1
|
Zhou G, Fu S, Zhang Y, Li S, Guo Z, Ouyang D, Ying T, Lu Y, Zhao Q. Antibody Recognition of Human Epidermal Growth Factor Receptor-2 (HER2) Juxtamembrane Domain Enhances Anti-Tumor Response of Chimeric Antigen Receptor (CAR)-T Cells. Antibodies (Basel) 2024; 13:45. [PMID: 38920969 PMCID: PMC11200690 DOI: 10.3390/antib13020045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy shows promise in treating malignant tumors. However, the use of human epidermal growth factor receptor-2 (HER2) CAR-T cells carries the risk of severe toxicity, including cytokine release syndrome, due to their "on-target off-tumor" recognition of HER2. Enhancing the quality and functionality of HER2 CARs could greatly improve the therapeutic potential of CAR-T cells. In this study, we developed a novel anti-HER2 monoclonal antibody, Ab8, which targets domain III of HER2, distinct from the domain IV recognition of trastuzumab. Although two anti-HER2 mAbs induced similar levels of antibody-dependent cellular cytotoxicity, trastuzumab-based CAR-T cells exhibited potent antitumor activity against HER2-positive cancer cells. In conclusion, our findings provide scientific evidence that antibody recognition of the membrane-proximal domain promotes the anti-tumor response of HER2-specific CAR-T cells.
Collapse
Affiliation(s)
- Guangyu Zhou
- Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau SAR, China; (G.Z.); (S.F.); (Z.G.)
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau SAR, China
| | - Shengyu Fu
- Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau SAR, China; (G.Z.); (S.F.); (Z.G.)
| | - Yunsen Zhang
- Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau SAR, China; (Y.Z.); (D.O.)
| | - Shuang Li
- The Fifth Medical Center of the PLA General Hospital, Beijing 100036, China;
| | - Ziang Guo
- Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau SAR, China; (G.Z.); (S.F.); (Z.G.)
| | - Defang Ouyang
- Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau SAR, China; (Y.Z.); (D.O.)
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Engineering Research Center for Synthetic Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China;
| | - Yinying Lu
- The Fifth Medical Center of the PLA General Hospital, Beijing 100036, China;
| | - Qi Zhao
- Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau SAR, China; (G.Z.); (S.F.); (Z.G.)
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau SAR, China
| |
Collapse
|
2
|
Philippova J, Shevchenko J, Sennikov S. GD2-targeting therapy: a comparative analysis of approaches and promising directions. Front Immunol 2024; 15:1371345. [PMID: 38558810 PMCID: PMC10979305 DOI: 10.3389/fimmu.2024.1371345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Disialoganglioside GD2 is a promising target for immunotherapy with expression primarily restricted to neuroectodermal and epithelial tumor cells. Although its role in the maintenance and repair of neural tissue is well-established, its functions during normal organism development remain understudied. Meanwhile, studies have shown that GD2 plays an important role in tumorigenesis. Its functions include proliferation, invasion, motility, and metastasis, and its high expression and ability to transform the tumor microenvironment may be associated with a malignant phenotype. Structurally, GD2 is a glycosphingolipid that is stably expressed on the surface of tumor cells, making it a suitable candidate for targeting by antibodies or chimeric antigen receptors. Based on mouse monoclonal antibodies, chimeric and humanized antibodies and their combinations with cytokines, toxins, drugs, radionuclides, nanoparticles as well as chimeric antigen receptor have been developed. Furthermore, vaccines and photoimmunotherapy are being used to treat GD2-positive tumors, and GD2 aptamers can be used for targeting. In the field of cell therapy, allogeneic immunocompetent cells are also being utilized to enhance GD2 therapy. Efforts are currently being made to optimize the chimeric antigen receptor by modifying its design or by transducing not only αβ T cells, but also γδ T cells, NK cells, NKT cells, and macrophages. In addition, immunotherapy can combine both diagnostic and therapeutic methods, allowing for early detection of disease and minimal residual disease. This review discusses each immunotherapy method and strategy, its advantages and disadvantages, and highlights future directions for GD2 therapy.
Collapse
Affiliation(s)
| | | | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
3
|
Bai G, Sun C, Guo Z, Wang Y, Zeng X, Su Y, Zhao Q, Ma B. Accelerating antibody discovery and design with artificial intelligence: Recent advances and prospects. Semin Cancer Biol 2023; 95:13-24. [PMID: 37355214 DOI: 10.1016/j.semcancer.2023.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Therapeutic antibodies are the largest class of biotherapeutics and have been successful in treating human diseases. However, the design and discovery of antibody drugs remains challenging and time-consuming. Recently, artificial intelligence technology has had an incredible impact on antibody design and discovery, resulting in significant advances in antibody discovery, optimization, and developability. This review summarizes major machine learning (ML) methods and their applications for computational predictors of antibody structure and antigen interface/interaction, as well as the evaluation of antibody developability. Additionally, this review addresses the current status of ML-based therapeutic antibodies under preclinical and clinical phases. While many challenges remain, ML may offer a new therapeutic option for the future direction of fully computational antibody design.
Collapse
Affiliation(s)
- Ganggang Bai
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuance Sun
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziang Guo
- Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Yangjing Wang
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xincheng Zeng
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuhong Su
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Zhao
- Cancer Center, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region of China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao Special Administrative Region of China.
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Digiwiser BioTechnolgy, Limited, Shanghai 201203, China.
| |
Collapse
|
4
|
Blasi G, Bortoletto E, Gasparotto M, Filippini F, Bai CM, Rosani U, Venier P. A glimpse on metazoan ZNFX1 helicases, ancient players of antiviral innate immunity. FISH & SHELLFISH IMMUNOLOGY 2022; 121:456-466. [PMID: 35063603 DOI: 10.1016/j.fsi.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/03/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The human zinc finger NFX1-type containing 1 (ZNFX1) is an interferon-stimulated protein associated to the outer mitochondrial membrane, able to bind dsRNAs and interact with MAVS proteins, promoting type I IFN response in the early stage of viral infection. An N-terminal Armadillo (ARM)-type fold and a large helicase core (P-loop) and zinc fingers confer RNA-binding and ATPase activities to ZNFX1. We studied the phylogenetic distribution of metazoan ZNFX1s, ZNFX1 gene expression trends and genomic and protein signatures during viral infection of invertebrates. Based on 221 ZNFX1 sequences, we obtained a polyphyletic tree with a taxonomy-consistent branching at the phylum-level only. In metazoan genomes, ZNFX1 genes were found either in single copy, with up to some tens of exons in vertebrates, or in multiple copies, with one or a few exons and one of them sometimes encompassing most of the coding sequence, in invertebrates like sponges, sea urchins and mollusks. Structural analyses of selected ZNFX1 proteins showed high conservation of the helicase region (P-loop), an overall conserved region and domain architecture, an ARM-fold mostly traceable, and the presence of intrinsically disordered regions of varying length and position. The remarkable over-expression of ZNFX1 in bivalve and gastropod mollusks infected with dsDNA viruses underscores the antiviral role of ZNFX1, whereas nothing similar was found in virus-infected nematodes and corals. Whether the functional diversification reported in the C. elegans ZNFX1 occurs in other metazoan proteins remains to be established.
Collapse
Affiliation(s)
- Giulia Blasi
- Department of Biology, University of Padova, 35121, Padova, Italy
| | | | | | | | - Chang-Ming Bai
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Yellow Sea Fisheries Research Institute, CAFS, Qingdao, 266237, China
| | - Umberto Rosani
- Department of Biology, University of Padova, 35121, Padova, Italy.
| | - Paola Venier
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
5
|
Zuo Z, Wu T, Pan L, Zuo C, Hu Y, Luo X, Jiang L, Xia Z, Xiao X, Liu J, Ye M, Deng M. Modalities and Mechanisms of Treatment for Coronavirus Disease 2019. Front Pharmacol 2021; 11:583914. [PMID: 33643033 PMCID: PMC7908061 DOI: 10.3389/fphar.2020.583914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is spreading rapidly throughout the world. Although COVID-19 has a relatively low case severity rate compared to SARS and Middle East Respiratory syndrome it is a major public concern because of its rapid spread and devastating impact on the global economy. Scientists and clinicians are urgently trying to identify drugs to combat the virus with hundreds of clinical trials underway. Current treatments could be divided into two major part: anti-viral agents and host system modulatory agents. On one hand, anti-viral agents focus on virus infection process. Umifenovir blocks virus recognizing host and entry. Remdesivir inhibits virus replication. Chloroquine and hydroxychloroquine involve preventing the whole infection process, including virus transcription and release. On the other hand, host system modulatory agents are associated with regulating the imbalanced inflammatory reaction and biased immune system. Corticosteroid is believed to be commonly used for repressing hyper-inflammation, which is one of the major pathologic mechanisms of COVID-19. Convalescent plasma and neutralizing antibodies provide essential elements for host immune system and create passive immunization. Thrombotic events are at high incidence in COVID-19 patients, thus anti-platelet and anti-coagulation are crucial, as well. Here, we summarized these current or reproposed agents to better understand the mechanisms of agents and give an update of present research situation.
Collapse
Affiliation(s)
- Zhihong Zuo
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ting Wu
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Liangyu Pan
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Chenzhe Zuo
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yingchuo Hu
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Xuan Luo
- Hunan Yuanpin Cell Biotechnology Co., Ltd., Changsha, China
| | - Liping Jiang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xiaojuan Xiao
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Jing Liu
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
6
|
Liu J, Yang S, Cao B, Zhou G, Zhang F, Wang Y, Wang R, Zhu L, Meng Y, Hu C, Liang H, Lin X, Zhu K, Chen G, Luo KQ, Di L, Zhao Q. Targeting B7-H3 via chimeric antigen receptor T cells and bispecific killer cell engagers augments antitumor response of cytotoxic lymphocytes. J Hematol Oncol 2021; 14:21. [PMID: 33514401 PMCID: PMC7844995 DOI: 10.1186/s13045-020-01024-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND B7-H3, an immune-checkpoint molecule and a transmembrane protein, is overexpressed in non-small cell lung cancer (NSCLC), making it an attractive therapeutic target. Here, we aimed to systematically evaluate the value of B7-H3 as a target in NSCLC via T cells expressing B7-H3-specific chimeric antigen receptors (CARs) and bispecific killer cell engager (BiKE)-redirected natural killer (NK) cells. METHODS We generated B7-H3 CAR and B7-H3/CD16 BiKE derived from an anti-B7-H3 antibody omburtamab that has been shown to preferentially bind tumor tissues and has been safely used in humans in early-phase clinical trials. Antitumor efficacy and induced-immune response of CAR and BiKE were evaluated in vitro and in vivo. The effects of B7-H3 on aerobic glycolysis in NSCLC cells were further investigated. RESULTS B7-H3 CAR-T cells effectively inhibited NSCLC tumorigenesis in vitro and in vivo. B7-H3 redirection promoted highly specific T-cell infiltration into tumors. Additionally, NK cell activity could be specially triggered by B7-H3/CD16 BiKE through direct CD16 signaling, resulting in significant increase in NK cell activation and target cell death. BiKE improved antitumor efficacy mediated by NK cells in vitro and in vivo, regardless of the cell surface target antigen density on tumor tissues. Furthermore, we found that anti-B7-H3 blockade might alter tumor glucose metabolism via the reactive oxygen species-mediated pathway. CONCLUSIONS Together, our results suggest that B7-H3 may serve as a target for NSCLC therapy and support the further development of two therapeutic agents in the preclinical and clinical studies.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/therapeutic use
- B7-H1 Antigen/immunology
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Line, Tumor
- Female
- Humans
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/immunology
- Lung Neoplasms/immunology
- Lung Neoplasms/therapy
- Lymphocyte Activation
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/therapeutic use
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Mice
Collapse
Affiliation(s)
- Jie Liu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Shuo Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Bihui Cao
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guangyu Zhou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Fengjuan Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Yuan Wang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Rixin Wang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Lipeng Zhu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Ya Meng
- Zhuhai People's Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Cong Hu
- Zhuhai People's Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Hui Liang
- Zhuhai People's Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Xu Lin
- Zhuhai People's Hospital Affiliated with Jinan University, Zhuhai, Guangdong, China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guokai Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Kathy Qian Luo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Lijun Di
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
| | - Qi Zhao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China.
| |
Collapse
|
7
|
Huang S, Zhao Q. Nanomedicine-Combined Immunotherapy for Cancer. Curr Med Chem 2020; 27:5716-5729. [PMID: 31250752 DOI: 10.2174/0929867326666190618161610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Immunotherapy for cancer includes Chimeric Antigen Receptor (CAR)-T cells, CAR-natural Killer (NK) cells, PD1, and the PD-L1 inhibitor. However, the proportion of patients who respond to cancer immunotherapy is not satisfactory. Concurrently, nanotechnology has experienced a revolution in cancer diagnosis and therapy. There are few clinically approved nanoparticles that can selectively bind and target cancer cells and incorporate molecules, although many therapeutic nanocarriers have been approved for clinical use. There are no systematic reviews outlining how nanomedicine and immunotherapy are used in combination to treat cancer. OBJECTIVE This review aims to illustrate how nanomedicine and immunotherapy can be used for cancer treatment to overcome the limitations of the low proportion of patients who respond to cancer immunotherapy and the rarity of nanomaterials in clinical use. METHODS A literature review of MEDLINE, PubMed / PubMed Central, and Google Scholar was performed. We performed a structured search of literature reviews on nanoparticle drug-delivery systems, which included photodynamic therapy, photothermal therapy, photoacoustic therapy, and immunotherapy for cancer. Moreover, we detailed the advantages and disadvantages of the various nanoparticles incorporated with molecules to discuss the challenges and solutions associated with cancer treatment. CONCLUSION This review identified the advantages and disadvantages associated with improving health care and outcomes. The findings of this review confirmed the importance of nanomedicinecombined immunotherapy for improving the efficacy of cancer treatment. It may become a new way to develop novel cancer therapeutics using nanomaterials to achieve synergistic anticancer immunity.
Collapse
Affiliation(s)
- Shigao Huang
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, P.R. China
| | - Qi Zhao
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, P.R. China
| |
Collapse
|
8
|
Amon R, Rosenfeld R, Perlmutter S, Grant OC, Yehuda S, Borenstein-Katz A, Alcalay R, Marshanski T, Yu H, Diskin R, Woods RJ, Chen X, Padler-Karavani V. Directed Evolution of Therapeutic Antibodies Targeting Glycosylation in Cancer. Cancers (Basel) 2020; 12:cancers12102824. [PMID: 33007970 PMCID: PMC7601599 DOI: 10.3390/cancers12102824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 01/07/2023] Open
Abstract
Simple Summary We generated a platform for designing optimized functional therapeutic antibodies against cancer glycans. The target tumor-associated carbohydrate antigen is commonly expressed in colon and pancreatic cancers. We developed a system for selection of potent antibodies by yeast surface display against this carbohydrate antigen, then showed that elite clones have potent affinity, specificity, cancer cell binding, and therapeutic efficacy. These tools have broad utility for manipulating and engineering antibodies against carbohydrate antigens, and provide major innovative avenues of research in the field of cancer therapy and diagnostics. Abstract Glycosylation patterns commonly change in cancer, resulting in expression of tumor-associated carbohydrate antigens (TACA). While promising, currently available anti-glycan antibodies are not useful for clinical cancer therapy. Here, we show that potent anti-glycan antibodies can be engineered to acquire cancer therapeutic efficacy. We designed yeast surface display to generate and select for therapeutic antibodies against the TACA SLea (CA19−9) in colon and pancreatic cancers. Elite clones showed increased affinity, better specificity, improved binding of human pancreatic and colon cancer cell lines, and increased complement-dependent therapeutic efficacy. Molecular modeling explained the structural basis for improved antibody functionality at the molecular level. These new tools of directed molecular evolution and selection for effective anti-glycan antibodies, provide insights into the mechanisms of cancer therapy targeting glycosylation, and provide major methodological advances that are likely to open up innovative avenues of research in the field of cancer theranostics.
Collapse
Affiliation(s)
- Ron Amon
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel; (R.A.); (S.P.); (S.Y.); (T.M.)
| | - Ronit Rosenfeld
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.R.); (R.A.)
| | - Shahar Perlmutter
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel; (R.A.); (S.P.); (S.Y.); (T.M.)
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Oliver C. Grant
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30606, USA; (O.C.G.); (R.J.W.)
| | - Sharon Yehuda
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel; (R.A.); (S.P.); (S.Y.); (T.M.)
| | - Aliza Borenstein-Katz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel; (A.B.-K.); (R.D.)
| | - Ron Alcalay
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel; (R.R.); (R.A.)
| | - Tal Marshanski
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel; (R.A.); (S.P.); (S.Y.); (T.M.)
| | - Hai Yu
- Department of Chemistry, University of California, Davis, CA 95616, USA; (H.Y.); (X.C.)
| | - Ron Diskin
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel; (A.B.-K.); (R.D.)
| | - Robert J. Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30606, USA; (O.C.G.); (R.J.W.)
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA; (H.Y.); (X.C.)
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 69978, Israel; (R.A.); (S.P.); (S.Y.); (T.M.)
- Correspondence: ; Tel.: +972-3-640-6737
| |
Collapse
|
9
|
Yu J, Hung JT, Wang SH, Cheng JY, Yu AL. Targeting glycosphingolipids for cancer immunotherapy. FEBS Lett 2020; 594:3602-3618. [PMID: 32860713 DOI: 10.1002/1873-3468.13917] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 11/07/2022]
Abstract
Aberrant expression of glycosphingolipids (GSLs) is a unique feature of cancer and stromal cells in tumor microenvironments. Although the impact of GSLs on tumor progression remains largely unclear, anticancer immunotherapies directed against GSLs are attracting growing attention. Here, we focus on GD2, a disialoganglioside expressed in tumors of neuroectodermal origin, and Globo H ceramide (GHCer), the most prevalent cancer-associated GSL overexpressed in a variety of epithelial cancers. We first summarize recent advances on our understanding of GD2 and GHCer biology and then discuss the clinical development of the first immunotherapeutic agent targeting a glycolipid, the GD2-specific antibody dinutuximab, its approved indications, and new strategies to improve its efficacy for neuroblastoma. Next, we review ongoing clinical trials on Globo H-targeted immunotherapeutics. We end with highlighting how these studies provide sound scientific rationales for targeting GSLs in cancer and may facilitate a rational design of new GSL-targeted anticancer therapeutics.
Collapse
Affiliation(s)
- John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Yan Cheng
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, University of California in San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Ishay Y, Kessler A, Schwarts A, Ilan Y. Antibody response to SARS-Co-V-2, diagnostic and therapeutic implications. Hepatol Commun 2020; 4:1731-1743. [PMID: 32904861 PMCID: PMC7461510 DOI: 10.1002/hep4.1600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
The immune response against SARS-CoV-2 is comprised of both cellular and humoral arms. While current diagnostic methods are mainly based on PCR, they suffer from insensitivity. Therefore, antibody-based serological tests are being developed to achieve higher sensitivity and specificity. Current efforts in treating SARS-CoV-2 infection include blocking of viral entry into the host cells, prohibiting viral replication and survival in the host cells, or reducing the exaggerated host immune response. Administration of convalescent plasma containing anti-viral antibodies was proposed to improve the outcome in severe cases. In this paper, we review some of the aspects associated with the development of antibodies against SARS-CoV-2 and their potential use for improved diagnosis and therapy.
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Medicine Hebrew University-Hadassah Medical Center Jerusalem Israel
| | - Asa Kessler
- Department of Medicine Hebrew University-Hadassah Medical Center Jerusalem Israel
| | - Asaf Schwarts
- Department of Medicine Hebrew University-Hadassah Medical Center Jerusalem Israel
| | - Yaron Ilan
- Department of Medicine Hebrew University-Hadassah Medical Center Jerusalem Israel
| |
Collapse
|
11
|
Vascon F, Gasparotto M, Giacomello M, Cendron L, Bergantino E, Filippini F, Righetto I. Protein electrostatics: From computational and structural analysis to discovery of functional fingerprints and biotechnological design. Comput Struct Biotechnol J 2020; 18:1774-1789. [PMID: 32695270 PMCID: PMC7355722 DOI: 10.1016/j.csbj.2020.06.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022] Open
Abstract
Computationally driven engineering of proteins aims to allow them to withstand an extended range of conditions and to mediate modified or novel functions. Therefore, it is crucial to the biotechnological industry, to biomedicine and to afford new challenges in environmental sciences, such as biocatalysis for green chemistry and bioremediation. In order to achieve these goals, it is important to clarify molecular mechanisms underlying proteins stability and modulating their interactions. So far, much attention has been given to hydrophobic and polar packing interactions and stability of the protein core. In contrast, the role of electrostatics and, in particular, of surface interactions has received less attention. However, electrostatics plays a pivotal role along the whole life cycle of a protein, since early folding steps to maturation, and it is involved in the regulation of protein localization and interactions with other cellular or artificial molecules. Short- and long-range electrostatic interactions, together with other forces, provide essential guidance cues in molecular and macromolecular assembly. We report here on methods for computing protein electrostatics and for individual or comparative analysis able to sort proteins by electrostatic similarity. Then, we provide examples of electrostatic analysis and fingerprints in natural protein evolution and in biotechnological design, in fields as diverse as biocatalysis, antibody and nanobody engineering, drug design and delivery, molecular virology, nanotechnology and regenerative medicine.
Collapse
Affiliation(s)
- Filippo Vascon
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| | - Matteo Gasparotto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| | - Marta Giacomello
- Bioenergetic Organelles Unit, Department of Biology, University of Padua, Italy
- Department of Biomedical Sciences, University of Padua, Italy
| | - Laura Cendron
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| | - Elisabetta Bergantino
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| | - Francesco Filippini
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| | - Irene Righetto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| |
Collapse
|
12
|
Zhou G, Zhao Q. Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int J Biol Sci 2020; 16:1718-1723. [PMID: 32226289 PMCID: PMC7098029 DOI: 10.7150/ijbs.45123] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/01/2020] [Indexed: 12/28/2022] Open
Abstract
A newly identified novel coronavirus (SARS-CoV-2) is causing pneumonia-associated respiratory syndrome across the world. Epidemiology, genomics, and pathogenesis of the SARS-CoV-2 show high homology with that of SARS-CoV. Current efforts are focusing on development of specific antiviral drugs. Therapeutic neutralizing antibodies (NAbs) against SARS-CoV-2 will be greatly important therapeutic agents for the treatment of coronavirus disease 2019 (COVID-19). Herein, the host immune responses against SARS-CoV discussed in this review provide implications for developing NAbs and understanding clinical interventions against SARS-CoV-2. Further, we describe the benefits, challenges and considerations of NAbs against SARS-CoV-2. Although many challenges exist, NAbs still offer a therapeutic option to control the current pandemic and the possible re-emergence of the virus in the future, and their development therefore remains a high priority.
Collapse
Affiliation(s)
- Guangyu Zhou
- Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, University of Macau, Taipa, Macau SPR, China
| | - Qi Zhao
- Faculty of Health Sciences, University of Macau, Taipa, Macau SPR, China
- Institute of Translational Medicine, University of Macau, Taipa, Macau SPR, China
| |
Collapse
|
13
|
Hu Z. Tissue factor as a new target for CAR-NK cell immunotherapy of triple-negative breast cancer. Sci Rep 2020; 10:2815. [PMID: 32071339 PMCID: PMC7028910 DOI: 10.1038/s41598-020-59736-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC), representing ~15% of globally diagnosed breast cancer, is typically an incurable malignancy due to the lack of targetable surface targets for development of effective therapy. To address the unmet need for TNBC treatment, we recently determined that tissue factor (TF) is a useful surface target in 50–85% of patients with TNBC and developed a second-generation TF-targeting antibody-like immunoconjugate (called L-ICON) for preclinical treatment of TNBC. Using the chimeric antigen receptor (CAR) approach, here we develop and test TF-targeting CAR-engineered natural killer (TF-CAR-NK) cells that co-express CD16, the Fc receptor (FcγIII) to mediate antibody-dependent cellular toxicity (ADCC), for a preclinical assessment of immunotherapy of TNBC using TF-CAR-NK cell as single agent therapy and in combination with L-ICON. Our preclinical results demonstrate that TF-CAR-NK cells alone could kill TNBC cells and its efficacy was enhanced with L-ICON ADCC in vitro. Moreover, TF-CAR-NK cells were effective in vivo for the treatment of TNBC in cell line- and patient’s tumor-derived xenograft mouse models. Thus, this study established the proof of concept of targeting TF as a new target in CAR-NK immunotherapy for effective treatment of TNBC and may warrant further preclinical study and potentially future investigation in TNBC patients.
Collapse
Affiliation(s)
- Zhiwei Hu
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and The OSU James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
14
|
V Kholodenko I, V Kalinovsky D, V Svirshchevskaya E, I Doronin I, V Konovalova M, V Kibardin A, V Shamanskaya T, S Larin S, M Deyev S, V Kholodenko R. Multimerization through Pegylation Improves Pharmacokinetic Properties of scFv Fragments of GD2-Specific Antibodies. Molecules 2019; 24:molecules24213835. [PMID: 31653037 PMCID: PMC6864547 DOI: 10.3390/molecules24213835] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Antigen-binding fragments of antibodies specific to the tumor-associated ganglioside GD2 are well poised to play a substantial role in modern GD2-targeted cancer therapies, however, rapid elimination from the body and reduced affinity compared to full-length antibodies limit their therapeutic potential. In this study, scFv fragments of GD2-specific antibodies 14.18 were produced in a mammalian expression system that specifically bind to ganglioside GD2, followed by site-directed pegylation to generate mono-, di-, and tetra-scFv fragments. Fractionated pegylated dimers and tetramers of scFv fragments showed significant increase of the binding to GD2 which was not accompanied by cross-reactivity with other gangliosides. Pegylated multimeric di-scFvs and tetra-scFvs exhibited cytotoxic effects in GD2-positive tumor cells, while their circulation time in blood significantly increased compared with monomeric antibody fragments. We also demonstrated a more efficient tumor uptake of the multimers in a syngeneic GD2-positive mouse cancer model. The findings of this study provide the rationale for improving therapeutic characteristics of GD2-specific antibody fragments by multimerization and propose a strategy to generate such molecules. On the basis of multimeric antibody fragments, bispecific antibodies and conjugates with cytotoxic drugs or radioactive isotopes may be developed that will possess improved pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
- Irina V Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 10, Pogodinskaya St., Moscow 119121, Russia.
| | - Daniel V Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Elena V Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Igor I Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
- Real Target LLC, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia.
| | - Maria V Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Alexey V Kibardin
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, 1, Samory Mashela St., Moscow 117997, Russia.
| | - Tatyana V Shamanskaya
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, 1, Samory Mashela St., Moscow 117997, Russia.
| | - Sergey S Larin
- D. Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, 1, Samory Mashela St., Moscow 117997, Russia.
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
- Sechenov First Moscow State Medical University, 8-2, Trubetskaya St., Moscow 119992, Russia.
| | - Roman V Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
- Real Target LLC, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia.
| |
Collapse
|
15
|
Novel chimeric antigen receptor T cells based on T-cell receptor-like antibodies. BLOOD SCIENCE 2019; 1:144-147. [PMID: 35402807 PMCID: PMC8975006 DOI: 10.1097/bs9.0000000000000032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/17/2019] [Indexed: 11/26/2022] Open
|
16
|
Liu J, Zhou G, Zhang L, Zhao Q. Building Potent Chimeric Antigen Receptor T Cells With CRISPR Genome Editing. Front Immunol 2019; 10:456. [PMID: 30941126 PMCID: PMC6433930 DOI: 10.3389/fimmu.2019.00456] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells have shown great promise in the treatment of hematological and solid malignancies. However, despite the success of this field, there remain some major challenges, including accelerated T cell exhaustion, potential toxicities, and insertional oncogenesis. To overcome these limitations, recent advances in CRISPR technology have enabled targetable interventions of endogenous genes in human CAR T cells. These CRISPR genome editing approaches have unleashed the therapeutic potential of CAR T cell therapy. Here, we summarize the potential benefits, safety concerns, and difficulties in the generation of gene-edited CAR T cells using CRISPR technology.
Collapse
Affiliation(s)
- Jie Liu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Guangyu Zhou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Li Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qi Zhao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
17
|
Li DZ, Han BN, Wei R, Yao GY, Chen Z, Liu J, Poon TCW, Su W, Zhu Z, Dimitrov DS, Zhao Q. N-terminal α-amino group modification of antibodies using a site-selective click chemistry method. MAbs 2019; 10:712-719. [PMID: 29652547 DOI: 10.1080/19420862.2018.1463122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Site-specific conjugation of small molecules to antibody molecules is a promising strategy for generation of antibody-drug conjugates. In this report, we describe the successful synthesis of a novel bifunctional molecule, 6-(azidomethyl)-2-pyridinecarboxyaldehyde (6-AM-2-PCA), which was used for conjugation of small molecules to peptides and antibodies. We demonstrated that 6-AM-2-PCA selectively reacted with N-terminal amino groups of peptides and antibodies. In addition, the azide group of 6-AM-2-PCA enabled copper-free click chemistry coupling with dibenzocyclooctyne-containing reagents. Bifunctional 6-AM-2-PCA mediated site-specific conjugation without requiring genetic engineering of peptides or antibodies. A key advantage of 6-AM-2-PCA as a conjugation reagent is its ability to modify proteins in a single step under physiological conditions that are sufficiently moderate to retain protein function. Therefore, this new click chemistry-based method could be a useful complement to other conjugation methods.
Collapse
Affiliation(s)
- De-Zhi Li
- a Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center , Guangdong , China
| | - Bing-Nan Han
- b Department of Development Technology of Marine Resources , School of Life Science, Zhejiang Sci-Tech University , Zhejiang , China
| | - Rui Wei
- c Faculty of Health Sciences, University of Macau , Macau , China
| | - Gui-Yang Yao
- d Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Guangdong , China
| | - Zhizhen Chen
- c Faculty of Health Sciences, University of Macau , Macau , China
| | - Jie Liu
- c Faculty of Health Sciences, University of Macau , Macau , China
| | - Terence C W Poon
- c Faculty of Health Sciences, University of Macau , Macau , China
| | - Wu Su
- d Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Guangdong , China
| | - Zhongyu Zhu
- e Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, NIH , USA
| | - Dimiter S Dimitrov
- f Department of Medicine, Center for Antibody Therapeutics , University of Pittsburgh Medical School , Pennsylvania , USA
| | - Qi Zhao
- c Faculty of Health Sciences, University of Macau , Macau , China
| |
Collapse
|
18
|
Wang Y, Shan Y, Gao X, Gong R, Zheng J, Zhang XD, Zhao Q. Screening and expressing HIV-1 specific antibody fragments in Saccharomyces cerevisiae. Mol Immunol 2018; 103:279-285. [PMID: 30342371 DOI: 10.1016/j.molimm.2018.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/26/2018] [Accepted: 10/06/2018] [Indexed: 02/06/2023]
Abstract
Yeast displaying techniques have been widely used for identifying novel single-chain variable fragments (scFvs) and engineering their binding properties. In this study, we establish a set of vectors for scFv screening and production in the yeast system of Saccharomyces cerevisiae. This suite includes a display vector pYS for screening of recombinant scFv libraries as well as an expression vector pYE for production of scFv candidates in Saccharomyces cerevisiae. The display vector, pYS, give the identification of the HIV-1-specific scFv clones from one scFv display library by fluorescence-activated cell sorting. Subsequently, the expression vector pYE can offer high quality scFvs of interest up to hundreds of microgram scale for bioactivity analysis. As the result, one identified scFv was confirmed to exhibit HIV-1 neutralization activity in a cell line-based pseudovirus assay. The advantage of this system enables the identical post-translation of mammalian scFvs in the same host cells. Therefore, this vector set can be useful for the rapid screening and expression of antibody genes.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xinyu Gao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Gong
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jun Zheng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China; Institute of Translational Medicine, Faculty of Heath Sciences, University of Macau, Macau, China
| | - Xiaohua Douglas Zhang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China; Institute of Translational Medicine, Faculty of Heath Sciences, University of Macau, Macau, China
| | - Qi Zhao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China; Institute of Translational Medicine, Faculty of Heath Sciences, University of Macau, Macau, China.
| |
Collapse
|
19
|
Sterner E, Peach ML, Nicklaus MC, Gildersleeve JC. Therapeutic Antibodies to Ganglioside GD2 Evolved from Highly Selective Germline Antibodies. Cell Rep 2017; 20:1681-1691. [PMID: 28813678 PMCID: PMC5572838 DOI: 10.1016/j.celrep.2017.07.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/15/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
Antibodies play a crucial role in host defense and are indispensable research tools, diagnostics, and therapeutics. Antibody generation involves binding of genomically encoded germline antibodies followed by somatic hypermutation and in vivo selection to obtain antibodies with high affinity and selectivity. Understanding this process is critical for developing monoclonal antibodies, designing effective vaccines, and understanding autoantibody formation. Prior studies have found that antibodies to haptens, peptides, and proteins evolve from polyspecific germline antibodies. The immunological evolution of antibodies to mammalian glycans has not been studied. Using glycan microarrays, protein microarrays, cell binding studies, and molecular modeling, we demonstrate that therapeutic antibodies to the tumor-associated ganglioside GD2 evolved from highly specific germline precursors. The results have important implications for developing vaccines and monoclonal antibodies that target carbohydrate antigens. In addition, they demonstrate an alternative pathway for antibody evolution within the immune system that is distinct from the polyspecific germline pathway.
Collapse
Affiliation(s)
- Eric Sterner
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Megan L Peach
- Basic Science Program, Chemical Biology Laboratory, Leidos Biomedical Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Marc C Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
20
|
Hoseini SS, Dobrenkov K, Pankov D, Xu XL, Cheung NKV. Bispecific antibody does not induce T-cell death mediated by chimeric antigen receptor against disialoganglioside GD2. Oncoimmunology 2017; 6:e1320625. [PMID: 28680755 PMCID: PMC5486173 DOI: 10.1080/2162402x.2017.1320625] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/19/2017] [Accepted: 04/13/2017] [Indexed: 01/12/2023] Open
Abstract
Chimeric antigen receptors (CAR) and bispecific antibodies (BsAb) are two powerful immunotherapy approaches for retargeting lymphocytes toward cancer cells. Despite their success in lymphoblastic leukemia, solid tumors have been more recalcitrant. Identifying therapeutic barriers facing CAR-modified (CART) or BsAb-redirected T (BsAb-T) cells should facilitate their clinical translation to solid tumors. Novel lentiviral vectors containing low-affinity or high-affinity 4-1BB second-generation anti-GD2 (disialoganglioside) CARs were built to achieve efficient T cell transduction. The humanized anti-GD2 × CD3 BsAb using the IgG-scFv platform was described previously. CART and BsAb-engaged T cells were tested for viability, proliferation, and activation/exhaustion marker expression, and in vitro cytotoxicity against GD2(+) tumor cells. The antitumor effect of CAR-grafted and BsAb-T cells was compared in a human melanoma xenograft model. The majority of high CAR density T cells were depleted upon exposure to GD2(+) target cells while the BsAb-T cells survived. The in vitro cytotoxicity of the surviving CART cells was inferior to that of the BsAb-T cells. Using low-affinity CARs, inclusion of the 4-1BB co-stimulatory domain or exclusion of a co-stimulatory domain, or blocking PD1 did not prevent CART cell depletion. Both CART cells and BsAb-T cells penetrated established subcutaneous human melanoma xenografts; while both induced tumor regression, BsAb was more efficient. The fate of T cells activated by BsAb differs substantially from that by CAR, translating into a more robust antitumor effect both in vitro and in vivo.
Collapse
Affiliation(s)
| | - Konstantin Dobrenkov
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dmitry Pankov
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaoliang L Xu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
21
|
Li D, Gong R, Zheng J, Chen X, Dimitrov DS, Zhao Q. Engineered antibody CH2 domains binding to nucleolin: Isolation, characterization and improvement of aggregation. Biochem Biophys Res Commun 2017; 485:446-453. [PMID: 28202413 PMCID: PMC6957259 DOI: 10.1016/j.bbrc.2017.02.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022]
Abstract
Smaller recombinant antibody fragments are now emerging as alternatives of conventional antibodies. Especially, immunoglobulin (Ig) constant CH2 domain and engineered CH2 with improved stability are promising as scaffolds for selection of specific binders to various antigens. We constructed a yeast display library based on an engineered human IgG1 CH2 scaffold with diversified loop regions. A group of CH2 binders were isolated from this yeast display library by panning against nucleolin, which is a tumor-associated antigen involved in cell proliferation, tumor cell growth and angiogenesis. Out of 20 mutants, we selected 3 clones exhibiting relatively high affinities to nucleolin on yeasts. However, recombinant CH2 mutants aggregated when they were expressed. To find the mechanism of the aggregation, we employed computational prediction approaches through structural homology models of CH2 binders. The analysis of potential aggregation prone regions (APRs) and solvent accessible surface areas (ASAs) indicated two hydrophobic residues, Val264 and Leu309, in the β-sheet, in which replacement of both charged residues led to significant decrease of the protein aggregation. The newly identified CH2 binders could be improved to use as candidate therapeutics or research reagents in the future.
Collapse
Affiliation(s)
- Dezhi Li
- College of Life Science, Xiamen University, Xiamen, Fujian, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xihai Chen
- Department of General Surgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Dimiter S Dimitrov
- Protein Interaction Section, Cancer Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Qi Zhao
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
22
|
Sensoy O, Atilgan AR, Atilgan C. FbpA iron storage and release are governed by periplasmic microenvironments. Phys Chem Chem Phys 2017; 19:6064-6075. [DOI: 10.1039/c6cp06961d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Cheng M, Santich BH, Xu H, Ahmed M, Huse M, Cheung NKV. Successful engineering of a highly potent single-chain variable-fragment (scFv) bispecific antibody to target disialoganglioside (GD2) positive tumors. Oncoimmunology 2016; 5:e1168557. [PMID: 27471647 PMCID: PMC4938304 DOI: 10.1080/2162402x.2016.1168557] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 01/28/2023] Open
Abstract
Engineering potent bispecific antibodies from single-chain variable fragments (scFv) remains difficult due to the inherent instability and insufficient binding of scFv's compared to their parental immunoglobulin format. Previously, we described a scFv-based bispecific antibody (scBA) against disialoganglioside (GD2) based on the anti-GD2 murine 5F11-scFv and the anti-CD3 huOKT3-scFv (5F11-scBA). In this study, we substituted the 5F11-scFv with the higher affinity (13-fold) hu3F8-scFv to form hu3F8-scBA. With this modification, hu3F8-scBA redirected T cells to kill GD2(+) cancer cell lines with up to 5,000-fold higher potency (femtomolar EC50) compared with 5F11-scBA (picomolar EC50) in cytotoxicity assays, even against target cells with low GD2 densities. Furthermore, hu3F8-scBA induced stronger T-cell activation than 5F11-scBA, as measured by Ca2+ flux and cytokine release. Additionally, in vivo, hu3F8-scBA suppressed tumor growth and prolonged mice survival much more effectively than 5F11-scBA, in both neuroblastoma and melanoma xenograft models. We conclude that the functional properties of scBA's can be increased substantially by relatively modest increases in antigen affinity.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Brian H Santich
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hong Xu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Mahiuddin Ahmed
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Morgan Huse
- Immunology Program, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center , New York, NY, USA
| |
Collapse
|
24
|
N-terminal residues of an HIV-1 gp41 membrane-proximal external region antigen influence broadly neutralizing 2F5-like antibodies. Virol Sin 2015; 30:449-56. [PMID: 26715302 DOI: 10.1007/s12250-015-3664-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022] Open
Abstract
The Human immunodeficiency virus type 1 (HIV-1) gp41 membrane proximal external region (MPER) is targeted by broadly neutralizing antibodies (e.g. 2F5, 4E10, Z13e and m66.6), which makes this region a promising target for vaccine design. One strategy to elicit neutralizing antibodies against the MPER epitope is to design peptide immunogens mimicking neutralization structures. To probe 2F5-like neutralizing antibodies, two yeast-displayed antibody libraries from peripheral blood mononuclear cells from a HIV-1 patient were screened against the 2F5 epitope peptide SP62. Two 2F5-like antibodies were identified that specifically recognized SP62. However, these antibodies only weakly neutralized HIV-1 primary isolates. The epitopes recognized by these two 2F5-like antibodies include not only the 2F5 epitope (amino acids (aa) 662-667 in the MPER) but also several other residues (aa 652-655) locating at the N-terminus in SP62. Experimental results suggest that residues of SP62 adjacent to the 2F5 epitope influence the response of broadly neutralizing 2F5-like antibodies in vaccination. Our findings may aid the design of vaccine immunogens and development of therapeutics against HIV-1 infection.
Collapse
|
25
|
Ahmed M, Cheng M, Zhao Q, Goldgur Y, Cheal SM, Guo HF, Larson SM, Cheung NKV. Humanized Affinity-matured Monoclonal Antibody 8H9 Has Potent Antitumor Activity and Binds to FG Loop of Tumor Antigen B7-H3. J Biol Chem 2015; 290:30018-29. [PMID: 26487718 DOI: 10.1074/jbc.m115.679852] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Indexed: 12/21/2022] Open
Abstract
B7-H3 (CD276) is both an inhibitory ligand for natural killer cells and T cells and a tumor antigen that is widely expressed among human solid tumors. Anti-B7-H3 mouse monoclonal antibody 8H9 has been successfully used for radioimmunotherapy for patients with B7-H3(+) tumors. We present the humanization, affinity maturation, and epitope mapping of 8H9 based on structure determination, modeling, and yeast display methods. The crystal structure of ch8H9 Fab fragment was solved to 2.5-Å resolution and used as a template for humanization. By displaying the humanized 8H9 single chain Fv (scFv) on the surface of yeast, the affinity was matured by sequential random mutagenesis and fluorescence-activated cell sorting. Six mutations (three in the complementarity-determining region and three in the framework regions) were identified and incorporated into an affinity-matured humanized 8H9 construct (hu8H9-6m) and an affinity-matured chimeric 8H9 construct (ch8H9-6m). The hu8H9-6m scFv had a 160-fold improvement in affinity (0.9 nm KD) compared with parental hu8H9 scFv (144 nm KD). The IgG formats of ch8H9-6m and hu8H9-6m (nanomolar to subnanomolar KD) had 2-9-fold enhancements in affinity compared with their parental forms, potent in vitro antibody-dependent cell-mediated cytotoxicity (0.1-0.3 μg/ml EC50), and high tumor uptake in mouse xenografts. Based on in silico docking studies and experimental validation, the molecular epitope of 8H9 was determined to be dependent on the FG loop of B7-H3, a region critical to its function in immunologic blockade and unique among anti-B7-H3 antibodies published to date.
Collapse
Affiliation(s)
| | | | - Qi Zhao
- From the Departments of Pediatrics and
| | | | | | | | - Steven M Larson
- Radiology, Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | | |
Collapse
|