disordered protein, α-Syn adopts a monomeric, random coil conformation in an aqueous solution, while its interaction with lipid membranes drives the transition of the molecule part into an α-helical structure. The central unstructured region of α-Syn is involved in fibril formation by converting to well-defined, β-sheet rich secondary structures. Presently, most therapeutic strategies against PD are focused on designing small molecules, peptides, and peptidomimetics that can directly target α-Syn and its aggregation pathway. Other approaches include gene silencing, cell transplantation, stimulation of intracellular clearance with autophagy promoters, and degradation pathways based on immunotherapy of amyloid fibrils. In the present review, we sum marise the current advances related to α-Syn aggregation/neurotoxicity. These findings present a valuable arsenal for the further development of efficient, nontoxic, and non-invasive therapeutic protocols for disease-modifying therapy that tackles disease onset and progression in the future.
Collapse
Affiliation(s)
- Marija Vidović
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Correspondence: ; Tel.: +38-16-4276-3221
| | - Milena G. Rikalovic
- Environment and Sustainable Development, Singidunum Univeristy, Danijelova 32, 11010 Belgrade, Serbia;
| |
Collapse
|
4
|
Peña-Díaz S, Pujols J, Vasili E, Pinheiro F, Santos J, Manglano-Artuñedo Z, Outeiro TF, Ventura S. The small aromatic compound SynuClean-D inhibits the aggregation and seeded polymerization of multiple α-synuclein strains. J Biol Chem 2022; 298:101902. [PMID: 35390347 PMCID: PMC9079179 DOI: 10.1016/j.jbc.2022.101902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/25/2022] Open
Abstract
Parkinson’s disease is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, as well as the accumulation of intraneuronal proteinaceous inclusions known as Lewy bodies and Lewy neurites. The major protein component of Lewy inclusions is the intrinsically disordered protein α-synuclein (α-Syn), which can adopt diverse amyloid structures. Different conformational strains of α-Syn have been proposed to be related to the onset of distinct synucleinopathies; however, how specific amyloid fibrils cause distinctive pathological traits is not clear. Here, we generated three different α-Syn amyloid conformations at different pH and salt concentrations and analyzed the activity of SynuClean-D (SC-D), a small aromatic molecule, on these strains. We show that incubation of α-Syn with SC-D reduced the formation of aggregates and the seeded polymerization of α-Syn in all cases. Moreover, we found that SC-D exhibited a general fibril disaggregation activity. Finally, we demonstrate that treatment with SC-D also reduced strain-specific intracellular accumulation of phosphorylated α-Syn inclusions. Taken together, we conclude that SC-D may be a promising hit compound to inhibit polymorphic α-Syn aggregation.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina. Universitat Autonoma de Barcelona, Bellaterra, Spain; Departament de Bioquimica i Biologia Molecular. Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina. Universitat Autonoma de Barcelona, Bellaterra, Spain; Departament de Bioquimica i Biologia Molecular. Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina. Universitat Autonoma de Barcelona, Bellaterra, Spain; Departament de Bioquimica i Biologia Molecular. Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Jaime Santos
- Institut de Biotecnologia i Biomedicina. Universitat Autonoma de Barcelona, Bellaterra, Spain; Departament de Bioquimica i Biologia Molecular. Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Zoe Manglano-Artuñedo
- Institut de Biotecnologia i Biomedicina. Universitat Autonoma de Barcelona, Bellaterra, Spain; Departament de Bioquimica i Biologia Molecular. Universitat Autonoma de Barcelona, Bellaterra, Spain
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, Newcastle, United Kingdom; Scientific Employee With a Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina. Universitat Autonoma de Barcelona, Bellaterra, Spain; Departament de Bioquimica i Biologia Molecular. Universitat Autonoma de Barcelona, Bellaterra, Spain; ICREA, Passeig Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
5
|
Reimer L, Haikal C, Gram H, Theologidis V, Kovacs G, Ruesink H, Baun A, Nielsen J, Otzen DE, Li JY, Jensen PH. Low dose DMSO treatment induces oligomerization and accelerates aggregation of α-synuclein. Sci Rep 2022; 12:3737. [PMID: 35260646 PMCID: PMC8904838 DOI: 10.1038/s41598-022-07706-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 02/10/2022] [Indexed: 01/05/2023] Open
Abstract
Dimethyl sulfoxide (DMSO) is a highly utilized small molecule that serves many purposes in scientific research. DMSO offers unique polar, aprotic and amphiphilic features, which makes it an ideal solvent for a wide variety of both polar and nonpolar molecules. Furthermore, DMSO is often used as a cryoprotectant in cell-based research. However, recent reports suggest that DMSO, even at low concentration, might interfere with important cellular processes, and cause macromolecular changes to proteins where a shift from α-helical to β-sheet structure can be observed. To investigate how DMSO might influence current research, we assessed biochemical and cellular impacts of DMSO treatment on the structure of the aggregation-prone protein α-synuclein, which plays a central role in the etiology of Parkinson’s disease, and other brain-related disorders, collectively termed the synucleinopathies. Here, we found that addition of DMSO increased the particle-size of α-synuclein, and accelerated the formation of seeding-potent fibrils in a dose-dependent manner. These fibrils made in the presence of DMSO were indistinguishable from fibrils made in pure PBS, when assessed by proteolytic digestion, cytotoxic profile and their ability to seed cellular aggregation of α-synuclein. Moreover, as evident through binding to the MJFR-14-6-4-2 antibody, which preferentially recognizes aggregated forms of α-synuclein, and a bimolecular fluorescence complementation assay, cells exposed to DMSO experienced increased aggregation of α-synuclein. However, no observable α-synuclein abnormalities nor differences in neuronal survival were detected after oral DMSO-treatment in either C57BL/6- or α-synuclein transgenic F28 mice. In summary, we demonstrate that low concentrations of DMSO makes α-synuclein susceptible to undergo aggregation both in vitro and in cells. This may affect experimental outcomes when studying α-synuclein in the presence of DMSO, and should call for careful consideration when such experiments are planned.
Collapse
Affiliation(s)
- Lasse Reimer
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus C, Denmark. .,Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hjalte Gram
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Vasileios Theologidis
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Gergo Kovacs
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Harm Ruesink
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Andreas Baun
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center - iNANO, Aarhus University, Aarhus C, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center - iNANO, Aarhus University, Aarhus C, Denmark
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Institute of Health Sciences, China Medical University, 110112, Shenyang, People's Republic of China
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, Aarhus C, Denmark.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
6
|
Hideshima M, Kimura Y, Aguirre C, Kakuda K, Takeuchi T, Choong CJ, Doi J, Nabekura K, Yamaguchi K, Nakajima K, Baba K, Nagano S, Goto Y, Nagai Y, Mochizuki H, Ikenaka K. Two-step screening method to identify α-synuclein aggregation inhibitors for Parkinson's disease. Sci Rep 2022; 12:351. [PMID: 35013421 PMCID: PMC8748996 DOI: 10.1038/s41598-021-04131-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disease characterized by the formation of neuronal inclusions of α-synuclein in patient brains. As the disease progresses, toxic α-synuclein aggregates transmit throughout the nervous system. No effective disease-modifying therapy has been established, and preventing α-synuclein aggregation is thought to be one of the most promising approaches to ameliorate the disease. In this study, we performed a two-step screening using the thioflavin T assay and a cell-based assay to identify α-synuclein aggregation inhibitors. The first screening, thioflavin T assay, allowed the identification of 30 molecules, among a total of 1262 FDA-approved small compounds, which showed inhibitory effects on α-synuclein fibrilization. In the second screening, a cell-based aggregation assay, seven out of these 30 candidates were found to prevent α-synuclein aggregation without causing substantial toxicity. Of the seven final candidates, tannic acid was the most promising compound. The robustness of our screening method was validated by a primary neuronal cell model and a Caenorhabditis elegans model, which demonstrated the effect of tannic acid against α-synuclein aggregation. In conclusion, our two-step screening system is a powerful method for the identification of α-synuclein aggregation inhibitors, and tannic acid is a promising candidate as a disease-modifying drug for Parkinson's disease.
Collapse
Affiliation(s)
- Makoto Hideshima
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasuyoshi Kimura
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - César Aguirre
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keita Kakuda
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihide Takeuchi
- Department of Neurology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-sayama, Osaka, 589-8511, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Chi-Jing Choong
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Junko Doi
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kei Nabekura
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiichi Yamaguchi
- Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kichitaro Nakajima
- Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kousuke Baba
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Seiichi Nagano
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Goto
- Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshitaka Nagai
- Department of Neurology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-sayama, Osaka, 589-8511, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kensuke Ikenaka
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Ali RF, Gates BD. Lithium niobate particles with a tunable diameter and porosity for optical second harmonic generation. RSC Adv 2021; 12:822-833. [PMID: 35425117 PMCID: PMC8979055 DOI: 10.1039/d1ra07216a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 01/11/2023] Open
Abstract
Uniform, porous particles of lithium niobate (LiNbO3) can be used as contrast agents in bioimaging, drug delivery carriers, nonlinear optical emitters, biosensors, photocatalysts and electrode materials in lithium-ion batteries. In this article, we introduce a hydrothermal method to prepare uniform, mesoporous LiNbO3 particles with a tunable diameter and porosity. These properties are each tuned by adjusting the reaction times of the hydrothermal process. This approach forms mesoporous LiNbO3 particles without the addition of organic additives (e.g., surfactants) or hard templates (e.g., silica). Formation of these LiNbO3 particles proceeds through an aqueous sol-gel reaction in which niobium hydroxide species are generated in situ and undergo a condensation reaction in the presence of lithium hydroxide to form a colloidal solution. A hydrothermal reaction using this solution resulted in the formation of uniform, solid, and semi-crystalline particles. A post-calcination step induces crystallinity in the product and transforms the particles into mesoporous materials composed of a rhombohedral LiNbO3 phase. An increase in reaction time results in an increase in the diameter of these particles from 580 to 1850 nm, but also decreases their porosity. These LiNbO3 particles were active towards second harmonic generation (SHG), and their SHG response resembled that of larger crystals of rhombohedral LiNbO3. This work also offers a viable strategy for manufacturing other materials (e.g., tantalates, titanates, niobates) with tunable dimensions and porosity that enable a broad range of applications in photonics, energy, and catalysis.
Collapse
Affiliation(s)
- Rana Faryad Ali
- Department of Chemistry and 4D LABS, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| | - Byron D Gates
- Department of Chemistry and 4D LABS, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| |
Collapse
|
8
|
Pallen S, Shetty Y, Das S, Vaz JM, Mazumder N. Advances in nonlinear optical microscopy techniques for in vivo and in vitro neuroimaging. Biophys Rev 2021; 13:1199-1217. [PMID: 35047093 PMCID: PMC8724370 DOI: 10.1007/s12551-021-00832-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/17/2021] [Indexed: 11/27/2022] Open
Abstract
Understanding the mechanism of the brain via optical microscopy is one of the challenges in neuroimaging, considering the complex structures. Advanced neuroimaging techniques provide a more comprehensive insight into patho-mechanisms of brain disorders, which is useful in the early diagnosis of the pathological and physiological changes associated with various neurodegenerative diseases. Recent advances in optical microscopy techniques have evolved powerful tools to overcome scattering of light and provide improved in vivo neuroimaging with sub-cellular resolution, endogenous contrast specificity, pinhole less optical sectioning capability, high penetration depth, and so on. The following article reviews the developments in various optical imaging techniques including two-photon and three-photon fluorescence, second-harmonic generation, third-harmonic generation, coherent anti-Stokes Raman scattering, and stimulated Raman scattering in neuroimaging. We have outlined the potentials and drawbacks of these techniques and their possible applications in the investigation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sparsha Pallen
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Yuthika Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Subir Das
- Institute of Biophotonics, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei, 112 Taiwan
| | - Joel Markus Vaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal, Karnataka 576104 India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
9
|
Lundquist KP, Panchal V, Gotfredsen CH, Brenk R, Clausen MH. Fragment-Based Drug Discovery for RNA Targets. ChemMedChem 2021; 16:2588-2603. [PMID: 34101375 DOI: 10.1002/cmdc.202100324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/26/2022]
Abstract
Rapid development within the fields of both fragment-based drug discovery (FBDD) and medicinal targeting of RNA provides possibilities for combining technologies and methods in novel ways. This review provides an overview of fragment-based screening (FBS) against RNA targets, including a discussion of the most recently used screening and hit validation methods such as NMR spectroscopy, X-ray crystallography, and virtual screening methods. A discussion of fragment library design based on research from small-molecule RNA binders provides an overview on both the currently limited guidelines within RNA-targeting fragment library design, and future possibilities. Finally, future perspectives are provided on screening and hit validation methods not yet used in combination with both fragment screening and RNA targets.
Collapse
Affiliation(s)
- Kasper P Lundquist
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Vipul Panchal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Charlotte H Gotfredsen
- NMR Center ⋅ DTU, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Peña-Díaz S, Pujols J, Pinheiro F, Santos J, Pallarés I, Navarro S, Conde-Gimenez M, García J, Salvatella X, Dalfó E, Sancho J, Ventura S. Inhibition of α-Synuclein Aggregation and Mature Fibril Disassembling With a Minimalistic Compound, ZPDm. Front Bioeng Biotechnol 2020; 8:588947. [PMID: 33178678 PMCID: PMC7597392 DOI: 10.3389/fbioe.2020.588947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Synucleinopathies are a group of disorders characterized by the accumulation of α-Synuclein amyloid inclusions in the brain. Preventing α-Synuclein aggregation is challenging because of the disordered nature of the protein and the stochastic nature of fibrillogenesis, but, at the same time, it is a promising approach for therapeutic intervention in these pathologies. A high-throughput screening initiative allowed us to discover ZPDm, the smallest active molecule in a library of more than 14.000 compounds. Although the ZPDm structure is highly related to that of the previously described ZPD-2 aggregation inhibitor, we show here that their mechanisms of action are entirely different. ZPDm inhibits the aggregation of wild-type, A30P, and H50Q α-Synuclein variants in vitro and interferes with α-Synuclein seeded aggregation in protein misfolding cyclic amplification assays. However, ZPDm distinctive feature is its strong potency to dismantle preformed α-Synuclein amyloid fibrils. Studies in a Caenorhabditis elegans model of Parkinson's Disease, prove that these in vitro properties are translated into a significant reduction in the accumulation of α-Synuclein inclusions in ZPDm treated animals. Together with previous data, the present work illustrates how different chemical groups on top of a common molecular scaffold can result in divergent but complementary anti-amyloid activities.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaime Santos
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irantzu Pallarés
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Conde-Gimenez
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, and Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Esther Dalfó
- Medicine, M2, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | - Javier Sancho
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, and Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
11
|
Blay V, Tolani B, Ho SP, Arkin MR. High-Throughput Screening: today's biochemical and cell-based approaches. Drug Discov Today 2020; 25:1807-1821. [PMID: 32801051 DOI: 10.1016/j.drudis.2020.07.024] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/01/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
High-throughput screening (HTS) provides starting chemical matter in the adventure of developing a new drug. In this review, we survey several HTS methods used today for hit identification, organized in two main flavors: biochemical and cell-based assays. Biochemical assays discussed include fluorescence polarization and anisotropy, FRET, TR-FRET, and fluorescence lifetime analysis. Binding-based methods are also surveyed, including NMR, SPR, mass spectrometry, and DSF. On the other hand, cell-based assays discussed include viability, reporter gene, second messenger, and high-throughput microscopy assays. We devote some emphasis to high-content screening, which is becoming very popular. An advisable stage after hit discovery using phenotypic screens is target deconvolution, and we provide an overview of current chemical proteomics, in silico, and chemical genetics tools. Emphasis is made on recent CRISPR/dCas-based screens. Lastly, we illustrate some of the considerations that inform the choice of HTS methods and point to some areas with potential interest for future research.
Collapse
Affiliation(s)
- Vincent Blay
- Division of Biomaterials and Bioengineering, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Bhairavi Tolani
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Sunita P Ho
- Division of Biomaterials and Bioengineering, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and the Small Molecule Discovery Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
12
|
Cornella-Taracido I, Garcia-Echeverria C. Monovalent protein-degraders - Insights and future perspectives. Bioorg Med Chem Lett 2020; 30:127202. [PMID: 32331933 DOI: 10.1016/j.bmcl.2020.127202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
The therapeutic potential of interfering with dysregulated proteins by inducing its selective degradation has been pursued using different mechanisms. In the present article, we review representative examples of monovalent protein-degraders that, contrary to the proteolysis targeting chimeras, achieve target degradation without displaying recognition motifs for the recruitment of E3 ubiquitin ligases. We also highlight new technologies and assays that may brought to bear on the discovery of common elements that could predict and enable the selective degradation of pathogenic targets by monovalent protein-degraders. The successful application of these methods would pave the way to the advancement of new drugs with unique efficacy and tolerability properties.
Collapse
|
13
|
Wilson CG, Arkin MR. Screening and biophysics in small molecule discovery. SMALL MOLECULE DRUG DISCOVERY 2020:127-161. [DOI: 10.1016/b978-0-12-818349-6.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Peña-Díaz S, Pujols J, Conde-Giménez M, Čarija A, Dalfo E, García J, Navarro S, Pinheiro F, Santos J, Salvatella X, Sancho J, Ventura S. ZPD-2, a Small Compound That Inhibits α-Synuclein Amyloid Aggregation and Its Seeded Polymerization. Front Mol Neurosci 2019; 12:306. [PMID: 31920537 PMCID: PMC6928008 DOI: 10.3389/fnmol.2019.00306] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
α-Synuclein (α-Syn) forms toxic intracellular protein inclusions and transmissible amyloid structures in Parkinson’s disease (PD). Preventing α-Syn self-assembly has become one of the most promising approaches in the search for disease-modifying treatments for this neurodegenerative disorder. Here, we describe the capacity of a small molecule (ZPD-2), identified after a high-throughput screening, to inhibit α-Syn aggregation. ZPD-2 inhibits the aggregation of wild-type α-Syn and the A30P and H50Q familial variants in vitro at substoichiometric compound:protein ratios. In addition, the molecule prevents the spreading of α-Syn seeds in protein misfolding cyclic amplification assays. ZPD-2 is active against different α-Syn strains and blocks their seeded polymerization. Treating with ZPD-2 two different PD Caenorhabditis elegans models that express α-Syn either in muscle or in dopaminergic (DA) neurons substantially reduces the number of α-Syn inclusions and decreases synuclein-induced DA neurons degeneration. Overall, ZPD-2 is a hit compound worth to be explored in order to develop lead molecules for therapeutic intervention in PD.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - María Conde-Giménez
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Anita Čarija
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Esther Dalfo
- Faculty of Medicine, M2, Universitat Autonoma de Barcelona, Barcelona, Spain.,Faculty of Medicine, University of Vic - Central University of Catalonia, Vic, Spain
| | - Jesús García
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Jaime Santos
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Catalan Institute for Research and Advance Studies, Barcelona, Spain
| | - Javier Sancho
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autonoma de Barcelona, Barcelona, Spain.,Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Barcelona, Spain.,Catalan Institute for Research and Advance Studies, Barcelona, Spain
| |
Collapse
|
15
|
Donohue E, Khorsand S, Mercado G, Varney KM, Wilder PT, Yu W, MacKerell AD, Alexander P, Van QN, Moree B, Stephen AG, Weber DJ, Salafsky J, McCormick F. Second harmonic generation detection of Ras conformational changes and discovery of a small molecule binder. Proc Natl Acad Sci U S A 2019; 116:17290-17297. [PMID: 31399543 PMCID: PMC6717309 DOI: 10.1073/pnas.1905516116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Second harmonic generation (SHG) is an emergent biophysical method that sensitively measures real-time conformational change of biomolecules in the presence of biological ligands and small molecules. This study describes the successful implementation of SHG as a primary screening platform to identify fragment ligands to oncogenic Kirsten rat sarcoma (KRas). KRas is the most frequently mutated driver of pancreatic, colon, and lung cancers; however, there are few well-characterized small molecule ligands due to a lack of deep binding pockets. Using SHG, we identified a fragment binder to KRasG12D and used 1H 15N transverse relaxation optimized spectroscopy (TROSY) heteronuclear single-quantum coherence (HSQC) NMR to characterize its binding site as a pocket adjacent to the switch 2 region. The unique sensitivity of SHG furthered our study by revealing distinct conformations induced by our hit fragment compared with 4,6-dichloro-2-methyl-3-aminoethyl-indole (DCAI), a Ras ligand previously described to bind the same pocket. This study highlights SHG as a high-throughput screening platform that reveals structural insights in addition to ligand binding.
Collapse
Affiliation(s)
- Elizabeth Donohue
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
- Biodesy, Inc., South San Francisco, CA 94080
| | - Sina Khorsand
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
- Biodesy, Inc., South San Francisco, CA 94080
| | | | - Kristen M Varney
- Center for Biomolecular Therapeutics, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| | - Paul T Wilder
- Center for Biomolecular Therapeutics, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| | - Wenbo Yu
- Center for Biomolecular Therapeutics, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Alexander D MacKerell
- Center for Biomolecular Therapeutics, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Patrick Alexander
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Que N Van
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - Ben Moree
- Biodesy, Inc., South San Francisco, CA 94080
| | - Andrew G Stephen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| | - David J Weber
- Center for Biomolecular Therapeutics, School of Medicine, University of Maryland, Baltimore, MD 21201
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| | - Joshua Salafsky
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158;
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702
| |
Collapse
|
16
|
Birman Y, Khorsand S, Tu E, Mortensen RB, Butko MT. Second-harmonic generation-based methods to detect and characterize ligand-induced RNA conformational changes. Methods 2019; 167:92-104. [PMID: 31116965 DOI: 10.1016/j.ymeth.2019.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/11/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022] Open
Abstract
Second-harmonic generation (SHG) is a biophysical tool that senses ligand-induced conformational changes in biomolecules. The Biodesy Delta™ has been developed as a high-throughput screening platform to monitor conformational changes in proteins and oligonucleotides by SHG to support drug discovery efforts. This work will outline (1) an overview of this technology, (2) detailed protocols for optimizing screening-ready SHG assays on RNA targets, (3) practical considerations for developing robust and informative SHG measurements, and (4) a case study that demonstrates the application of these recommendations on an RNA target. The previously published theophylline aptamer SHG assay [1] was further optimized to maximize the assay window between the positive control (theophylline) and the negative control (caffeine). Optimization of this assay provides practical considerations for building a robust SHG assay on an RNA target, including testing for specific tethering of the conjugate to the surface as well as testing tool compound response stability, reversibility, and concentration-dependence/affinity. A more robust, better-performing theophylline aptamer SHG assay was achieved that would be more appropriate for conducting a screen.
Collapse
Affiliation(s)
- Yuliya Birman
- Biodesy, Inc., South San Francisco 94080, United States
| | - Sina Khorsand
- Biodesy, Inc., South San Francisco 94080, United States
| | - Erick Tu
- Biodesy, Inc., South San Francisco 94080, United States
| | | | | |
Collapse
|
17
|
Javed H, Nagoor Meeran MF, Azimullah S, Adem A, Sadek B, Ojha SK. Plant Extracts and Phytochemicals Targeting α-Synuclein Aggregation in Parkinson's Disease Models. Front Pharmacol 2019; 9:1555. [PMID: 30941047 PMCID: PMC6433754 DOI: 10.3389/fphar.2018.01555] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
α-Synuclein (α-syn) is a presynaptic protein that regulates the release of neurotransmitters from synaptic vesicles in the brain. α-Syn aggregates, including Lewy bodies, are features of both sporadic and familial forms of Parkinson's disease (PD). These aggregates undergo several key stages of fibrillation, oligomerization, and aggregation. Therapeutic benefits of drugs decline with disease progression and offer only symptomatic treatment. Novel therapeutic strategies are required which can either prevent or delay the progression of the disease. The link between α-syn and the etiopathogenesis and progression of PD are well-established in the literature. Studies indicate that α-syn is an important therapeutic target and inhibition of α-syn aggregation, oligomerization, and fibrillation are an important disease modification strategy. However, recent studies have shown that plant extracts and phytochemicals have neuroprotective effects on α-syn oligomerization and fibrillation by targeting different key stages of its formation. Although many reviews on the antioxidant-mediated, neuroprotective effect of plant extracts and phytochemicals on PD symptoms have been well-highlighted, the antioxidant mechanisms show limited success for translation to clinical studies. The identification of specific plant extracts and phytochemicals that target α-syn aggregation will provide selective molecules to develop new drugs for PD. The present review provides an overview of plant extracts and phytochemicals that target α-syn in PD and summarizes the observed effects and the underlying mechanisms. Furthermore, we provide a synopsis of current experimental models and techniques used to evaluate plant extracts and phytochemicals. Plant extracts and phytochemicals were found to inhibit the aggregation or fibril formation of oligomers. These also appear to direct α-syn oligomer formation into its unstructured form or promote non-toxic pathways and suggested to be valuable drug candidates for PD and related synucleinopathy. Current evidences from in vitro studies require confirmation in the in vivo studies. Further studies are needed to ascertain their potential effects and safety in preclinical studies for pharmaceutical/nutritional development of these phytochemicals or dietary inclusion of the plant extracts in PD treatment.
Collapse
Affiliation(s)
- Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shreesh Kumar Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
Daniels MJ, Nourse JB, Kim H, Sainati V, Schiavina M, Murrali MG, Pan B, Ferrie JJ, Haney CM, Moons R, Gould NS, Natalello A, Grandori R, Sobott F, Petersson EJ, Rhoades E, Pierattelli R, Felli I, Uversky VN, Caldwell KA, Caldwell GA, Krol ES, Ischiropoulos H. Cyclized NDGA modifies dynamic α-synuclein monomers preventing aggregation and toxicity. Sci Rep 2019; 9:2937. [PMID: 30814575 PMCID: PMC6393491 DOI: 10.1038/s41598-019-39480-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
Growing evidence implicates α-synuclein aggregation as a key driver of neurodegeneration in Parkinson’s disease (PD) and other neurodegenerative disorders. Herein, the molecular and structural mechanisms of inhibiting α-synuclein aggregation by novel analogs of nordihydroguaiaretic acid (NDGA), a phenolic dibenzenediol lignan, were explored using an array of biochemical and biophysical methodologies. NDGA analogs induced modest, progressive compaction of monomeric α-synuclein, preventing aggregation into amyloid-like fibrils. This conformational remodeling preserved the dynamic adoption of α-helical conformations, which are essential for physiological membrane interactions. Oxidation-dependent NDGA cyclization was required for the interaction with monomeric α-synuclein. NDGA analog-pretreated α-synuclein did not aggregate even without NDGA-analogs in the aggregation mixture. Strikingly, NDGA-pretreated α-synuclein suppressed aggregation of naïve untreated aggregation-competent monomeric α-synuclein. Further, cyclized NDGA reduced α-synuclein-driven neurodegeneration in Caenorhabditis elegans. The cyclized NDGA analogs may serve as a platform for the development of small molecules that stabilize aggregation-resistant α-synuclein monomers without interfering with functional conformations yielding potential therapies for PD and related disorders.
Collapse
Affiliation(s)
- Malcolm J Daniels
- Pharmacology Graduate Group, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Brucker Nourse
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Hanna Kim
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Valerio Sainati
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | - Marco Schiavina
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | - Maria Grazia Murrali
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | - Buyan Pan
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John J Ferrie
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Conor M Haney
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rani Moons
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Neal S Gould
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, Antwerp University, Antwerp, Belgium.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.,School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Roberta Pierattelli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | - Isabella Felli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Florence, 50019, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.,Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russian Federation
| | - Kim A Caldwell
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Edward S Krol
- College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Harry Ischiropoulos
- Pharmacology Graduate Group, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA. .,Children's Hospital of Philadelphia Research Institute and Systems Pharmacology and Translational Therapeutics, the Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Esposito D, Stephen AG, Turbyville TJ, Holderfield M. New weapons to penetrate the armor: Novel reagents and assays developed at the NCI RAS Initiative to enable discovery of RAS therapeutics. Semin Cancer Biol 2019; 54:174-182. [PMID: 29432816 PMCID: PMC6085166 DOI: 10.1016/j.semcancer.2018.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/23/2018] [Accepted: 02/06/2018] [Indexed: 12/21/2022]
Abstract
Development of therapeutic strategies against RAS-driven cancers has been challenging due in part to a lack of understanding of the biology of the system and the ability to design appropriate assays and reagents for targeted drug discovery efforts. Recent developments in the field have opened up new avenues for exploration both through advances in the number and quality of reagents as well as the introduction of novel biochemical and cell-based assay technologies which can be used for high-throughput screening of compound libraries. The reagents and assays developed at the NCI RAS Initiative offer a suite of new weapons that could potentially be used to enable the next generation of RAS drug discovery efforts with the hope of finding novel therapeutics for a target once deemed undruggable.
Collapse
Affiliation(s)
- Dominic Esposito
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD, USA.
| | - Andrew G Stephen
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD, USA
| | - Thomas J Turbyville
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD, USA
| | - Matthew Holderfield
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. PO Box B, Frederick, MD, USA
| |
Collapse
|
20
|
|
21
|
Young TA, Moree B, Butko MT, Clancy B, Geck Do M, Gheyi T, Strelow J, Carrillo JJ, Salafsky J. Second-Harmonic Generation (SHG) for Conformational Measurements: Assay Development, Optimization, and Screening. Methods Enzymol 2018; 610:167-190. [PMID: 30390798 DOI: 10.1016/bs.mie.2018.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Second-harmonic generation (SHG) has recently emerged as a biophysical tool for conformational sensing of a target biomolecule upon binding to ligands such as small molecules, fragments, proteins, peptides, and oligonucleotides. To date, SHG has been used to measure conformational changes of targets such as soluble proteins, protein complexes, intrinsically disordered proteins, peripheral and integral membrane proteins, peptides, and oligonucleotides upon binding of ligands over a wide range of affinities. In this chapter, we will provide a technology overview, detailed protocols for optimizing assays and screening, practical considerations, and an example case study to guide the reader in developing robust and informative measurements using the Biodesy Delta SHG platform.
Collapse
Affiliation(s)
- Tracy A Young
- Biodesy, Inc., South San Francisco, CA, United States
| | - Ben Moree
- Biodesy, Inc., South San Francisco, CA, United States
| | | | - Bason Clancy
- Biodesy, Inc., South San Francisco, CA, United States
| | - Mary Geck Do
- The University of Texas MD Anderson Cancer Center, Institute for Applied Cancer Science, Houston, TX, United States
| | - Tarun Gheyi
- Lilly Biotechnology Center, San Diego, CA, United States
| | - John Strelow
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | | | | |
Collapse
|
22
|
Small molecule inhibits α-synuclein aggregation, disrupts amyloid fibrils, and prevents degeneration of dopaminergic neurons. Proc Natl Acad Sci U S A 2018. [PMID: 30249646 DOI: 10.1073/pnas.1804198115/video-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons, a process that current therapeutic approaches cannot prevent. In PD, the typical pathological hallmark is the accumulation of intracellular protein inclusions, known as Lewy bodies and Lewy neurites, which are mainly composed of α-synuclein. Here, we exploited a high-throughput screening methodology to identify a small molecule (SynuClean-D) able to inhibit α-synuclein aggregation. SynuClean-D significantly reduces the in vitro aggregation of wild-type α-synuclein and the familiar A30P and H50Q variants in a substoichiometric molar ratio. This compound prevents fibril propagation in protein-misfolding cyclic amplification assays and decreases the number of α-synuclein inclusions in human neuroglioma cells. Computational analysis suggests that SynuClean-D can bind to cavities in mature α-synuclein fibrils and, indeed, it displays a strong fibril disaggregation activity. The treatment with SynuClean-D of two PD Caenorhabditis elegans models, expressing α-synuclein either in muscle or in dopaminergic neurons, significantly reduces the toxicity exerted by α-synuclein. SynuClean-D-treated worms show decreased α-synuclein aggregation in muscle and a concomitant motility recovery. More importantly, this compound is able to rescue dopaminergic neurons from α-synuclein-induced degeneration. Overall, SynuClean-D appears to be a promising molecule for therapeutic intervention in Parkinson's disease.
Collapse
|
23
|
Small molecule inhibits α-synuclein aggregation, disrupts amyloid fibrils, and prevents degeneration of dopaminergic neurons. Proc Natl Acad Sci U S A 2018; 115:10481-10486. [PMID: 30249646 DOI: 10.1073/pnas.1804198115] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons, a process that current therapeutic approaches cannot prevent. In PD, the typical pathological hallmark is the accumulation of intracellular protein inclusions, known as Lewy bodies and Lewy neurites, which are mainly composed of α-synuclein. Here, we exploited a high-throughput screening methodology to identify a small molecule (SynuClean-D) able to inhibit α-synuclein aggregation. SynuClean-D significantly reduces the in vitro aggregation of wild-type α-synuclein and the familiar A30P and H50Q variants in a substoichiometric molar ratio. This compound prevents fibril propagation in protein-misfolding cyclic amplification assays and decreases the number of α-synuclein inclusions in human neuroglioma cells. Computational analysis suggests that SynuClean-D can bind to cavities in mature α-synuclein fibrils and, indeed, it displays a strong fibril disaggregation activity. The treatment with SynuClean-D of two PD Caenorhabditis elegans models, expressing α-synuclein either in muscle or in dopaminergic neurons, significantly reduces the toxicity exerted by α-synuclein. SynuClean-D-treated worms show decreased α-synuclein aggregation in muscle and a concomitant motility recovery. More importantly, this compound is able to rescue dopaminergic neurons from α-synuclein-induced degeneration. Overall, SynuClean-D appears to be a promising molecule for therapeutic intervention in Parkinson's disease.
Collapse
|
24
|
Zhang L, Ma P, Guan Q, Meng L, Su L, Wang L, Yuan B. Effect of chemokine CC ligand 2 (CCL2) on α‑synuclein‑induced microglia proliferation and neuronal apoptosis. Mol Med Rep 2018; 18:4213-4218. [PMID: 30221727 PMCID: PMC6172395 DOI: 10.3892/mmr.2018.9468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 06/29/2018] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to investigate the effect of chemokine CC ligand 2 (CCL2) on α‑synuclein‑mediated microglia proliferation and neuronal apoptosis. Primary cultured microglia and primary neurons were isolated and cultured in vitro. Microglia were divided into four groups: The cells in the control group were treated with an identical amount of PBS, whereas the cells in the CCL2 group were cultured in medium containing 0.05 ng/µl CCL2; cells in the α‑synuclein group were treated with medium containing 0.2 ng/µl α‑synuclein; and cells in the CCL2 plus α‑synuclein group were cultured in medium containing 0.05 ng/µl CCL2 and 0.2 ng/µl α‑synuclein. After incubation for 24 h, the proliferation of glial cells, and the level of α‑synuclein in the cells, were measured. The levels of tumor necrosis factor‑α (TNF‑α), interleukin‑1β (IL‑1β) and nitric oxide (NO) in the culture medium were also measured. Levels of cleaved caspase‑3, Akt and phosphorylated (p)‑Akt in neurons treated with primary microglia culture medium in each group were subsequently monitored. The proliferation activity and secretion of TNF‑α, IL‑1β and NO in the CCL2, α‑synuclein and CCL2 plus α‑synuclein groups were significantly higher compared with that in the control group (P<0.05), as were the levels of α‑synuclein (P<0.01). The levels of neuronal apoptosis and cleaved caspase‑3 protein in the CCL2, α‑synuclein and CCL2 plus α‑synuclein groups were also significantly higher compared with that in the control group (P<0.01). Taken together, these results have demonstrated that CCL2 is able to promote α‑synuclein secretion and the apoptosis of neurons induced by α‑synuclein, thus inducing proliferation of the microglia and secretion of TNF‑α, IL‑1β and NO.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Pengju Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Qingkai Guan
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Lei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Linlin Su
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Lina Wang
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Bin Yuan
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| |
Collapse
|
25
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
26
|
Hantani Y, Iio K, Hantani R, Umetani K, Sato T, Young T, Connell K, Kintz S, Salafsky J. Identification of inactive conformation-selective interleukin-2-inducible T-cell kinase (ITK) inhibitors based on second-harmonic generation. FEBS Open Bio 2018; 8:1412-1423. [PMID: 30186743 PMCID: PMC6120236 DOI: 10.1002/2211-5463.12489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/01/2018] [Accepted: 06/24/2018] [Indexed: 12/12/2022] Open
Abstract
Many clinically approved protein kinase inhibitors stabilize an inactive conformation of their kinase target. Such inhibitors are generally highly selective compared to active conformation inhibitors, and consequently, general methods to identify inhibitors that stabilize an inactive conformation are much sought after. Here, we have applied a high‐throughput, second‐harmonic generation (SHG)‐based conformational approach to identify small molecule stabilizers of the inactive conformation of interleukin‐2‐inducible T‐cell kinase (ITK). A single‐site cysteine mutant of the ITK kinase domain was created, labeled with an SHG‐active dye, and tethered to a supported lipid bilayer membrane. Fourteen tool compounds, including stabilizers of the inactive and active conformations as well as nonbinders, were first examined for their effect on the conformation of the labeled ITK protein in the SHG assay. As a result, inactive conformation inhibitors were clearly distinguished from active conformation inhibitors by the intensity of SHG signal. Utilizing the SHG assay developed with the tool compounds described above, we identified the mechanism of action of 22 highly selective, inactive conformation inhibitors within a group of 105 small molecule inhibitors previously identified in a high‐throughput biochemical screen. We describe here the first use of SHG for identifying and classifying inhibitors that stabilize an inactive vs. an active conformation of a protein kinase, without the need to determine costructures by X‐ray crystallography. Our results suggest broad applicability to other proteins, particularly with single‐site labels reporting on specific protein movements associated with selectivity.
Collapse
Affiliation(s)
- Yoshiji Hantani
- Biological/Pharmacological Research Laboratories Central Pharmaceutical Research Institute Japan Tobacco Inc. Takatsuki Osaka Japan
| | - Kiyosei Iio
- Chemistry Research Laboratories Central Pharmaceutical Research Institute Japan Tobacco Inc. Takatsuki Osaka Japan
| | - Rie Hantani
- Biological/Pharmacological Research Laboratories Central Pharmaceutical Research Institute Japan Tobacco Inc. Takatsuki Osaka Japan
| | - Kayo Umetani
- Biological/Pharmacological Research Laboratories Central Pharmaceutical Research Institute Japan Tobacco Inc. Takatsuki Osaka Japan
| | - Toshihiro Sato
- Biological/Pharmacological Research Laboratories Central Pharmaceutical Research Institute Japan Tobacco Inc. Takatsuki Osaka Japan
| | | | | | - Sam Kintz
- Biodesy, Inc. South San Francisco CA USA
| | | |
Collapse
|
27
|
Rizvi NF, Howe JA, Nahvi A, Klein DJ, Fischmann TO, Kim HY, McCoy MA, Walker SS, Hruza A, Richards MP, Chamberlin C, Saradjian P, Butko MT, Mercado G, Burchard J, Strickland C, Dandliker PJ, Smith GF, Nickbarg EB. Discovery of Selective RNA-Binding Small Molecules by Affinity-Selection Mass Spectrometry. ACS Chem Biol 2018; 13:820-831. [PMID: 29412640 DOI: 10.1021/acschembio.7b01013] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in understanding the relevance of noncoding RNA (ncRNA) to disease have increased interest in drugging ncRNA with small molecules. The recent discovery of ribocil, a structurally distinct synthetic mimic of the natural ligand of the flavin mononucleotide (FMN) riboswitch, has revealed the potential chemical diversity of small molecules that target ncRNA. Affinity-selection mass spectrometry (AS-MS) is theoretically applicable to high-throughput screening (HTS) of small molecules binding to ncRNA. Here, we report the first application of the Automated Ligand Detection System (ALIS), an indirect AS-MS technique, for the selective detection of small molecule-ncRNA interactions, high-throughput screening against large unbiased small-molecule libraries, and identification and characterization of novel compounds (structurally distinct from both FMN and ribocil) that target the FMN riboswitch. Crystal structures reveal that different compounds induce various conformations of the FMN riboswitch, leading to different activity profiles. Our findings validate the ALIS platform for HTS screening for RNA-binding small molecules and further demonstrate that ncRNA can be broadly targeted by chemically diverse yet selective small molecules as therapeutics.
Collapse
Affiliation(s)
- Noreen F. Rizvi
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - John A. Howe
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ali Nahvi
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Daniel J. Klein
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Hai-Young Kim
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Mark A. McCoy
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Scott S. Walker
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Alan Hruza
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Chad Chamberlin
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Peter Saradjian
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | - Gabriel Mercado
- Biodesy, Inc., South San Francisco, California 94080, United States
| | - Julja Burchard
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | | | - Graham F. Smith
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | |
Collapse
|
28
|
Longhena F, Spano P, Bellucci A. Targeting of Disordered Proteins by Small Molecules in Neurodegenerative Diseases. Handb Exp Pharmacol 2018; 245:85-110. [PMID: 28965171 DOI: 10.1007/164_2017_60] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The formation of protein aggregates and inclusions in the brain and spinal cord is a common neuropathological feature of a number of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and many others. These are commonly referred as neurodegenerative proteinopathies or protein-misfolding diseases. The main characteristic of protein aggregates in these disorders is the fact that they are enriched in amyloid fibrils. Since protein aggregation is considered to play a central role for the onset of neurodegenerative proteinopathies, research is ongoing to develop strategies aimed at preventing or removing protein aggregation in the brain of affected patients. Numerous studies have shown that small molecule-based approaches may be potentially the most promising for halting protein aggregation in neurodegenerative diseases. Indeed, several of these compounds have been found to interact with intrinsically disordered proteins and promote their clearing in experimental models. This notwithstanding, at present small molecule inhibitors still awaits achievements for clinical translation. Hopefully, if we determine whether the formation of insoluble inclusions is effectively neurotoxic and find a valid biomarker to assess their protein aggregation-inhibitory activity in the human central nervous system, the use of small molecule inhibitors will be considered as a cure for neurodegenerative protein-misfolding diseases.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy
| | - PierFranco Spano
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy.
- Laboratory of Personalized and Preventive Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
29
|
Wójcik S, Birol M, Rhoades E, Miranker AD, Levine ZA. Targeting the Intrinsically Disordered Proteome Using Small-Molecule Ligands. Methods Enzymol 2018; 611:703-734. [DOI: 10.1016/bs.mie.2018.09.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Wong JJW, Young TA, Zhang J, Liu S, Leser GP, Komives EA, Lamb RA, Zhou ZH, Salafsky J, Jardetzky TS. Monomeric ephrinB2 binding induces allosteric changes in Nipah virus G that precede its full activation. Nat Commun 2017; 8:781. [PMID: 28974687 PMCID: PMC5626764 DOI: 10.1038/s41467-017-00863-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/01/2017] [Indexed: 11/09/2022] Open
Abstract
Nipah virus is an emergent paramyxovirus that causes deadly encephalitis and respiratory infections in humans. Two glycoproteins coordinate the infection of host cells, an attachment protein (G), which binds to cell surface receptors, and a fusion (F) protein, which carries out the process of virus-cell membrane fusion. The G protein binds to ephrin B2/3 receptors, inducing G conformational changes that trigger F protein refolding. Using an optical approach based on second harmonic generation, we show that monomeric and dimeric receptors activate distinct conformational changes in G. The monomeric receptor-induced changes are not detected by conformation-sensitive monoclonal antibodies or through electron microscopy analysis of G:ephrinB2 complexes. However, hydrogen/deuterium exchange experiments confirm the second harmonic generation observations and reveal allosteric changes in the G receptor binding and F-activating stalk domains, providing insights into the pathway of receptor-activated virus entry.Nipah virus causes encephalitis in humans. Here the authors use a multidisciplinary approach to study the binding of the viral attachment protein G to its host receptor ephrinB2 and show that monomeric and dimeric receptors activate distinct conformational changes in G and discuss implications for receptor-activated virus entry.
Collapse
Affiliation(s)
- Joyce J W Wong
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Jiayan Zhang
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - George P Leser
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL, 60208-3500, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208-3500, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA, 92093, USA
| | - Robert A Lamb
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL, 60208-3500, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208-3500, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
31
|
Genick CC, Wright SK. Biophysics: for HTS hit validation, chemical lead optimization, and beyond. Expert Opin Drug Discov 2017; 12:897-907. [DOI: 10.1080/17460441.2017.1349096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christine C. Genick
- Novartis Pharma AG, Novartis Institutes for BioMedical Research, Chemical Biology and Therapeutics, Protein Sciences, Basel, Switzerland
- Protein Sciences, Research Parkway Meriden, Cambridge, MA, USA
| | - S. Kirk Wright
- Protein Sciences, Research Parkway Meriden, Cambridge, MA, USA
- Protein Sciences, Novartis Pharma AG, Novartis Institutes for BioMedical Research, Chemical Biology and Therapeutics, Cambridge, MA, USA
| |
Collapse
|
32
|
Marschall M, Muller YA, Diewald B, Sticht H, Milbradt J. The human cytomegalovirus nuclear egress complex unites multiple functions: Recruitment of effectors, nuclear envelope rearrangement, and docking to nuclear capsids. Rev Med Virol 2017; 27. [PMID: 28664574 DOI: 10.1002/rmv.1934] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Nuclear replication represents a common hallmark of herpesviruses achieved by a number of sequentially unrolled regulatory processes. A rate-limiting step is provided by nucleo-cytoplasmic capsid export, for which a defined multiregulatory protein complex, namely, the nuclear egress complex (NEC), is assembled comprising both viral and cellular components. The NEC regulates at least 3 aspects of herpesviral nuclear replication: (1) multimeric recruitment of NEC-associated effector proteins, (2) reorganization of the nuclear lamina and membranes, and (3) the docking to nuclear capsids. Here, we review published data and own experimental work that characterizes the NEC of HCMV and other herpesviruses. METHODS A systematic review of information on nuclear egress of HCMV compared to selected alpha-, beta-, and gamma-herpesviruses: proteomics-based approaches, high-resolution imaging techniques, and functional investigations. RESULTS A large number of reports on herpesviral NECs have been published during the last two decades, focusing on protein-protein interactions, nuclear localization, regulatory phosphorylation, and functional validation. The emerging picture provides an illustrated example of well-balanced and sophisticated protein networking in virus-host interaction. CONCLUSIONS Current evidence refined the view about herpesviral NECs. Datasets published for HCMV, murine CMV, herpes simplex virus, and Epstein-Barr virus illustrate the marked functional consistency in the way herpesviruses achieve nuclear egress. However, this compares with only limited sequence conservation of core NEC proteins and a structural conservation restricted to individual domains. The translational use of this information might help to define a novel antiviral strategy on the basis of NEC-directed small molecules.
Collapse
Affiliation(s)
- Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Yves A Muller
- Division of Biotechnology, Department of Biology, FAU, Erlangen, Germany
| | - Benedikt Diewald
- Division of Bioinformatics, Institute of Biochemistry, FAU, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, FAU, Erlangen, Germany
| | - Jens Milbradt
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
33
|
Tran RJ, Sly KL, Conboy JC. Applications of Surface Second Harmonic Generation in Biological Sensing. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:387-414. [PMID: 28301745 DOI: 10.1146/annurev-anchem-071015-041453] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surface second harmonic generation (SHG) is a coherent, nonlinear optical technique that is well suited for investigations of biomolecular interactions at interfaces. SHG is surface specific due to the intrinsic symmetry constraints on the nonlinear process, providing a distinct analytical advantage over linear spectroscopic methods, such as fluorescence and UV-Visible absorbance spectroscopies. SHG has the ability to detect low concentrations of analytes, such as proteins, peptides, and small molecules, due to its high sensitivity, and the second harmonic response can be enhanced through the use of target molecules that are resonant with the incident (ω) and/or second harmonic (2ω) frequencies. This review describes the theoretical background of SHG, and then it discusses its sensitivity, limit of detection, and the implementation of the method. It also encompasses the applications of surface SHG directed at the study of protein-surface, small-molecule-surface, and nanoparticle-membrane interactions, as well as molecular chirality, imaging, and immunoassays. The versatility, high sensitivity, and surface specificity of SHG show great potential for developments in biosensors and bioassays.
Collapse
Affiliation(s)
- Renee J Tran
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112;
| | - Krystal L Sly
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112;
| | - John C Conboy
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112;
| |
Collapse
|
34
|
Lázaro DF, Pavlou MAS, Outeiro TF. Cellular models as tools for the study of the role of alpha-synuclein in Parkinson's disease. Exp Neurol 2017; 298:162-171. [PMID: 28526239 DOI: 10.1016/j.expneurol.2017.05.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/01/2017] [Accepted: 05/13/2017] [Indexed: 01/07/2023]
Abstract
Neurodegenerative diseases are highly debilitating conditions characterised primarily by progressive neuronal loss and impairment of the nervous system. Parkinson's disease (PD) is one of the most common of these disorders, affecting 1-2% of the population above the age of 65. Although the underlying mechanisms of PD have been extensively studied, we still lack a full understanding of the molecular underpinnings of the disease. Thus, the in vitro and in vivo models currently used are able to only partially recapitulate the typical phenotypes of the disease. Here, we review various cell culture models currently used to study the molecular basis of PD, with a focus on alpha-synuclein-associated molecular pathologies. We also discuss how different cell models may constitute powerful tools for high-throughput screening of molecules capable of modulating alpha-synuclein toxicity.
Collapse
Affiliation(s)
- Diana F Lázaro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Maria Angeliki S Pavlou
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, 37073 Göttingen, Germany; Max Planck Institute for Experimental Medicine, Goettingen, Germany.
| |
Collapse
|
35
|
Spagnuolo LA, Eltschkner S, Yu W, Daryaee F, Davoodi S, Knudson SE, Allen EKH, Merino J, Pschibul A, Moree B, Thivalapill N, Truglio JJ, Salafsky J, Slayden RA, Kisker C, Tonge PJ. Evaluating the Contribution of Transition-State Destabilization to Changes in the Residence Time of Triazole-Based InhA Inhibitors. J Am Chem Soc 2017; 139:3417-3429. [PMID: 28151657 DOI: 10.1021/jacs.6b11148] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A critical goal of lead compound selection and optimization is to maximize target engagement while minimizing off-target binding. Since target engagement is a function of both the thermodynamics and kinetics of drug-target interactions, it follows that the structures of both the ground states and transition states on the binding reaction coordinate are needed to rationally modulate the lifetime of the drug-target complex. Previously, we predicted the structure of the rate-limiting transition state that controlled the time-dependent inhibition of the enoyl-ACP reductase InhA. This led to the discovery of a triazole-containing diphenyl ether with an increased residence time on InhA due to transition-state destabilization rather than ground-state stabilization. In the present work, we evaluate the inhibition of InhA by 14 triazole-based diphenyl ethers and use a combination of enzyme kinetics and X-ray crystallography to generate a structure-kinetic relationship for time-dependent binding. We show that the triazole motif slows the rate of formation for the final drug-target complex by up to 3 orders of magnitude. In addition, we identify a novel inhibitor with a residence time on InhA of 220 min, which is 3.5-fold longer than that of the INH-NAD adduct formed by the tuberculosis drug, isoniazid. This study provides a clear example in which the lifetime of the drug-target complex is controlled by interactions in the transition state for inhibitor binding rather than the ground state of the enzyme-inhibitor complex, and demonstrates the important role that on-rates can play in drug-target residence time.
Collapse
Affiliation(s)
- Lauren A Spagnuolo
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Sandra Eltschkner
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , 97080 Würzburg, Germany
| | - Weixuan Yu
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Fereidoon Daryaee
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Shabnam Davoodi
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Susan E Knudson
- Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, Colorado 80523-2025, United States
| | - Eleanor K H Allen
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Jonathan Merino
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Annica Pschibul
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , 97080 Würzburg, Germany
| | - Ben Moree
- Biodesy, Inc. , 384 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Neil Thivalapill
- Great Neck South High School , 341 Lakeville Road, Great Neck, New York 11020, United States
| | - James J Truglio
- Great Neck South High School , 341 Lakeville Road, Great Neck, New York 11020, United States
| | - Joshua Salafsky
- Biodesy, Inc. , 384 Oyster Point Boulevard, South San Francisco, California 94080, United States
| | - Richard A Slayden
- Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, Colorado 80523-2025, United States
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg , 97080 Würzburg, Germany
| | - Peter J Tonge
- Institute of Chemical Biology and Drug Discovery, Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| |
Collapse
|
36
|
|
37
|
Lázaro DF, Dias MC, Carija A, Navarro S, Madaleno CS, Tenreiro S, Ventura S, Outeiro TF. The effects of the novel A53E alpha-synuclein mutation on its oligomerization and aggregation. Acta Neuropathol Commun 2016; 4:128. [PMID: 27938414 PMCID: PMC5148884 DOI: 10.1186/s40478-016-0402-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/03/2016] [Indexed: 11/26/2022] Open
Abstract
α-synuclein (aSyn) is associated with both sporadic and familial forms of Parkinson’s disease (PD), the second most common neurodegenerative disorder after Alzheimer’s disease. In particular, multiplications and point mutations in the gene encoding for aSyn cause familial forms of PD. Moreover, the accumulation of aSyn in Lewy Bodies and Lewy neurites in disorders such as PD, dementia with Lewy bodies, or multiple system atrophy, suggests aSyn misfolding and aggregation plays an important role in these disorders, collectively known as synucleinopathies. The exact function of aSyn remains unclear, but it is known to be associated with vesicles and membranes, and to have an impact on important cellular functions such as intracellular trafficking and protein degradation systems, leading to cellular pathologies that can be readily studied in cell-based models. Thus, understanding the molecular effects of aSyn point mutations may provide important insight into the molecular mechanisms underlying disease onset. We investigated the effect of the recently identified A53E aSyn mutation. Combining in vitro studies with studies in cell models, we found that this mutation reduces aSyn aggregation and increases proteasome activity, altering normal proteostasis. We observed that, in our experimental paradigms, the A53E mutation affects specific steps of the aggregation process of aSyn and different cellular processes, providing novel ideas about the molecular mechanisms involved in synucleinopathies.
Collapse
|
38
|
Ma B, Marcotte D, Paramasivam M, Michelsen K, Wang T, Bertolotti-Ciarlet A, Jones JH, Moree B, Butko M, Salafsky J, Sun X, McKee T, Silvian LF. ATP-Competitive MLKL Binders Have No Functional Impact on Necroptosis. PLoS One 2016; 11:e0165983. [PMID: 27832137 PMCID: PMC5104457 DOI: 10.1371/journal.pone.0165983] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/20/2016] [Indexed: 01/18/2023] Open
Abstract
MLKL is a pore forming pseudokinase involved in the final stage of necroptosis, a form of programmed cell death. Its phosphorylation by RIPK3 is necessary for triggering necroptosis but not for triggering apoptosis, which makes it a unique target for pharmacological inhibition to block necroptotic cell death. This mechanism has been described as playing a role in disease progression in neurodegenerative and inflammatory diseases. A type II kinase inhibitor (cpd 1) has been described that reportedly binds to the MLKL pseudokinase domain and prevents necroptosis. Here we describe five compounds that bind to the MLKL ATP-binding site, however the four MLKL-selective compounds have no activity in rescuing cells from necroptosis. We use kinase selectivity panels, crystallography and a new conformationally sensitive method of measuring protein conformational changes (SHG) to confirm that the one previously reported compound that can rescue cells (cpd 1) is a non-selective type II inhibitor that also inhibits the upstream kinase RIPK1. Although this compound can shift the GFE motif of the activation loop to an “out” position, the accessibility of the key residue Ser358 in the MLKL activation loop is not affected by compound binding to the MLKL active site. Our studies indicate that an ATP-pocket inhibitor of the MLKL pseudokinase domain does not have any impact on the necroptosis pathway, which is contrary to a previously reported study.
Collapse
Affiliation(s)
- Bin Ma
- Drug Discovery, Biogen Inc., Cambridge, MA, 02142, United States of America
| | - Doug Marcotte
- Drug Discovery, Biogen Inc., Cambridge, MA, 02142, United States of America
| | | | - Klaus Michelsen
- Drug Discovery, Biogen Inc., Cambridge, MA, 02142, United States of America
| | - Ti Wang
- Drug Discovery, Biogen Inc., Cambridge, MA, 02142, United States of America
| | | | - John Howard Jones
- Drug Discovery, Biogen Inc., Cambridge, MA, 02142, United States of America
| | - Ben Moree
- Biodesy Inc., South San Francisco, CA, 94080, United States of America
| | - Margaret Butko
- Biodesy Inc., South San Francisco, CA, 94080, United States of America
| | - Joshua Salafsky
- Biodesy Inc., South San Francisco, CA, 94080, United States of America
| | - Xin Sun
- Drug Discovery, Biogen Inc., Cambridge, MA, 02142, United States of America
| | - Timothy McKee
- Drug Discovery, Biogen Inc., Cambridge, MA, 02142, United States of America
| | - Laura F. Silvian
- Drug Discovery, Biogen Inc., Cambridge, MA, 02142, United States of America
- * E-mail:
| |
Collapse
|
39
|
Butko MT, Moree B, Mortensen RB, Salafsky J. Detection of Ligand-Induced Conformational Changes in Oligonucleotides by Second-Harmonic Generation at a Supported Lipid Bilayer Interface. Anal Chem 2016; 88:10482-10489. [PMID: 27696827 DOI: 10.1021/acs.analchem.6b02498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is a high demand for characterizing oligonucleotide structural changes associated with binding interactions as well as identifying novel binders that modulate their structure and function. In this study, second-harmonic generation (SHG) was used to study RNA and DNA oligonucleotide conformational changes associated with ligand binding. For this purpose, we developed an avidin-based biotin capture surface based on a supported lipid bilayer membrane. The technique was applied to two well-characterized aptamers, both of which undergo conformational changes upon binding either a protein or a small molecule ligand. In both cases, SHG was able to resolve conformational changes in these oligonucleotides sensitively and specifically, in solution and in real time, using nanogram amounts of material. In addition, we developed a competition assay for the oligonucleotides between the specific ligands and known, nonspecific binders, and we demonstrated that intercalators and minor groove binders affect the conformation of the DNA and RNA oligonucleotides in different ways upon binding and subsequently block specific ligand binding in all cases. Our work demonstrates the broad potential of SHG for studying oligonucleotides and their conformational changes upon interaction with ligands. As SHG offers a powerful, high-throughput screening approach, our results here also open an important new avenue for identifying novel chemical probes or sequence-targeted drugs that disrupt or modulate DNA or RNA structure and function.
Collapse
Affiliation(s)
- Margaret T Butko
- Biodesy, Inc. , 384 Oyster Point Boulevard, Suite No. 8, South San Francisco, California 94080, United States
| | - Ben Moree
- Biodesy, Inc. , 384 Oyster Point Boulevard, Suite No. 8, South San Francisco, California 94080, United States
| | - Richard B Mortensen
- Biodesy, Inc. , 384 Oyster Point Boulevard, Suite No. 8, South San Francisco, California 94080, United States
| | - Joshua Salafsky
- Biodesy, Inc. , 384 Oyster Point Boulevard, Suite No. 8, South San Francisco, California 94080, United States
| |
Collapse
|
40
|
Renaud JP, Chung CW, Danielson UH, Egner U, Hennig M, Hubbard RE, Nar H. Biophysics in drug discovery: impact, challenges and opportunities. Nat Rev Drug Discov 2016; 15:679-98. [PMID: 27516170 DOI: 10.1038/nrd.2016.123] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the past 25 years, biophysical technologies such as X-ray crystallography, nuclear magnetic resonance spectroscopy, surface plasmon resonance spectroscopy and isothermal titration calorimetry have become key components of drug discovery platforms in many pharmaceutical companies and academic laboratories. There have been great improvements in the speed, sensitivity and range of possible measurements, providing high-resolution mechanistic, kinetic, thermodynamic and structural information on compound-target interactions. This Review provides a framework to understand this evolution by describing the key biophysical methods, the information they can provide and the ways in which they can be applied at different stages of the drug discovery process. We also discuss the challenges for current technologies and future opportunities to use biophysical methods to solve drug discovery problems.
Collapse
Affiliation(s)
- Jean-Paul Renaud
- NovAliX, Boulevard Sébastien Brant, 67405 Illkirch Cedex, France.,Institut de Génétique et Biologie Moléculaire et Cellulaire, CNRS UMR7104/INSERM U964/Université de Strasbourg, 1 rue Laurent Fries - BP10142, 67404 Illkirch Cedex, France.,RiboStruct, 15 rue Neuve, 67540 Ostwald, France
| | - Chun-Wa Chung
- GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - U Helena Danielson
- Department of Chemistry - BMC and Science for Life Laboratory, Drug Discovery &Development Platform, Uppsala University, SE-751 05 Uppsala, Sweden.,Beactica AB, Uppsala Business Park, 754 50 Uppsala, Sweden
| | - Ursula Egner
- Bayer Pharma AG, Müllerstrasse 178, 13353 Berlin, Germany
| | - Michael Hennig
- Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland.,leadXpro AG, PARK INNOVAARE, CH-5234 Villigen, Switzerland
| | - Roderick E Hubbard
- University of York, Heslington, York, YO10 5DD, UK.,Vernalis (R&D), Granta Park, Cambridge, CB21 6GB, UK
| | - Herbert Nar
- Boehringer Ingelheim GmbH &Co. KG, Birkendorfer Strasse 65, 88400 Biberach, Germany
| |
Collapse
|
41
|
Shen T, Pu J, Si X, Ye R, Zhang B. An update on potential therapeutic strategies for Parkinson's disease based on pathogenic mechanisms. Expert Rev Neurother 2016; 16:711-22. [PMID: 27138872 DOI: 10.1080/14737175.2016.1179112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Parkinson's disease is a common neurodegenerative disorder mainly caused by the loss of nigral dopaminergic neurons, of which the pathogenesis remains essentially unknown. Current therapeutic strategies help manage signs and symptoms but have no effect in disease modification. Over the past several decades, scientists have devoted a lot of effort to clarifying the pathological mechanism and searching for new targets for Parkinson's disease treatment. AREAS COVERED Treatment of Parkinson's disease. Expert Commentary: Illustrated in this review are newly found discoveries and evidence that contribute to the understanding of Parkinson's disease pathogenic mechanism. Also discussed are potential therapeutic strategies that are being studied, including disease-modifying and genetically mediated small molecule compounds, cell- and gene-based therapeutic strategies, immunization strategies and anti-diabetic therapy, which may be very promising therapeutic methods in the future.
Collapse
Affiliation(s)
- Ting Shen
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Jiali Pu
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Xiaoli Si
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Rong Ye
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Baorong Zhang
- a Department of Neurology, Second Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| |
Collapse
|
42
|
Fasudil attenuates aggregation of α-synuclein in models of Parkinson's disease. Acta Neuropathol Commun 2016; 4:39. [PMID: 27101974 PMCID: PMC4840958 DOI: 10.1186/s40478-016-0310-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 04/09/2016] [Indexed: 12/23/2022] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, yet disease-modifying treatments do not currently exist. Rho-associated protein kinase (ROCK) was recently described as a novel neuroprotective target in PD. Since alpha-synuclein (α-Syn) aggregation is a major hallmark in the pathogenesis of PD, we aimed to evaluate the anti-aggregative potential of pharmacological ROCK inhibition using the isoquinoline derivative Fasudil, a small molecule inhibitor already approved for clinical use in humans. Fasudil treatment significantly reduced α-Syn aggregation in vitro in a H4 cell culture model as well as in a cell-free assay. Nuclear magnetic resonance spectroscopy analysis revealed a direct binding of Fasudil to tyrosine residues Y133 and Y136 in the C-terminal region of α-Syn. Importantly, this binding was shown to be biologically relevant using site-directed mutagenesis of these residues in the cell culture model. Furthermore, we evaluated the impact of long-term Fasudil treatment on α-Syn pathology in vivo in a transgenic mouse model overexpressing human α-Syn bearing the A53T mutation (α-SynA53T mice). Fasudil treatment improved motor and cognitive functions in α-SynA53T mice as determined by CatwalkTM gait analysis and novel object recognition (NOR), without apparent side effects. Finally, immunohistochemical analysis revealed a significant reduction of α-Syn pathology in the midbrain of α-SynA53T mice after Fasudil treatment. Our results demonstrate that Fasudil, next to its effects mediated by ROCK-inhibition, directly interacts with α-Syn and attenuates α-Syn pathology. This underscores the translational potential of Fasudil as a disease-modifying drug for the treatment of PD and other synucleinopathies.
Collapse
|