1
|
Knapp BD, Willis L, Gonzalez C, Vashistha H, Jammal-Touma J, Tikhonov M, Ram J, Salman H, Elias JE, Huang KC. Metabolic rearrangement enables adaptation of microbial growth rate to temperature shifts. Nat Microbiol 2025; 10:185-201. [PMID: 39672961 DOI: 10.1038/s41564-024-01841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/26/2024] [Indexed: 12/15/2024]
Abstract
Temperature is a key determinant of microbial behaviour and survival in the environment and within hosts. At intermediate temperatures, growth rate varies according to the Arrhenius law of thermodynamics, which describes the effect of temperature on the rate of a chemical reaction. However, the mechanistic basis for this behaviour remains unclear. Here we use single-cell microscopy to show that Escherichia coli exhibits a gradual response to temperature upshifts with a timescale of ~1.5 doublings at the higher temperature. The response was largely independent of initial or final temperature and nutrient source. Proteomic and genomic approaches demonstrated that adaptation to temperature is independent of transcriptional, translational or membrane fluidity changes. Instead, an autocatalytic enzyme network model incorporating temperature-sensitive Michaelis-Menten kinetics recapitulates all temperature-shift dynamics through metabolome rearrangement, resulting in a transient temperature memory. The model successfully predicts alterations in the temperature response across nutrient conditions, diverse E. coli strains from hosts with different body temperatures, soil-dwelling Bacillus subtilis and fission yeast. In sum, our model provides a mechanistic framework for Arrhenius-dependent growth.
Collapse
Affiliation(s)
| | - Lisa Willis
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Carlos Gonzalez
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Harsh Vashistha
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joanna Jammal-Touma
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mikhail Tikhonov
- Department of Physics, Washington University in St Louis, St Louis, MO, USA
| | - Jeffrey Ram
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Hanna Salman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Wang JE, Shyur LF. The functional role of N-link glycosylation in a novel cellobiohydrolase II (LsCel6A) from a white-rot fungus Lentinus sp. WR2. Int J Biol Macromol 2024; 283:137771. [PMID: 39557244 DOI: 10.1016/j.ijbiomac.2024.137771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
White-rot fungi produce a wide spectrum of lignocellulose-degradation enzymes, which can be used in bioenergy, bioremediation, and other industrial applications. This study identified a cellobiohydrolase II (Cel6A, GH6 cellobiohydrolase, EC 3.2.1.91) with high hydrolytic activity toward crystalline cellulose from a white-rot fungus Lentinus sp. WR2. Both native (nLsCel6A) and recombinant (rLsCel6A) enzymes expressed in Pichia pastoris were purified and characterized. Three N-glycosylation sites at Asn102, Asn145, and Asn392 containing high-mannose glycans, were confirmed by mass spectrometry. To elucidate the functional role of N-linked glycans, three deglycosylated mutants of rLsCel6A, i.e., N102A, N145A, and N392A, were created and characterized for their biochemical and kinetic properties. While no discernible changes in the secondary structure of the three mutants were determined by circular dichroism spectrometry, deterioration of thermostability was revealed in N392A but not in N102A and N145A. Structure modeling and molecular dynamics analyses revealed that the N-linked glycan on Asn392 may restrict the flexibility of the C-terminal loop in LsCel6A, affecting the protein integrity and appropriate dynamics for the enzymatic function. In summary, this study identified a novel LsCel6A enzyme with high catalytic activity against insoluble forms of cellulose and demonstrated the role of N-linked glycosylation in the thermostability of the enzyme.
Collapse
Affiliation(s)
- Jia-En Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; PhD Program in Translational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biochemical Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
3
|
Nousi A, Molina GA, Schiano-di-Cola C, Sørensen TH, Borch K, Pedersen JN, Westh P, Marie R. Impact of Synergy Partner Cel7B on Cel7A Binding Rates: Insights from Single-Molecule Data. J Phys Chem B 2024; 128:635-647. [PMID: 38227769 PMCID: PMC10824242 DOI: 10.1021/acs.jpcb.3c05697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
Enzymatic degradation of cellulosic biomass is a well-established route for the sustainable production of biofuels, chemicals, and materials. A strategy employed by nature and industry to achieve an efficient degradation of cellulose is that cellobiohydrolases (or exocellulases), such as Cel7A, work synergistically with endoglucanases, such as Cel7B, to achieve the complete degradation of cellulose. However, a complete mechanistic understanding of this exo-endo synergy is still lacking. Here, we used single-molecule fluorescence microscopy to quantify the binding kinetics of Cel7A on cellulose when it is acting alone on the cellulose fibrils and in the presence of its synergy partner, the endoglucanase Cel7B. To this end, we used a fluorescently tagged Cel7A and studied its binding in the presence of the unlabeled Cel7B. This provided the single-molecule data necessary for the estimation of the rate constants of association kON and dissociation kOFF of Cel7A for the substrate. We show that the presence of Cel7B does not impact the dissociation rate constant, kOFF. But, the association rate of Cel7A decreases by a factor of 2 when Cel7B is present at a molar proportion of 10:1. This ratio has previously been shown to lead to synergy. This decrease in association rate is observed in a wide range of total enzyme concentrations, from sub nM to μM concentrations. This decrease in kON is consistent with the formation of cellulase clusters recently observed by others using atomic force microscopy.
Collapse
Affiliation(s)
- Aimilia Nousi
- Department
of Health Technology, Technical University
of Denmark, 2800 Kongens Lyngby, Denmark
| | - Gustavo Avelar Molina
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | - Kim Borch
- Novozymes
A/S, Krogshøjvej
36, 2880 Bagsværd, Denmark
| | - Jonas N. Pedersen
- Department
of Health Technology, Technical University
of Denmark, 2800 Kongens Lyngby, Denmark
| | - Peter Westh
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rodolphe Marie
- Department
of Health Technology, Technical University
of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Alserae H, Deng S. Assay of cellulose 1,4-β-cellobiosidase activity in soil. J Microbiol Methods 2023; 215:106861. [PMID: 38030086 DOI: 10.1016/j.mimet.2023.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
As the most abundant biopolymer on earth, cellulose undergoes degradation by a diverse set of enzymes with varying specificities that act in synergism. An assay protocol was developed to detect and quantify activity of cellulose 1,4-β-cellobiosidase (EC 3.2.1.91) in soil. The optimum pH and temperature for β-cellobiosidase activity were approximately pH 5.5 and 60 °C, respectively. In the tested six soils, the Michaelis constants (Km) ranged from 0.08 to 0.51 mM, and maximum velocity (Vmax) ranged from 71.5 to 318.1 μmol kg soil-1 h-1. The temperature coefficient (Q10) ranged from 1.72 to 1.99 at non-denaturing temperatures from 10 to 50 °C, and the activation energy (Ea) ranged from 42.5 to 53.7 kJ mol-1. The assay procedure provided reproducible results with a coefficient of variance ≤4.7% and demonstrated a limit of quantification (LOQ) of 50.9 μmol p-nitrophenol release kg-1 soil h-1 for β-cellobiosidase activity in soil. Notably, the developed assay protocol offers reproducibility and precision comparable to bench-scale assays while reducing costs associated with reagents, supplies, and labor.
Collapse
Affiliation(s)
- Hussein Alserae
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA; Department of Soil Sciences and Water Recourses, University of Baghdad, Baghdad, Iraq
| | - Shiping Deng
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
5
|
J Ashwini John, Selvarajan E. Genomic analysis of lignocellulolytic enzyme producing novel Streptomyces sp.MS2A for the bioethanol applications. Int J Biol Macromol 2023; 250:126138. [PMID: 37558017 DOI: 10.1016/j.ijbiomac.2023.126138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/22/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
The conversion of lignocellulosic waste to energy offers a cost-effective biofuel. The current study discusses the utilization of cellulose in rice husks by lichen-associated Streptomyces sp. MS2A via carbohydrate metabolism. Out of 39 actinobacteria, one actinobacterial strain MS2A, showed CMCase, FPase, and cellobiohydrolase activity. The whole genome analysis of Streptomyces sp. MS2A showed maximum similarity with Streptomyces sp. CCM_MD2014. The genome analysis confirmed the presence of cellulose-degrading genes along with xylan-degrading genes that code for GH3, GH6, GH9, GH11, GH43, GH51, and 15 other GH families with glycosyl transferase, carbohydrate-binding modules, and energy metabolism groups. Protein family analysis corroborates the enzyme family. Among the 19,402 genes of Streptomyces sp. MS2A, approximately 70 GH family codes for lignocellulose degradation enzymes. The structure of cellulase was modeled and validated. Scanning electron microscopy and gas chromatography-mass spectrometry (GCMS) was performed to analyze the lignocellulosic degradation of rice husk and the end product bioethanol.
Collapse
Affiliation(s)
- J Ashwini John
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India..
| | - Ethiraj Selvarajan
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India..
| |
Collapse
|
6
|
Knapp BD, Willis L, Gonzalez C, Vashistha H, Touma JJ, Tikhonov M, Ram J, Salman H, Elias JE, Huang KC. Metabolomic rearrangement controls the intrinsic microbial response to temperature changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550177. [PMID: 37546722 PMCID: PMC10401945 DOI: 10.1101/2023.07.22.550177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Temperature is one of the key determinants of microbial behavior and survival, whose impact is typically studied under heat- or cold-shock conditions that elicit specific regulation to combat lethal stress. At intermediate temperatures, cellular growth rate varies according to the Arrhenius law of thermodynamics without stress responses, a behavior whose origins have not yet been elucidated. Using single-cell microscopy during temperature perturbations, we show that bacteria exhibit a highly conserved, gradual response to temperature upshifts with a time scale of ~1.5 doublings at the higher temperature, regardless of initial/final temperature or nutrient source. We find that this behavior is coupled to a temperature memory, which we rule out as being neither transcriptional, translational, nor membrane dependent. Instead, we demonstrate that an autocatalytic enzyme network incorporating temperature-sensitive Michaelis-Menten kinetics recapitulates all temperature-shift dynamics through metabolome rearrangement, which encodes a temperature memory and successfully predicts alterations in the upshift response observed under simple-sugar, low-nutrient conditions, and in fungi. This model also provides a mechanistic framework for both Arrhenius-dependent growth and the classical Monod Equation through temperature-dependent metabolite flux.
Collapse
Affiliation(s)
| | - Lisa Willis
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Carlos Gonzalez
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Harsh Vashistha
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joanna Jammal Touma
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mikhail Tikhonov
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jeffrey Ram
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Hanna Salman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Josh E. Elias
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Kołaczkowski BM, Moroz OV, Blagova E, Davies GJ, Møller MS, Meyer AS, Westh P, Jensen K, Wilson KS, Krogh KBRM. Structural and functional characterization of a multi-domain GH92 α-1,2-mannosidase from Neobacillus novalis. Acta Crystallogr D Struct Biol 2023; 79:387-400. [PMID: 37071393 PMCID: PMC10167667 DOI: 10.1107/s2059798323001663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 04/19/2023] Open
Abstract
Many secreted eukaryotic proteins are N-glycosylated with oligosaccharides composed of a high-mannose N-glycan core and, in the specific case of yeast cell-wall proteins, an extended α-1,6-mannan backbone carrying a number of α-1,2- and α-1,3-mannose substituents of varying lengths. α-Mannosidases from CAZy family GH92 release terminal mannose residues from these N-glycans, providing access for the α-endomannanases, which then degrade the α-mannan backbone. Most characterized GH92 α-mannosidases consist of a single catalytic domain, while a few have extra domains including putative carbohydrate-binding modules (CBMs). To date, neither the function nor the structure of a multi-domain GH92 α-mannosidase CBM has been characterized. Here, the biochemical investigation and crystal structure of the full-length five-domain GH92 α-1,2-mannosidase from Neobacillus novalis (NnGH92) with mannoimidazole bound in the active site and an additional mannoimidazole bound to the N-terminal CBM32 are reported. The structure of the catalytic domain is very similar to that reported for the GH92 α-mannosidase Bt3990 from Bacteroides thetaiotaomicron, with the substrate-binding site being highly conserved. The function of the CBM32s and other NnGH92 domains was investigated by their sequential deletion and suggested that whilst their binding to the catalytic domain was crucial for the overall structural integrity of the enzyme, they appear to have little impact on the binding affinity to the yeast α-mannan substrate. These new findings provide a better understanding of how to select and optimize other multi-domain bacterial GH92 α-mannosidases for the degradation of yeast α-mannan or mannose-rich glycans.
Collapse
Affiliation(s)
- Bartłomiej M. Kołaczkowski
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, 4000 Roskilde, Denmark
- Novozymes A/S, Biologiens Vej 2, 2800 Kongens Lyngby, Denmark
| | - Olga V. Moroz
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Elena Blagova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Marie Sofie Møller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, 2800 Kongens Lyngby, Denmark
| | - Anne S. Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, 2800 Kongens Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, 2800 Kongens Lyngby, Denmark
| | - Kenneth Jensen
- Novozymes A/S, Biologiens Vej 2, 2800 Kongens Lyngby, Denmark
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | | |
Collapse
|
8
|
Schaller KS, Molina GA, Kari J, Schiano-di-Cola C, Sørensen TH, Borch K, Peters GH, Westh P. Virtual Bioprospecting of Interfacial Enzymes: Relating Sequence and Kinetics. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kay S. Schaller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
- Department of Chemistry, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - Gustavo Avelar Molina
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| | - Jeppe Kari
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Corinna Schiano-di-Cola
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| | | | - Kim Borch
- Novozymes A/S, Biologiens Vej 2, DK-2800 Kgs. Lyngby, Denmark
| | - Günther H.J. Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
9
|
Kabaivanova L, Petrova P, Hubenov V, Simeonov I. Biogas Production Potential of Thermophilic Anaerobic Biodegradation of Organic Waste by a Microbial Consortium Identified with Metagenomics. Life (Basel) 2022; 12:life12050702. [PMID: 35629369 PMCID: PMC9148150 DOI: 10.3390/life12050702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/21/2023] Open
Abstract
Anaerobic digestion (AD) is a widespread biological process treating organic waste for green energy production. In this study, wheat straw and corn stalks without any harsh preliminary treatment were collected as a renewable source to be employed in a laboratory-scale digester to produce biogas/biomethane. Processes parameters of temperature, pH, total solids, volatile solid, concentration of volatile fatty acids (VFA), and cellulose concentration, were followed. The volume of biogas produced was measured. The impact of organic loading was stated, showing that the process at 55 °C tolerated a higher substrate load, up to 45 g/L. Further substrate increase did not lead to biogas accumulation increase, probably due to inhibition or mass transfer limitations. After a 12-day anaerobic digestion process, cumulative volumes of biogas yields were 4.78 L for 1 L of the bioreactor working volume with substrate loading 30 g/L of wheat straw, 7.39 L for 40 g/L and 8.22 L for 45 g/L. The degree of biodegradation was calculated to be 68.9%, 74% and 72%, respectively. A fast, effective process for biogas production was developed from native wheat straw, with the highest quantity of daily biogas production occurring between day 2 and day 5. Biomethane concentration in the biogas was 60%. An analysis of bacterial diversity by metagenomics revealed that more than one third of bacteria belonged to class Clostridia (32.9%), followed by Bacteroidia (21.5%), Betaproteobacteria (11.2%), Gammaproteobacteria (6.1%), and Alphaproteobacteria (5%). The most prominent genera among them were Proteiniphilum, Proteiniborus, and Pseudomonas. Archaeal share was 1.37% of the microflora in the thermophilic bioreactor, as the genera Methanocorpusculum, Methanobacterium, Methanomassiliicoccus, Methanoculleus, and Methanosarcina were the most abundant. A knowledge of the microbiome residing in the anaerobic digester can be further used for the development of more effective processes in conjunction with theidentified consortium.
Collapse
|
10
|
Kołaczkowski BM, Jørgensen CI, Spodsberg N, Stringer MA, Supekar NT, Azadi P, Westh P, Krogh KBRM, Jensen K. Analysis of fungal high-mannose structures using CAZymes. Glycobiology 2022; 32:304-313. [PMID: 34939126 PMCID: PMC8970417 DOI: 10.1093/glycob/cwab127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Glycoengineering ultimately allows control over glycosylation patterns to generate new glycoprotein variants with desired properties. A common challenge is glycan heterogeneity, which may affect protein function and limit the use of key techniques such as mass spectrometry. Moreover, heterologous protein expression can introduce nonnative glycan chains that may not fulfill the requirement for therapeutic proteins. One strategy to address these challenges is partial trimming or complete removal of glycan chains, which can be obtained through selective application of exoglycosidases. Here, we demonstrate an enzymatic O-deglycosylation toolbox of a GH92 α-1,2-mannosidase from Neobacillus novalis, a GH2 β-galactofuranosidase from Amesia atrobrunnea and the jack bean α-mannosidase. The extent of enzymatic O-deglycosylation was mapped against a full glycosyl linkage analysis of the O-glycosylated linker of cellobiohydrolase I from Trichoderma reesei (TrCel7A). Furthermore, the influence of deglycosylation on TrCel7A functionality was evaluated by kinetic characterization of native and O-deglycosylated forms of TrCel7A. This study expands structural knowledge on fungal O-glycosylation and presents a ready-to-use enzymatic approach for controlled O-glycan engineering in glycoproteins expressed in filamentous fungi.
Collapse
Affiliation(s)
- Bartłomiej M Kołaczkowski
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, Roskilde 4000, Denmark
| | | | | | - Mary A Stringer
- Novozymes A/S, Biologiens Vej 2, Kongens Lyngby 2800, Denmark
| | - Nitin T Supekar
- Complex Carbohydrate Research Center, 315 Riverbend Rd. University of Georgia, Athens, Georgia 30602 USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, 315 Riverbend Rd. University of Georgia, Athens, Georgia 30602 USA
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, Kongens Lyngby 2800, Denmark
| | | | - Kenneth Jensen
- Novozymes A/S, Biologiens Vej 2, Kongens Lyngby 2800, Denmark
| |
Collapse
|
11
|
Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME JOURNAL 2021; 16:272-283. [PMID: 34316016 PMCID: PMC8692354 DOI: 10.1038/s41396-021-01064-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 02/04/2023]
Abstract
Nitrification, the oxidation of ammonia to nitrate, is an essential process in the biogeochemical nitrogen cycle. The first step of nitrification, ammonia oxidation, is performed by three, often co-occurring guilds of chemolithoautotrophs: ammonia-oxidizing bacteria (AOB), archaea (AOA), and complete ammonia oxidizers (comammox). Substrate kinetics are considered to be a major niche-differentiating factor between these guilds, but few AOA strains have been kinetically characterized. Here, the ammonia oxidation kinetic properties of 12 AOA representing all major cultivated phylogenetic lineages were determined using microrespirometry. Members of the genus Nitrosocosmicus have the lowest affinity for both ammonia and total ammonium of any characterized AOA, and these values are similar to previously determined ammonia and total ammonium affinities of AOB. This contrasts previous assumptions that all AOA possess much higher substrate affinities than their comammox or AOB counterparts. The substrate affinity of ammonia oxidizers correlated with their cell surface area to volume ratios. In addition, kinetic measurements across a range of pH values supports the hypothesis that—like for AOB—ammonia and not ammonium is the substrate for the ammonia monooxygenase enzyme of AOA and comammox. Together, these data will facilitate predictions and interpretation of ammonia oxidizer community structures and provide a robust basis for establishing testable hypotheses on competition between AOB, AOA, and comammox.
Collapse
|
12
|
Kari J, Molina GA, Schaller KS, Schiano-di-Cola C, Christensen SJ, Badino SF, Sørensen TH, Røjel NS, Keller MB, Sørensen NR, Kolaczkowski B, Olsen JP, Krogh KBRM, Jensen K, Cavaleiro AM, Peters GHJ, Spodsberg N, Borch K, Westh P. Physical constraints and functional plasticity of cellulases. Nat Commun 2021; 12:3847. [PMID: 34158485 PMCID: PMC8219668 DOI: 10.1038/s41467-021-24075-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Enzyme reactions, both in Nature and technical applications, commonly occur at the interface of immiscible phases. Nevertheless, stringent descriptions of interfacial enzyme catalysis remain sparse, and this is partly due to a shortage of coherent experimental data to guide and assess such work. In this work, we produced and kinetically characterized 83 cellulases, which revealed a conspicuous linear free energy relationship (LFER) between the substrate binding strength and the activation barrier. The scaling occurred despite the investigated enzymes being structurally and mechanistically diverse. We suggest that the scaling reflects basic physical restrictions of the hydrolytic process and that evolutionary selection has condensed cellulase phenotypes near the line. One consequence of the LFER is that the activity of a cellulase can be estimated from its substrate binding strength, irrespectively of structural and mechanistic details, and this appears promising for in silico selection and design within this industrially important group of enzymes.
Collapse
Affiliation(s)
- Jeppe Kari
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gustavo A Molina
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kay S Schaller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Corinna Schiano-di-Cola
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stefan J Christensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Silke F Badino
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Nanna S Røjel
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde, Denmark
| | - Malene B Keller
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Nanna Rolsted Sørensen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde, Denmark
| | - Bartlomiej Kolaczkowski
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde, Denmark
| | | | | | | | | | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
13
|
A comparative biochemical investigation of the impeding effect of C1-oxidizing LPMOs on cellobiohydrolases. J Biol Chem 2021; 296:100504. [PMID: 33675751 PMCID: PMC8047454 DOI: 10.1016/j.jbc.2021.100504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 11/20/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are known to act synergistically with glycoside hydrolases in industrial cellulolytic cocktails. However, a few studies have reported severe impeding effects of C1-oxidizing LPMOs on the activity of reducing-end cellobiohydrolases. The mechanism for this effect remains unknown, but it may have important implications as reducing-end cellobiohydrolases make up a significant part of such cocktails. To elucidate whether the impeding effect is general for different reducing-end cellobiohydrolases and study the underlying mechanism, we conducted a comparative biochemical investigation of the cooperation between a C1-oxidizing LPMO from Thielavia terrestris and three reducing-end cellobiohydrolases; Trichoderma reesei (TrCel7A), T. terrestris (TtCel7A), and Myceliophthora heterothallica (MhCel7A). The enzymes were heterologously expressed in the same organism and thoroughly characterized biochemically. The data showed distinct differences in synergistic effects between the LPMO and the cellobiohydrolases; TrCel7A was severely impeded, TtCel7A was moderately impeded, while MhCel7A was slightly boosted by the LPMO. We investigated effects of C1-oxidations on cellulose chains on the activity of the cellobiohydrolases and found reduced activity against oxidized cellulose in steady-state and pre-steady-state experiments. The oxidations led to reduced maximal velocity of the cellobiohydrolases and reduced rates of substrate complexation. The extent of these effects differed for the cellobiohydrolases and scaled with the extent of the impeding effect observed in the synergy experiments. Based on these results, we suggest that C1-oxidized chain ends are poor attack sites for reducing-end cellobiohydrolases. The severity of the impeding effects varied considerably among the cellobiohydrolases, which may be relevant to consider for optimization of industrial cocktails.
Collapse
|
14
|
A steady-state approach for inhibition of heterogeneous enzyme reactions. Biochem J 2020; 477:1971-1982. [PMID: 32391552 DOI: 10.1042/bcj20200083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 02/02/2023]
Abstract
The kinetic theory of enzymes that modify insoluble substrates is still underdeveloped, despite the prevalence of this type of reaction both in vivo and industrial applications. Here, we present a steady-state kinetic approach to investigate inhibition occurring at the solid-liquid interface. We propose to conduct experiments under enzyme excess (E0 ≫ S0), i.e. the opposite limit compared with the conventional Michaelis-Menten framework. This inverse condition is practical for insoluble substrates and elucidates how the inhibitor reduces enzyme activity through binding to the substrate. We claim that this type of inhibition is common for interfacial enzyme reactions because substrate accessibility is low, and we show that it can be analyzed by experiments and rate equations that are analogous to the conventional approach, except that the roles of enzyme and substrate have been swapped. To illustrate the approach, we investigated the major cellulases from Trichoderma reesei (Cel6A and Cel7A) acting on insoluble cellulose. As model inhibitors, we used catalytically inactive variants of Cel6A and Cel7A. We made so-called inverse Michaelis-Menten curves at different concentrations of inhibitors and found that a new rate equation accounted well for the data. In most cases, we found a mixed type of surface-site inhibition mechanism, and this probably reflected that the inhibitor both competed with the enzyme for the productive binding-sites (competitive inhibition) and hampered the processive movement on the surface (uncompetitive inhibition). These results give new insights into the complex interplay of Cel7A and Cel6A on cellulose and the approach may be applicable to other heterogeneous enzyme reactions.
Collapse
|
15
|
Østby H, Hansen LD, Horn SJ, Eijsink VGH, Várnai A. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J Ind Microbiol Biotechnol 2020; 47:623-657. [PMID: 32840713 PMCID: PMC7658087 DOI: 10.1007/s10295-020-02301-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Efficient saccharification of lignocellulosic biomass requires concerted development of a pretreatment method, an enzyme cocktail and an enzymatic process, all of which are adapted to the feedstock. Recent years have shown great progress in most aspects of the overall process. In particular, increased insights into the contributions of a wide variety of cellulolytic and hemicellulolytic enzymes have improved the enzymatic processing step and brought down costs. Here, we review major pretreatment technologies and different enzyme process setups and present an in-depth discussion of the various enzyme types that are currently in use. We pay ample attention to the role of the recently discovered lytic polysaccharide monooxygenases (LPMOs), which have led to renewed interest in the role of redox enzyme systems in lignocellulose processing. Better understanding of the interplay between the various enzyme types, as they may occur in a commercial enzyme cocktail, is likely key to further process improvements.
Collapse
Affiliation(s)
- Heidi Østby
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Line Degn Hansen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Aas, Norway.
| |
Collapse
|
16
|
Keller MB, Sørensen TH, Krogh KBRM, Wogulis M, Borch K, Westh P. Activity of fungal β-glucosidases on cellulose. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:121. [PMID: 32670408 PMCID: PMC7350674 DOI: 10.1186/s13068-020-01762-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Fungal beta-glucosidases (BGs) from glucoside hydrolase family 3 (GH3) are industrially important enzymes, which convert cellooligosaccharides into glucose; the end product of the cellulolytic process. They are highly active against the β-1,4 glycosidic bond in soluble substrates but typically reported to be inactive against insoluble cellulose. RESULTS We studied the activity of four fungal GH3 BGs on cellulose and found significant activity. At low temperatures (10 ℃), we derived the approximate kinetic parameters k cat = 0.3 ± 0.1 s-1 and K M = 80 ± 30 g/l for a BG from Aspergillus fumigatus (AfBG) acting on Avicel. Interestingly, this maximal turnover is higher than reported values for typical cellobiohydrolases (CBH) at this temperature and comparable to those of endoglucanases (EG). The specificity constant of AfGB on Avicel was only moderately lowered compared to values for EGs and CBHs. CONCLUSIONS Overall these observations suggest a significant promiscuous side activity of the investigated GH3 BGs on insoluble cellulose. This challenges the traditional definition of a BG and supports suggestions that functional classes of cellulolytic enzymes may represent a continuum of overlapping modes of action.
Collapse
Affiliation(s)
- Malene B. Keller
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 23 Rolighedsvej, 1958 Frederiksberg, Denmark
- Department of Science and Environment, Roskilde University, 1 Universitetsvej, 4000 Roskilde, Denmark
| | - Trine H. Sørensen
- Department of Science and Environment, Roskilde University, 1 Universitetsvej, 4000 Roskilde, Denmark
- Novozymes A/S, 2 Biologiens Vej, 2800 Kgs. Lyngby, Denmark
| | | | - Mark Wogulis
- Novozymes Ltd, 1445 Drew Ave, Davis, CA 95618 USA
| | - Kim Borch
- Novozymes A/S, 2 Biologiens Vej, 2800 Kgs. Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 221 Søltofts Plads, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
17
|
Christensen SJ, Badino SF, Cavaleiro AM, Borch K, Westh P. Functional analysis of chimeric TrCel6A enzymes with different carbohydrate binding modules. Protein Eng Des Sel 2020; 32:401-409. [PMID: 32100026 DOI: 10.1093/protein/gzaa003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/10/2019] [Accepted: 01/13/2019] [Indexed: 11/14/2022] Open
Abstract
The glycoside hydrolase (GH) family 6 is an important group of enzymes that constitute an essential part of industrial enzyme cocktails used to convert lignocellulose into fermentable sugars. In nature, enzymes from this family often have a carbohydrate binding module (CBM) from the CBM family 1. These modules are known to promote adsorption to the cellulose surface and influence enzymatic activity. Here, we have investigated the functional diversity of CBMs found within the GH6 family. This was done by constructing five chimeric enzymes based on the model enzyme, TrCel6A, from the soft-rot fungus Trichoderma reesei. The natural CBM of this enzyme was exchanged with CBMs from other GH6 enzymes originating from different cellulose degrading fungi. The chimeric enzymes were expressed in the same host and investigated in adsorption and quasi-steady-state kinetic experiments. Our results quantified functional differences of these phylogenetically distant binding modules. Thus, the partitioning coefficient for substrate binding varied 4-fold, while the maximal turnover (kcat) showed a 2-fold difference. The wild-type enzyme showed the highest cellulose affinity on all tested substrates and the highest catalytic turnover. The CBM from Serendipita indica strongly promoted the enzyme's ability to form productive complexes with sites on the substrate surface but showed lower turnover of the complex. We conclude that the CBM plays an important role for the functional differences between GH6 wild-type enzymes.
Collapse
Affiliation(s)
- Stefan Jarl Christensen
- Research Unit for Functional Biomaterials, Department of Science and Environment, Roskilde University, building 28B, DK-4000, Roskilde, Denmark
| | - Silke Flindt Badino
- Research Unit for Functional Biomaterials, Department of Science and Environment, Roskilde University, building 28B, DK-4000, Roskilde, Denmark
| | - Ana Mafalda Cavaleiro
- Research Unit for Functional Biomaterials, Department of Science and Environment, Roskilde University, building 28B, DK-4000, Roskilde, Denmark.,Novozymes A/S, Department of Enzyme Discovery, Rævehøjvej 32A, DK-2800 Kgs. Lyngby, Denmark
| | - Kim Borch
- Novozymes A/S, Department of Enzyme Discovery, Rævehøjvej 32A, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, building 224, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
18
|
Røjel N, Kari J, Sørensen TH, Badino SF, Morth JP, Schaller K, Cavaleiro AM, Borch K, Westh P. Substrate binding in the processive cellulase Cel7A: Transition state of complexation and roles of conserved tryptophan residues. J Biol Chem 2020; 295:1454-1463. [PMID: 31848226 PMCID: PMC7008363 DOI: 10.1074/jbc.ra119.011420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Indexed: 11/06/2022] Open
Abstract
Cellobiohydrolases effectively degrade cellulose and are of biotechnological interest because they can convert lignocellulosic biomass to fermentable sugars. Here, we implemented a fluorescence-based method for real-time measurements of complexation and decomplexation of the processive cellulase Cel7A and its insoluble substrate, cellulose. The method enabled detailed kinetic and thermodynamic analyses of ligand binding in a heterogeneous system. We studied WT Cel7A and several variants in which one or two of four highly conserved Trp residues in the binding tunnel had been replaced with Ala. WT Cel7A had on/off-rate constants of 1 × 105 m-1 s-1 and 5 × 10-3 s-1, respectively, reflecting the slow dynamics of a solid, polymeric ligand. Especially the off-rate constant was many orders of magnitude lower than typical values for small, soluble ligands. Binding rate and strength both were typically lower for the Trp variants, but effects of the substitutions were moderate and sometimes negligible. Hence, we propose that lowering the activation barrier for complexation is not a major driving force for the high conservation of the Trp residues. Using so-called Φ-factor analysis, we analyzed the kinetic and thermodynamic results for the variants. The results of this analysis suggested a transition state for complexation and decomplexation in which the reducing end of the ligand is close to the tunnel entrance (near Trp-40), whereas the rest of the binding tunnel is empty. We propose that this structure defines the highest free-energy barrier of the overall catalytic cycle and hence governs the turnover rate of this industrially important enzyme.
Collapse
Affiliation(s)
- Nanna Røjel
- Institut for Naturvidenskab og Miljo, Roskilde University, DK-4000 Roskilde, Denmark
| | - Jeppe Kari
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | - Silke F Badino
- Institut for Naturvidenskab og Miljo, Roskilde University, DK-4000 Roskilde, Denmark
| | - J Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Kay Schaller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | - Kim Borch
- Novozymes A/S, DK-2800 Kgs. Lyngby Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
19
|
Molecular recognition in the product site of cellobiohydrolase Cel7A regulates processive step length. Biochem J 2020; 477:99-110. [PMID: 31816027 DOI: 10.1042/bcj20190770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 11/17/2022]
Abstract
Cellobiohydrolase Cel7A is an industrial important enzyme that breaks down cellulose by a complex processive mechanism. The enzyme threads the reducing end of a cellulose strand into its tunnel-shaped catalytic domain and progresses along the strand while sequentially releasing the disaccharide cellobiose. While some molecular details of this intricate process have emerged, general structure-function relationships for Cel7A remain poorly elucidated. One interesting aspect is the occurrence of particularly strong ligand interactions in the product binding site. In this work, we analyze these interactions in Cel7A from Trichoderma reesei with special emphasis on the Arg251 and Arg394 residues. We made extensive biochemical characterization of enzymes that were mutated in these two positions and showed that the arginine residues contributed strongly to product binding. Specifically, ∼50% of the total standard free energy of product binding could be ascribed to four hydrogen bonds to Arg251 and Arg394, which had previously been identified in crystal structures. Mutation of either Arg251 or Arg394 lowered production inhibition of Cel7A, but at the same time altered the enzyme product profile and resulted in ∼50% reduction in both processivity and hydrolytic activity. The position of the two arginine residues closely matches the two-fold screw axis symmetry of the substrate, and this energetically favors the productive enzyme-substrate complex. Our results indicate that the strong and specific ligand interactions of Arg251 and Arg394 provide a simple proofreading system that controls the step length during consecutive hydrolysis and minimizes dead time associated with transient, non-productive complexes.
Collapse
|
20
|
Selective pressure on an interfacial enzyme: Functional roles of a highly conserved asparagine residue in a cellulase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140359. [PMID: 31911207 DOI: 10.1016/j.bbapap.2019.140359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/18/2019] [Accepted: 12/25/2019] [Indexed: 11/24/2022]
|
21
|
Kołaczkowski BM, Schaller KS, Sørensen TH, Peters GHJ, Jensen K, Krogh KBRM, Westh P. Removal of N-linked glycans in cellobiohydrolase Cel7A from Trichoderma reesei reveals higher activity and binding affinity on crystalline cellulose. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:136. [PMID: 32782472 PMCID: PMC7412794 DOI: 10.1186/s13068-020-01779-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/29/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Cellobiohydrolase from glycoside hydrolase family 7 is a major component of commercial enzymatic mixtures for lignocellulosic biomass degradation. For many years, Trichoderma reesei Cel7A (TrCel7A) has served as a model to understand structure-function relationships of processive cellobiohydrolases. The architecture of TrCel7A includes an N-glycosylated catalytic domain, which is connected to a carbohydrate-binding module through a flexible, O-glycosylated linker. Depending on the fungal expression host, glycosylation can vary not only in glycoforms, but also in site occupancy, leading to a complex pattern of glycans, which can affect the enzyme's stability and kinetics. RESULTS Two expression hosts, Aspergillus oryzae and Trichoderma reesei, were utilized to successfully express wild-types TrCel7A (WT Ao and WT Tr ) and the triple N-glycosylation site deficient mutants TrCel7A N45Q, N270Q, N384Q (ΔN-glyc Ao and ΔN-glyc Tr ). Also, we expressed single N-glycosylation site deficient mutants TrCel7A (N45Q Ao , N270Q Ao , N384Q Ao ). The TrCel7A enzymes were studied by steady-state kinetics under both substrate- and enzyme-saturating conditions using different cellulosic substrates. The Michaelis constant (K M ) was consistently found to be lowered for the variants with reduced N-glycosylation content, and for the triple deficient mutants, it was less than half of the WTs' value on some substrates. The ability of the enzyme to combine productively with sites on the cellulose surface followed a similar pattern on all tested substrates. Thus, site density (number of sites per gram cellulose) was 30-60% higher for the single deficient variants compared to the WT, and about twofold larger for the triple deficient enzyme. Molecular dynamic simulation of the N-glycan mutants TrCel7A revealed higher number of contacts between CD and cellulose crystal upon removal of glycans at position N45 and N384. CONCLUSIONS The kinetic changes of TrCel7A imposed by removal of N-linked glycans reflected modifications of substrate accessibility. The presence of N-glycans with extended structures increased K M and decreased attack site density of TrCel7A likely due to steric hindrance effect and distance between the enzyme and the cellulose surface, preventing the enzyme from achieving optimal conformation. This knowledge could be applied to modify enzyme glycosylation to engineer enzyme with higher activity on the insoluble substrates.
Collapse
Affiliation(s)
| | - Kay S. Schaller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, 2800 Kgs. Lyngby, Denmark
| | | | - Günther H. J. Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Kenneth Jensen
- Novozymes A/S, Biologiens Vej 2, 2800 Kgs. Lyngby, Denmark
| | | | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
22
|
Røjel N, Kari J, Sørensen TH, Borch K, Westh P. pH profiles of cellulases depend on the substrate and architecture of the binding region. Biotechnol Bioeng 2019; 117:382-391. [PMID: 31631319 DOI: 10.1002/bit.27206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/09/2019] [Accepted: 10/13/2019] [Indexed: 01/06/2023]
Abstract
Understanding the pH effect of cellulolytic enzymes is of great technological importance. In this study, we have examined the influence of pH on activity and stability for central cellulases (Cel7A, Cel7B, Cel6A from Trichoderma reesei, and Cel7A from Rasamsonia emersonii). We systematically changed pH from 2 to 7, temperature from 20°C to 70°C, and used both soluble (4-nitrophenyl β- d-lactopyranoside [pNPL]) and insoluble (Avicel) substrates at different concentrations. Collective interpretation of these data provided new insights. An unusual tolerance to acidic conditions was observed for both investigated Cel7As, but only on real insoluble cellulose. In contrast, pH profiles on pNPL were bell-shaped with a strong loss of activity both above and below the optimal pH for all four enzymes. On a practical level, these observations call for the caution of the common practice of using soluble substrates for the general characterization of pH effects on cellulase activity. Kinetic modeling of the experimental data suggested that the nucleophile of Cel7A experiences a strong downward shift in pKa upon complexation with an insoluble substrate. This shift was less pronounced for Cel7B, Cel6A, and for Cel7A acting on the soluble substrate, and we hypothesize that these differences are related to the accessibility of water to the binding region of the Michaelis complex.
Collapse
Affiliation(s)
- Nanna Røjel
- Department of Science and Environment (INM), Roskilde University, Roskilde, Denmark.,Present address: Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, DK-2800, Kgs. Lyngby, Denmark
| | - Jeppe Kari
- Department of Science and Environment (INM), Roskilde University, Roskilde, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
23
|
Schiano‐di‐Cola C, Kołaczkowski B, Sørensen TH, Christensen SJ, Cavaleiro AM, Windahl MS, Borch K, Morth JP, Westh P. Structural and biochemical characterization of a family 7 highly thermostable endoglucanase from the fungusRasamsonia emersonii. FEBS J 2019; 287:2577-2596. [DOI: 10.1111/febs.15151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/01/2019] [Accepted: 11/20/2019] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Trine Holst Sørensen
- Department of Science and Environment Roskilde University Denmark
- Novozymes A/S Lyngby Denmark
| | | | | | - Michael Skovbo Windahl
- Department of Science and Environment Roskilde University Denmark
- Novozymes A/S Lyngby Denmark
| | | | - Jens Preben Morth
- Department of Biotechnology and Biomedicine Technical University of Denmark Lyngby Denmark
| | - Peter Westh
- Department of Science and Environment Roskilde University Denmark
- Department of Biotechnology and Biomedicine Technical University of Denmark Lyngby Denmark
| |
Collapse
|
24
|
Kari J, Christensen SJ, Andersen M, Baiget SS, Borch K, Westh P. A practical approach to steady-state kinetic analysis of cellulases acting on their natural insoluble substrate. Anal Biochem 2019; 586:113411. [PMID: 31520594 DOI: 10.1016/j.ab.2019.113411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 10/26/2022]
Abstract
Measurement of steady-state rates (vSS) is straightforward in standard enzymology with soluble substrate, and it has been instrumental for comparative biochemical analyses within this area. For insoluble substrate, however, experimental values of vss remain controversial, and this has strongly limited the amount and quality of comparative analyses for cellulases and other enzymes that act on the surface of an insoluble substrate. In the current work, we have measured progress curves over a wide range of conditions for two cellulases, TrCel6A and TrCel7A from Trichoderma reesei, acting on their natural, insoluble substrate, cellulose. Based on this, we consider practical compromises for the determination of experimental vSS values, and propose a basic protocol that provides representative reaction rates and is experimentally simple so that larger groups of enzymes and conditions can be readily assayed with standard laboratory equipment. We surmise that the suggested experimental approach can be useful in comparative biochemical studies of cellulases; an area that remains poorly developed.
Collapse
Affiliation(s)
- Jeppe Kari
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800, Kgs. Lyngby, Denmark
| | - Stefan Jarl Christensen
- Department of Science and Environment, Roskilde University, Universitetsvej, Build. 28.C, DK-4000, Roskilde, Denmark
| | - Morten Andersen
- Department of Science and Environment, Roskilde University, Universitetsvej, Build. 28.C, DK-4000, Roskilde, Denmark
| | | | - Kim Borch
- Novozymes A/S, Krogshøjvej 36, DK-2880, Bagsværd, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
25
|
A simple linearization method unveils hidden enzymatic assay interferences. Biophys Chem 2019; 252:106193. [DOI: 10.1016/j.bpc.2019.106193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 01/09/2023]
|
26
|
Govrin R, Obstbaum T, Sivan U. Common Source of Cryoprotection and Osmoprotection by Osmolytes. J Am Chem Soc 2019; 141:13311-13314. [DOI: 10.1021/jacs.9b06727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Roy Govrin
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Tal Obstbaum
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Uri Sivan
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| |
Collapse
|
27
|
A biochemical comparison of fungal GH6 cellobiohydrolases. Biochem J 2019; 476:2157-2172. [DOI: 10.1042/bcj20190185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 02/02/2023]
Abstract
AbstractCellobiohydrolases (CBHs) from glycoside hydrolase family 6 (GH6) make up an important part of the secretome in many cellulolytic fungi. They are also of technical interest, particularly because they are part of the enzyme cocktails that are used for the industrial breakdown of lignocellulosic biomass. Nevertheless, functional studies of GH6 CBHs are scarce and focused on a few model enzymes. To elucidate functional breadth among GH6 CBHs, we conducted a comparative biochemical study of seven GH6 CBHs originating from fungi living in different habitats, in addition to one enzyme variant. The enzyme sequences were investigated by phylogenetic analyses to ensure that they were not closely related phylogenetically. The selected enzymes were all heterologously expressed in Aspergillus oryzae, purified and thoroughly characterized biochemically. This approach allowed direct comparisons of functional data, and the results revealed substantial variability. For example, the adsorption capacity on cellulose spanned two orders of magnitude and kinetic parameters, derived from two independent steady-state methods also varied significantly. While the different functional parameters covered wide ranges, they were not independent since they changed in parallel between two poles. One pole was characterized by strong substrate interactions, high adsorption capacity and low turnover number while the other showed weak substrate interactions, poor adsorption and high turnover. The investigated enzymes essentially defined a continuum between these two opposites, and this scaling of functional parameters raises interesting questions regarding functional plasticity and evolution of GH6 CBHs.
Collapse
|
28
|
Carbohydrate binding modules enhance cellulose enzymatic hydrolysis by increasing access of cellulases to the substrate. Carbohydr Polym 2019; 211:57-68. [DOI: 10.1016/j.carbpol.2019.01.108] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 11/22/2022]
|
29
|
Petrášek Z, Eibinger M, Nidetzky B. Modeling the activity burst in the initial phase of cellulose hydrolysis by the processive cellobiohydrolase Cel7A. Biotechnol Bioeng 2019; 116:515-525. [PMID: 30515756 PMCID: PMC6590443 DOI: 10.1002/bit.26889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/16/2018] [Accepted: 11/29/2018] [Indexed: 01/05/2023]
Abstract
The hydrolysis of cellulose by processive cellulases, such as exocellulase TrCel7A from Trichoderma reesei, is typically characterized by an initial burst of high activity followed by a slowdown, often leading to incomplete hydrolysis of the substrate. The origins of these limitations to cellulose hydrolysis are not yet fully understood. Here, we propose a new model for the initial phase of cellulose hydrolysis by processive cellulases, incorporating a bound but inactive enzyme state. The model, based on ordinary differential equations, accurately reproduces the activity burst and the subsequent slowdown of the cellulose hydrolysis and describes the experimental data equally well or better than the previously suggested model. We also derive steady‐state expressions that can be used to describe the pseudo‐steady state reached after the initial activity burst. Importantly, we show that the new model predicts the existence of an optimal enzyme‐substrate affinity at which the pseudo‐steady state hydrolysis rate is maximized. The model further allows the calculation of glucose production rate from the first cut in the processive run and reproduces the second activity burst commonly observed upon new enzyme addition. These results are expected to be applicable also to other processive enzymes.
Collapse
Affiliation(s)
- Zdeneˇk Petrášek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Manuel Eibinger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria.,Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
30
|
Schiano-di-Cola C, Røjel N, Jensen K, Kari J, Sørensen TH, Borch K, Westh P. Systematic deletions in the cellobiohydrolase (CBH) Cel7A from the fungus Trichoderma reesei reveal flexible loops critical for CBH activity. J Biol Chem 2018; 294:1807-1815. [PMID: 30538133 DOI: 10.1074/jbc.ra118.006699] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/08/2018] [Indexed: 11/06/2022] Open
Abstract
Glycoside hydrolase family 7 (GH7) cellulases are some of the most efficient degraders of cellulose, making them particularly relevant for industries seeking to produce renewable fuels from lignocellulosic biomass. The secretome of the cellulolytic model fungus Trichoderma reesei contains two GH7s, termed TrCel7A and TrCel7B. Despite having high structural and sequence similarities, the two enzymes are functionally quite different. TrCel7A is an exolytic, processive cellobiohydrolase (CBH), with high activity on crystalline cellulose, whereas TrCel7B is an endoglucanase (EG) with a preference for more amorphous cellulose. At the structural level, these functional differences are usually ascribed to the flexible loops that cover the substrate-binding areas. TrCel7A has an extensive tunnel created by eight peripheral loops, and the absence of four of these loops in TrCel7B makes its catalytic domain a more open cleft. To investigate the structure-function relationships of these loops, here we produced and kinetically characterized several variants in which four loops unique to TrCel7A were individually deleted to resemble the arrangement in the TrCel7B structure. Analysis of a range of kinetic parameters consistently indicated that the B2 loop, covering the substrate-binding subsites -3 and -4 in TrCel7A, was a key determinant for the difference in CBH- or EG-like behavior between TrCel7A and TrCel7B. Conversely, the B3 and B4 loops, located closer to the catalytic site in TrCel7A, were less important for these activities. We surmise that these results could be useful both in further mechanistic investigations and for guiding engineering efforts of this industrially important enzyme family.
Collapse
Affiliation(s)
- Corinna Schiano-di-Cola
- From the Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, DK-4000 Roskilde, Denmark
| | - Nanna Røjel
- From the Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, DK-4000 Roskilde, Denmark
| | - Kenneth Jensen
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark, and
| | - Jeppe Kari
- From the Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, DK-4000 Roskilde, Denmark
| | - Trine Holst Sørensen
- From the Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, DK-4000 Roskilde, Denmark
| | - Kim Borch
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark, and
| | - Peter Westh
- the Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
31
|
Kari J, Olsen JP, Jensen K, Badino SF, Krogh KBRM, Borch K, Westh P. Sabatier Principle for Interfacial (Heterogeneous) Enzyme Catalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03547] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jeppe Kari
- Research Unit for Functional Biomaterials, Roskilde University, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| | - Johan P. Olsen
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Kenneth Jensen
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Silke F. Badino
- Research Unit for Functional Biomaterials, Roskilde University, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| | | | - Kim Borch
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Peter Westh
- Research Unit for Functional Biomaterials, Roskilde University, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| |
Collapse
|
32
|
Christensen SJ, Kari J, Badino SF, Borch K, Westh P. Rate‐limiting step and substrate accessibility of cellobiohydrolase Cel6A from
Trichoderma reesei. FEBS J 2018; 285:4482-4493. [DOI: 10.1111/febs.14668] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/11/2018] [Accepted: 09/28/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan J. Christensen
- Research Unit for Functional Biomaterials Department of Science and Environment Roskilde University Denmark
| | - Jeppe Kari
- Research Unit for Functional Biomaterials Department of Science and Environment Roskilde University Denmark
| | - Silke F. Badino
- Research Unit for Functional Biomaterials Department of Science and Environment Roskilde University Denmark
| | | | - Peter Westh
- Research Unit for Functional Biomaterials Department of Science and Environment Roskilde University Denmark
- Department of Biotechnology and Biomedicine Technical University of Denmark Lyngby Denmark
| |
Collapse
|
33
|
von Freiesleben P, Spodsberg N, Stenbæk A, Stålbrand H, Krogh KBRM, Meyer AS. Boosting of enzymatic softwood saccharification by fungal GH5 and GH26 endomannanases. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:194. [PMID: 30026809 PMCID: PMC6048861 DOI: 10.1186/s13068-018-1184-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Softwood is a promising feedstock for lignocellulosic biorefineries, but as it contains galactoglucomannan efficient mannan-degrading enzymes are required to unlock its full potential. RESULTS Boosting of the saccharification of pretreated softwood (Canadian lodgepole pine) was investigated for 10 fungal endo-β(1→4)-mannanases (endomannanases) from GH5 and GH26, including 6 novel GH26 enzymes. The endomannanases from Trichoderma reesei (TresMan5A) and Podospora anserina (PansMan26) were investigated with and without their carbohydrate-binding module (CBM). The pH optimum and initial rates of enzyme catalysed hydrolysis were determined on pure β-mannans, including acetylated and deacetylated spruce galactoglucomannan. Melting temperature (Tm) and stability of the endomannanases during prolonged incubations were also assessed. The highest initial rates on the pure mannans were attained by GH26 endomannanases. Acetylation tended to decrease the enzymatic rates to different extents depending on the enzyme. Despite exhibiting low rates on the pure mannan substrates, TresMan5A with CBM1 catalysed highest release among the endomannanases of both mannose and glucose during softwood saccharification. The presence of the CBM1 as well as the catalytic capability of the TresMan5A core module itself seemed to allow fast and more profound degradation of portions of the mannan that led to better cellulose degradation. In contrast, the presence of the CBM35 did not change the performance of PansMan26 in softwood saccharification. CONCLUSIONS This study identified TresMan5A as the best endomannanase for increasing cellulase catalysed glucose release from softwood. Except for the superior performance of TresMan5A, the fungal GH5 and GH26 endomannanases generally performed on par on the lignocellulosic matrix. The work also illustrated the importance of using genuine lignocellulosic substrates rather than simple model substrates when selecting enzymes for industrial biomass applications.
Collapse
Affiliation(s)
- Pernille von Freiesleben
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark
- Protein Chemistry & Enzyme Technology, DTU Bioengineering, Technical University of Denmark, Building 221, 2800 Kgs. Lyngby, Denmark
| | | | - Anne Stenbæk
- Novozymes A/S, Krogshøjvej 36, 2880 Bagsværd, Denmark
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, PO Box 124, 221 00 Lund, Sweden
| | | | - Anne S. Meyer
- Protein Chemistry & Enzyme Technology, DTU Bioengineering, Technical University of Denmark, Building 221, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
34
|
Rabinovich ML, Melnik MS, Herner ML, Voznyi YV, Vasilchenko LG. Predominant Nonproductive Substrate Binding by Fungal Cellobiohydrolase I and Implications for Activity Improvement. Biotechnol J 2018; 14:e1700712. [PMID: 29781240 DOI: 10.1002/biot.201700712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/08/2018] [Indexed: 12/20/2022]
Abstract
Enzymatic conversion of the most abundant renewable source of organic compounds, cellulose to fermentable sugars is attractive for production of green fuels and chemicals. The major component of industrial enzyme systems, cellobiohydrolase I from Hypocrea jecorina (Trichoderma reesei) (HjCel7A) processively splits disaccharide units from the reducing ends of tightly packed cellulose chains. HjCel7A consists of a catalytic domain (CD) and a carbohydrate-binding module (CBM) separated by a linker peptide. A tunnel-shaped substrate-binding site in the CD includes nine subsites for β-d-glucose units, seven of which (-7 to -1) precede the catalytic center. Low catalytic activity of Cel7A is the bottleneck and the primary target for improvement. Here it is shown for the first time that, in spite of much lower apparent kcat of HjCel7A at the hydrolysis of β-1,4-glucosidic linkages in the fluorogenic cellotetra- and -pentaose compared to the structurally related endoglucanase I (HjCel7B), the specificity constants (catalytic efficiency) kcat /Km for both enzymes are almost equal in these reactions. The observed activity difference appears from strong nonproductive substrate binding by HjCel7A, particularly significant for MU-β-cellotetraose (MUG4 ). Interaction of substrates with the subsites -6 and -5 proximal to the nonconserved Gln101 residue in HjCel7A decreases Km,ap by >1500 times. HjCel7A can be nonproductively bound onto cellulose surface with Kd ≈2-9 nM via CBM and CD that captures six terminal glucose units of cellulose chain. Decomposition of this nonproductive complex can determine the rate of cellulose conversion. MUG4 is a promising substrate to select active cellobiohydrolase I variants with reduced nonproductive substrate binding.
Collapse
Affiliation(s)
- Mikhail L Rabinovich
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Maria S Melnik
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Mikhail L Herner
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Yakov V Voznyi
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Lilia G Vasilchenko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| |
Collapse
|
35
|
Westh P, Borch K, Sørensen T, Tokin R, Kari J, Badino S, Cavaleiro MA, Røjel N, Christensen S, Vesterager CS, Schiano-di-Cola C. Thermoactivation of a cellobiohydrolase. Biotechnol Bioeng 2018; 115:831-838. [PMID: 29240229 DOI: 10.1002/bit.26513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 01/11/2023]
Abstract
We have measured activity and substrate affinity of the thermostable cellobiohydrolase, Cel7A, from Rasamsonia emersonii over a broad range of temperatures. For the wild type enzyme, which does not have a Carbohydrate Binding Module (CBM), higher temperature only led to moderately increased activity against cellulose, and we ascribed this to a pronounced, temperature induced desorption of enzyme from the substrate surface. We also tested a "high affinity" variant of R. emersonii Cel7A with a linker and CBM from a related enzyme. At room temperature, the activity of the variant was similar to the wild type, but the variant was more accelerated by temperature and about two-fold faster around 70 °C. This better thermoactivation of the high-affinity variant could not be linked to differences in stability or the catalytic process, but coincided with less desorption as temperature increased. Based on these observations and earlier reports on moderate thermoactivation of cellulases, we suggest that better cellulolytic activity at industrially relevant temperatures may be attained by engineering improved substrate affinity into enzymes that already possess good thermostability.
Collapse
Affiliation(s)
- Peter Westh
- Department of Science and Environment, INM, Universitetsvej 1, Roskilde, Denmark
| | | | - Trine Sørensen
- Department of Science and Environment, INM, Universitetsvej 1, Roskilde, Denmark
| | - Radina Tokin
- Department of Science and Environment, INM, Universitetsvej 1, Roskilde, Denmark
| | - Jeppe Kari
- Department of Science and Environment, INM, Universitetsvej 1, Roskilde, Denmark
| | - Silke Badino
- Department of Science and Environment, INM, Universitetsvej 1, Roskilde, Denmark
| | | | - Nanna Røjel
- Department of Science and Environment, INM, Universitetsvej 1, Roskilde, Denmark
| | - Stefan Christensen
- Department of Science and Environment, INM, Universitetsvej 1, Roskilde, Denmark
| | - Cynthia S Vesterager
- Department of Science and Environment, INM, Universitetsvej 1, Roskilde, Denmark
| | | |
Collapse
|
36
|
Kadowaki MAS, Higasi P, de Godoy MO, Prade RA, Polikarpov I. Biochemical and structural insights into a thermostable cellobiohydrolase from Myceliophthora thermophila. FEBS J 2018; 285:559-579. [PMID: 29222836 DOI: 10.1111/febs.14356] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/20/2017] [Accepted: 12/05/2017] [Indexed: 12/27/2022]
Abstract
Cellobiohydrolases hydrolyze cellulose, a linear polymer with glucose monomers linked exclusively by β-1,4 glycosidic linkages. The widespread hydrogen bonding network tethers individual cellulose polymers forming crystalline cellulose, which prevent the access of hydrolytic enzymes and water molecules. The most abundant enzyme secreted by Myceliophthora thermophila M77 in response to the presence of biomass is the cellobiohydrolase MtCel7A, which is composed by a GH7-catalytic domain (CD), a linker, and a CBM1-type carbohydrate-binding module. GH7 cellobiohydrolases have been studied before, and structural models have been proposed. However, currently available GH7 crystal structures only define separate catalytic domains and/or cellulose-binding modules and do not include the full-length structures that are involved in shaping the catalytic mode of operation. In this study, we determined the 3D structure of catalytic domain using X-ray crystallography and retrieved the full-length enzyme envelope via small-angle X-ray scattering (SAXS) technique. The SAXS data reveal a tadpole-like molecular shape with a rigid linker connecting the CD and CBM. Our biochemical studies show that MtCel7A has higher catalytic efficiency and thermostability as well as lower processivity when compared to the well-studied TrCel7A from Trichoderma reesei. Based on a comparison of the crystallographic structures of CDs and their molecular dynamic simulations, we demonstrate that MtCel7A has considerably higher flexibility than TrCel7A. In particular, loops that cover the active site are more flexible and undergo higher conformational fluctuations, which might account for decreased processivity and enhanced enzymatic efficiency. Our statistical coupling analysis suggests co-evolution of amino acid clusters comprising the catalytic site of MtCel7A, which correlate with the steps in the catalytic cycle of the enzyme. DATABASE The atomic coordinates and structural factors of MtCel7A have been deposited in the Protein Data Bank with accession number 5W11.
Collapse
Affiliation(s)
| | - Paula Higasi
- São Carlos Institute of Physics, University of São Paulo, Brazil
| | | | - Rolf A Prade
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, Brazil
| |
Collapse
|
37
|
Badino SF, Kari J, Christensen SJ, Borch K, Westh P. Direct kinetic comparison of the two cellobiohydrolases Cel6A and Cel7A from Hypocrea jecorina. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1739-1745. [DOI: 10.1016/j.bbapap.2017.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/25/2017] [Accepted: 08/14/2017] [Indexed: 01/17/2023]
|
38
|
Badino SF, Bathke JK, Sørensen TH, Windahl MS, Jensen K, Peters GHJ, Borch K, Westh P. The influence of different linker modifications on the catalytic activity and cellulose affinity of cellobiohydrolase Cel7A from Hypocrea jecorina. Protein Eng Des Sel 2017; 30:495-501. [PMID: 28873985 DOI: 10.1093/protein/gzx036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/04/2017] [Indexed: 12/13/2022] Open
Abstract
Various cellulases consist of a catalytic domain connected to a carbohydrate-binding module (CBM) by a flexible linker peptide. The linker if often strongly O-glycosylated and typically has a length of 20-50 amino acid residues. Functional roles, other than connecting the two folded domains, of the linker and its glycans, have been widely discussed, but experimental evidence remains sparse. One of the most studied cellulose degrading enzymes is the multi-domain cellobiohydrolase Cel7A from Hypocrea jecorina. Here, we designed variants of Cel7A with mutations in the linker region to elucidate the role of the linker. We found that moderate modification of the linker could result in significant changes in substrate affinity and catalytic efficacy. These changes were quite different for different linker variants. Thus, deletion of six residues near the catalytic domain had essentially no effects on enzyme function. Conversely, a substitution of four glycosylation sites near the middle of the linker reduced substrate affinity and increased maximal turnover. The observation of weaker binding provides some support of recent suggestions that linker glycans may be directly involved in substrate interactions. However, a variant with several inserted glycosylation sites near the CBM also showed lower affinity for the substrate compared to the wild-type, and we suggest that substrate interactions of the glycans depend on their exact location as well as other factors such as changes in structure and dynamics of the linker peptide.
Collapse
Affiliation(s)
- Silke Flindt Badino
- Research Unit for Functional Biomaterials, Department of Science and Environment, INM, Roskilde University, 1 Universitetsvej, Build. 28 C, DK-4000, Roskilde, Denmark
| | - Jenny Kim Bathke
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Build. 207, DK-2800 Kgs. Lyngby, Denmark
| | - Trine Holst Sørensen
- Research Unit for Functional Biomaterials, Department of Science and Environment, INM, Roskilde University, 1 Universitetsvej, Build. 28 C, DK-4000, Roskilde, Denmark
| | - Michael Skovbo Windahl
- Research Unit for Functional Biomaterials, Department of Science and Environment, INM, Roskilde University, 1 Universitetsvej, Build. 28 C, DK-4000, Roskilde, Denmark
| | - Kenneth Jensen
- Novozymes A/S, Krogshøjvej 36, DK-2880, Bagsværd, Denmark
| | - Günther H J Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet, Build. 207, DK-2800 Kgs. Lyngby, Denmark
| | - Kim Borch
- Novozymes A/S, Krogshøjvej 36, DK-2880, Bagsværd, Denmark
| | - Peter Westh
- Research Unit for Functional Biomaterials, Department of Science and Environment, INM, Roskilde University, 1 Universitetsvej, Build. 28 C, DK-4000, Roskilde, Denmark
| |
Collapse
|
39
|
Kari J, Andersen M, Borch K, Westh P. An Inverse Michaelis–Menten Approach for Interfacial Enzyme Kinetics. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00838] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jeppe Kari
- Dept.
of Science and Environment, Roskilde University, 1 Universitetsvej, Building 28, DK-4000 Roskilde, Denmark
| | - Morten Andersen
- Dept.
of Science and Environment, Roskilde University, 1 Universitetsvej, Building 28, DK-4000 Roskilde, Denmark
| | - Kim Borch
- Novozymes A/S, Krogshøjvej
36, DK-2880 Bagsværd, Denmark
| | - Peter Westh
- Dept.
of Science and Environment, Roskilde University, 1 Universitetsvej, Building 28, DK-4000 Roskilde, Denmark
| |
Collapse
|
40
|
Badino SF, Christensen SJ, Kari J, Windahl MS, Hvidt S, Borch K, Westh P. Exo-exo synergy between Cel6A and Cel7A fromHypocrea jecorina: Role of carbohydrate binding module and the endo-lytic character of the enzymes. Biotechnol Bioeng 2017; 114:1639-1647. [DOI: 10.1002/bit.26276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Silke F. Badino
- Research Unit for Functional Biomaterials; Department of Science and Environment; INM; Roskilde University; 1 Universitetsvej, Build. 28C, DK-4000 Roskilde Denmark
| | - Stefan J. Christensen
- Research Unit for Functional Biomaterials; Department of Science and Environment; INM; Roskilde University; 1 Universitetsvej, Build. 28C, DK-4000 Roskilde Denmark
| | - Jeppe Kari
- Research Unit for Functional Biomaterials; Department of Science and Environment; INM; Roskilde University; 1 Universitetsvej, Build. 28C, DK-4000 Roskilde Denmark
| | - Michael S. Windahl
- Research Unit for Functional Biomaterials; Department of Science and Environment; INM; Roskilde University; 1 Universitetsvej, Build. 28C, DK-4000 Roskilde Denmark
- Novozymes A/S; Bagsvaerd Denmark
| | - Søren Hvidt
- Research Unit for Functional Biomaterials; Department of Science and Environment; INM; Roskilde University; 1 Universitetsvej, Build. 28C, DK-4000 Roskilde Denmark
| | | | - Peter Westh
- Research Unit for Functional Biomaterials; Department of Science and Environment; INM; Roskilde University; 1 Universitetsvej, Build. 28C, DK-4000 Roskilde Denmark
| |
Collapse
|
41
|
Kari J, Kont R, Borch K, Buskov S, Olsen JP, Cruyz-Bagger N, Väljamäe P, Westh P. Anomeric Selectivity and Product Profile of a Processive Cellulase. Biochemistry 2016; 56:167-178. [PMID: 28026938 DOI: 10.1021/acs.biochem.6b00636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellobiohydrolases (CBHs) make up an important group of enzymes for both natural carbon cycling and industrial deconstruction of lignocellulosic biomass. The consecutive hydrolysis of one cellulose strand relies on an intricate pattern of enzyme-substrate interactions in the long, tunnel-shaped binding site of the CBH. In this work, we have investigated the initial complexation mode with cellulose of the most thoroughly studied CBH, Cel7A from Hypocrea jecorina (HjCel7A). We found that HjCel7A predominantly produces glucose when it initiates a processive run on insoluble microcrystalline cellulose, confirming the validity of an even and odd product ratio as an estimate of processivity. Moreover, the glucose released from cellulose was predominantly α-glucose. A link between the initial binding mode of the enzyme and the reducing end configuration was investigated by inhibition studies with the two anomers of cellobiose. A clear preference for β-cellobiose in product binding site +2 was observed for HjCel7A, but not the homologous endoglucanase, HjCe7B. Possible relationships between this anomeric preference in the product site and the prevalence of odd-numbered initial-cut products are discussed, and a correlation between processivity and anomer selectivity is proposed.
Collapse
Affiliation(s)
- Jeppe Kari
- Research Unit for Functional Biomaterials, Roskilde University , Roskilde, Denmark
| | - Riin Kont
- Institute of Molecular and Cell Biology, University of Tartu , Tartu, Estonia
| | - Kim Borch
- Novozymes A/S , Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Steen Buskov
- Novozymes A/S , Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Johan Pelck Olsen
- Research Unit for Functional Biomaterials, Roskilde University , Roskilde, Denmark
| | | | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu , Tartu, Estonia
| | - Peter Westh
- Research Unit for Functional Biomaterials, Roskilde University , Roskilde, Denmark
| |
Collapse
|
42
|
Olsen JP, Borch K, Westh P. Endo/exo-synergism of cellulases increases with substrate conversion. Biotechnol Bioeng 2016; 114:696-700. [PMID: 27617666 DOI: 10.1002/bit.26179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 01/08/2023]
Abstract
Synergy between cellulolytic enzymes is important for their industrial utilization, and numerous studies have addressed the problem of how to optimize the composition of enzyme cocktails with respect to this. The degree of synergy (DS) may change with substrate conversion, and some studies have suggested a maximum in DS early in the process. Here, we systematically investigated interrelationships of DS and conversion in a model system covering a wide range of experimental conditions. The results did not reveal any correlation between DS and contact time, but when plotted against the degree of substrate conversion we saw a systematic increase in DS. We suggest that this is linked to a decreasing reactivity of the substrate. Hence, synergy became increasingly important as the recalcitrance of the remaining substrate grew. Such conversion dependent changes in DS appear to be important both in mechanistic studies and attempts to find industrial enzymes blends with optimal synergy. Biotechnol. Bioeng. 2017;114: 696-700. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Johan Pelck Olsen
- Research Unit for Functional Biomaterials, Department of Science and Environment, Roskilde University, INM, 1 Universitetsvej, Build. 28, DK-4000, Roskilde, Denmark
| | | | - Peter Westh
- Research Unit for Functional Biomaterials, Department of Science and Environment, Roskilde University, INM, 1 Universitetsvej, Build. 28, DK-4000, Roskilde, Denmark
| |
Collapse
|
43
|
Kont R, Kari J, Borch K, Westh P, Väljamäe P. Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A. J Biol Chem 2016; 291:26013-26023. [PMID: 27780868 DOI: 10.1074/jbc.m116.756007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/21/2016] [Indexed: 01/27/2023] Open
Abstract
Structural polysaccharides like cellulose and chitin are abundant and their enzymatic degradation to soluble sugars is an important route in green chemistry. Processive glycoside hydrolases (GHs), like cellobiohydrolase Cel7A of Trichoderma reesei (TrCel7A) are key components of efficient enzyme systems. TrCel7A consists of a catalytic domain (CD) and a smaller carbohydrate-binding module (CBM) connected through the glycosylated linker peptide. A tunnel-shaped active site rests in the CD and contains 10 glucose unit binding sites. The active site of TrCel7A is lined with four Trp residues with two of them, Trp-40 and Trp-38, in the substrate binding sites near the tunnel entrance. Although addressed in numerous studies the elucidation of the role of CBM and active site aromatics has been obscured by a complex multistep mechanism of processive GHs. Here we studied the role of the CBM-linker and Trp-38 of TrCel7A with respect to binding affinity, on- and off-rates, processivity, and synergism with endoglucanase. The CBM-linker increased the on-rate and substrate affinity of the enzyme. The Trp-38 to Ala substitution resulted in increased off-rates and decreased processivity. The effect of the Trp-38 to Ala substitution on on-rates was strongly dependent on the presence of the CBM-linker. This compensation between CBM-linker and Trp-38 indicates synergism between CBM-linker and CD in feeding the cellulose chain into the active site. The inter-domain synergism was pre-requisite for the efficient degradation of cellulose in the presence of endoglucanase.
Collapse
Affiliation(s)
- Riin Kont
- From the Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - Jeppe Kari
- the Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark, and
| | - Kim Borch
- Novozymes A/S, Bagsværd DK-2880, Denmark
| | - Peter Westh
- the Department of Science and Environment, Roskilde University, DK-4000 Roskilde, Denmark, and
| | - Priit Väljamäe
- From the Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia,
| |
Collapse
|
44
|
Sørensen TH, Windahl MS, McBrayer B, Kari J, Olsen JP, Borch K, Westh P. Loop variants of the thermophileRasamsonia emersoniiCel7A with improved activity against cellulose. Biotechnol Bioeng 2016; 114:53-62. [DOI: 10.1002/bit.26050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Trine Holst Sørensen
- NSM, Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1; Building 28, DK-4000 Roskilde Denmark
| | | | | | - Jeppe Kari
- NSM, Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1; Building 28, DK-4000 Roskilde Denmark
| | - Johan Pelck Olsen
- NSM, Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1; Building 28, DK-4000 Roskilde Denmark
| | | | - Peter Westh
- NSM, Research Unit for Functional Biomaterials, Roskilde University, Universitetsvej 1; Building 28, DK-4000 Roskilde Denmark
| |
Collapse
|
45
|
Cruys-Bagger N, Alasepp K, Andersen M, Ottesen J, Borch K, Westh P. Rate of Threading a Cellulose Chain into the Binding Tunnel of a Cellulase. J Phys Chem B 2016; 120:5591-600. [DOI: 10.1021/acs.jpcb.6b01877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicolaj Cruys-Bagger
- Department
of Science and Environment, Roskilde University, 1 Universitetsvej, DK-4000 Roskilde, Denmark
- Novozymes A/S, Krogshøjvej
36, DK-2880 Bagsværd, Denmark
| | - Kadri Alasepp
- Department
of Science and Environment, Roskilde University, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| | - Morten Andersen
- Department
of Science and Environment, Roskilde University, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| | - Johnny Ottesen
- Department
of Science and Environment, Roskilde University, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| | - Kim Borch
- Novozymes A/S, Krogshøjvej
36, DK-2880 Bagsværd, Denmark
| | - Peter Westh
- Department
of Science and Environment, Roskilde University, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| |
Collapse
|
46
|
Morrison ES, Badyaev AV. The Landscape of Evolution: Reconciling Structural and Dynamic Properties of Metabolic Networks in Adaptive Diversifications. Integr Comp Biol 2016; 56:235-46. [PMID: 27252203 DOI: 10.1093/icb/icw026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The network of the interactions among genes, proteins, and metabolites delineates a range of potential phenotypic diversifications in a lineage, and realized phenotypic changes are the result of differences in the dynamics of the expression of the elements and interactions in this deterministic network. Regulatory mechanisms, such as hormones, mediate the relationship between the structural and dynamic properties of networks by determining how and when the elements are expressed and form a functional unit or state. Changes in regulatory mechanisms lead to variable expression of functional states of a network within and among generations. Functional properties of network elements, and the magnitude and direction of evolutionary change they determine, depend on their location within a network. Here, we examine the relationship between network structure and the dynamic mechanisms that regulate flux through a metabolic network. We review the mechanisms that control metabolic flux in enzymatic reactions and examine structural properties of the network locations that are targets of flux control. We aim to establish a predictive framework to test the contributions of structural and dynamic properties of deterministic networks to evolutionary diversifications.
Collapse
Affiliation(s)
- Erin S Morrison
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0001, USA
| | - Alexander V Badyaev
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721-0001, USA
| |
Collapse
|
47
|
Kurašin M, Kuusk S, Kuusk P, Sørlie M, Väljamäe P. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases. J Biol Chem 2015; 290:29074-85. [PMID: 26468285 DOI: 10.1074/jbc.m115.684977] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 12/18/2022] Open
Abstract
Processive glycoside hydrolases are the key components of enzymatic machineries that decompose recalcitrant polysaccharides, such as chitin and cellulose. The intrinsic processivity (P(Intr)) of cellulases has been shown to be governed by the rate constant of dissociation from polymer chain (koff). However, the reported koff values of cellulases are strongly dependent on the method used for their measurement. Here, we developed a new method for determining koff, based on measuring the exchange rate of the enzyme between a non-labeled and a (14)C-labeled polymeric substrate. The method was applied to the study of the processive chitinase ChiA from Serratia marcescens. In parallel, ChiA variants with weaker binding of the N-acetylglucosamine unit either in substrate-binding site -3 (ChiA-W167A) or the product-binding site +1 (ChiA-W275A) were studied. Both ChiA variants showed increased off-rates and lower apparent processivity on α-chitin. The rate of the production of insoluble reducing groups on the reduced α-chitin was an order of magnitude higher than koff, suggesting that the enzyme can initiate several processive runs without leaving the substrate. On crystalline chitin, the general activity of the wild type enzyme was higher, and the difference was magnifying with hydrolysis time. On amorphous chitin, the variants clearly outperformed the wild type. A model is proposed whereby strong interactions with polymer in the substrate-binding sites (low off-rates) and strong binding of the product in the product-binding sites (high pushing potential) are required for the removal of obstacles, like disintegration of chitin microfibrils.
Collapse
Affiliation(s)
| | - Silja Kuusk
- From the Institutes of Molecular and Cell Biology and
| | - Piret Kuusk
- Physics, University of Tartu, 51010 Tartu, Estonia and
| | - Morten Sørlie
- the Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1432, Norway
| | | |
Collapse
|
48
|
Sørensen TH, Cruys-Bagger N, Borch K, Westh P. Free Energy Diagram for the Heterogeneous Enzymatic Hydrolysis of Glycosidic Bonds in Cellulose. J Biol Chem 2015; 290:22203-11. [PMID: 26183776 DOI: 10.1074/jbc.m115.659656] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 01/25/2023] Open
Abstract
Kinetic and thermodynamic data have been analyzed according to transition state theory and a simplified reaction scheme for the enzymatic hydrolysis of insoluble cellulose. For the cellobiohydrolase Cel7A from Hypocrea jecorina (Trichoderma reesei), we were able to measure or collect relevant values for all stable and activated complexes defined by the reaction scheme and hence propose a free energy diagram for the full heterogeneous process. For other Cel7A enzymes, including variants with and without carbohydrate binding module (CBM), we obtained activation parameters for the association and dissociation of the enzyme-substrate complex. The results showed that the kinetics of enzyme-substrate association (i.e. formation of the Michaelis complex) was almost entirely entropy-controlled and that the activation entropy corresponded approximately to the loss of translational and rotational degrees of freedom of the dissolved enzyme. This implied that the transition state occurred early in the path where the enzyme has lost these degrees of freedom but not yet established extensive contact interactions in the binding tunnel. For dissociation, a similar analysis suggested that the transition state was late in the path where most enzyme-substrate contacts were broken. Activation enthalpies revealed that the rate of dissociation was far more temperature-sensitive than the rates of both association and the inner catalytic cycle. Comparisons of one- and two-domain variants showed that the CBM had no influence on the transition state for association but increased the free energy barrier for dissociation. Hence, the CBM appeared to promote the stability of the complex by delaying dissociation rather than accelerating association.
Collapse
Affiliation(s)
- Trine Holst Sørensen
- From Roskilde University, NSM, Research Unit for Functional Biomaterials, 1 Universitetsvej, Building 28, DK-4000 Roskilde, Denmark and
| | - Nicolaj Cruys-Bagger
- From Roskilde University, NSM, Research Unit for Functional Biomaterials, 1 Universitetsvej, Building 28, DK-4000 Roskilde, Denmark and
| | - Kim Borch
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Peter Westh
- From Roskilde University, NSM, Research Unit for Functional Biomaterials, 1 Universitetsvej, Building 28, DK-4000 Roskilde, Denmark and
| |
Collapse
|