1
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
2
|
Bin NR, Ma K, Tien CW, Wang S, Zhu D, Park S, Turlova E, Sugita K, Shirakawa R, van der Sluijs P, Horiuchi H, Sun HS, Monnier PP, Gaisano HY, Sugita S. C2 Domains of Munc13-4 Are Crucial for Ca 2+-Dependent Degranulation and Cytotoxicity in NK Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:700-713. [PMID: 29884704 DOI: 10.4049/jimmunol.1800426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/18/2018] [Indexed: 11/19/2022]
Abstract
In the immune system, degranulation/exocytosis from lymphocytes is crucial for life through facilitating eradication of infected and malignant cells. Dysfunction of the NK cell exocytosis process has been implicated with devastating immune diseases, such as familial hemophagocytic lymphohistiocytosis, yet the underlying molecular mechanisms of such processes have remained elusive. In particular, although the lytic granule exocytosis from NK cells is strictly Ca2+-dependent, the molecular identity of the Ca2+ sensor has yet to be identified. In this article, we show multiple lines of evidence in which point mutations in aspartic acid residues in both C2 domains of human Munc13-4, whose mutation underlies familial hemophagocytic lymphohistiocytosis type 3, diminished exocytosis with dramatically altered Ca2+ sensitivity in both mouse primary NK cells as well as rat mast cell lines. Furthermore, these mutations within the C2 domains severely impaired NK cell cytotoxicity against malignant cells. Total internal reflection fluorescence microscopy analysis revealed that the mutations strikingly altered Ca2+ dependence of fusion pore opening of each single granule and frequency of fusion events. Our results demonstrate that both C2 domains of Munc13-4 play critical roles in Ca2+-dependent exocytosis and cytotoxicity by regulating single-granule membrane fusion dynamics in immune cells.
Collapse
Affiliation(s)
- Na-Ryum Bin
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ke Ma
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Chi-Wei Tien
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Siyan Wang
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dan Zhu
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Seungmee Park
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ekaterina Turlova
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kyoko Sugita
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Ryutaro Shirakawa
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; and
| | - Peter van der Sluijs
- Department of Cell Biology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Hisanori Horiuchi
- Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; and
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Philippe P Monnier
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada
| | - Herbert Y Gaisano
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Shuzo Sugita
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario M5T 2S8, Canada; .,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
4
|
Arastoo M, Hacker C, Popovics P, Lucocq JM, Stewart AJ. Phospholipase C-η2 interacts with nuclear and cytoplasmic LIMK-1 during retinoic acid-stimulated neurite growth. Histochem Cell Biol 2015; 145:163-73. [PMID: 26671787 PMCID: PMC4735258 DOI: 10.1007/s00418-015-1390-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 01/22/2023]
Abstract
Neurite growth is central to the formation and differentiation of functional neurons, and recently, an essential role for phospholipase C-η2 (PLCη2) in neuritogenesis was revealed. Here we investigate the function of PLCη2 in neuritogenesis using Neuro2A cells, which upon stimulation with retinoic acid differentiate and form neurites. We first investigated the role of the PLCη2 calcium-binding EF-hand domain, a domain that is known to be required for PLCη2 activation. To do this, we quantified neurite outgrowth in Neuro2A cells, stably overexpressing wild-type PLCη2 and D256A (EF-hand) and H460Q (active site) PLCη2 mutants. Retinoic acid-induced neuritogenesis was highly dependent on PLCη2 activity, with the H460Q mutant exhibiting a strong dominant-negative effect. Expression of the D256A mutant had little effect on neurite growth relative to the control, suggesting that calcium-directed activation of PLCη2 is not essential to this process. We next investigated which cellular compartments contain endogenous PLCη2 by comparing immunoelectron microscopy signals over control and knockdown cell lines. When signals were analyzed to reveal specific labeling for PLCη2, it was found to be localized predominantly over the nucleus and cytosol. Furthermore in these compartments (and also in growing neurites), a proximity ligand assay revealed that PLCη2 specifically interacts with LIMK-1 in Neuro2A cells. Taken together, these data emphasize the importance of the PLCη2 EF-hand domain and articulation of PLCη2 with LIMK-1 in regulating neuritogenesis.
Collapse
Affiliation(s)
- Mohammed Arastoo
- School of Medicine, Medical and Biological Sciences Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9TF, UK
| | - Christian Hacker
- School of Medicine, Medical and Biological Sciences Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9TF, UK
- Bioimaging Centre, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Petra Popovics
- School of Medicine, Medical and Biological Sciences Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9TF, UK
- Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - John M Lucocq
- School of Medicine, Medical and Biological Sciences Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9TF, UK
| | - Alan J Stewart
- School of Medicine, Medical and Biological Sciences Building, North Haugh, University of St Andrews, St Andrews, Fife, KY16 9TF, UK.
| |
Collapse
|