1
|
Zhang L, Wu X, Cao X, Rao K, Hong L. Trp207 regulation of voltage-dependent activation of human H v1 proton channel. J Biol Chem 2024; 300:105674. [PMID: 38272234 PMCID: PMC10875263 DOI: 10.1016/j.jbc.2024.105674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
In voltage-gated Na+ and K+ channels, the hydrophobicity of noncharged residues in the S4 helix has been shown to regulate the S4 movement underlying the process of voltage-sensing domain (VSD) activation. In voltage-gated proton channel Hv1, there is a bulky noncharged tryptophan residue located at the S4 transmembrane segment. This tryptophan remains entirely conserved across all Hv1 members but is not seen in other voltage-gated ion channels, indicating that the tryptophan contributes different roles in VSD activation. The conserved tryptophan of human voltage-gated proton channel Hv1 is Trp207 (W207). Here, we showed that W207 modifies human Hv1 voltage-dependent activation, and small residues replacement at position 207 strongly perturbs Hv1 channel opening and closing, and the size of the side chain instead of the hydrophobic group of W207 regulates the transition between closed and open states of the channel. We conclude that the large side chain of tryptophan controls the energy barrier during the Hv1 VSD transition.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xin Wu
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xinyu Cao
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Khushi Rao
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Liang Hong
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
2
|
Chaves G, Jardin C, Derst C, Musset B. Voltage-Gated Proton Channels in the Tree of Life. Biomolecules 2023; 13:1035. [PMID: 37509071 PMCID: PMC10377628 DOI: 10.3390/biom13071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
With a single gene encoding HV1 channel, proton channel diversity is particularly low in mammals compared to other members of the superfamily of voltage-gated ion channels. Nonetheless, mammalian HV1 channels are expressed in many different tissues and cell types where they exert various functions. In the first part of this review, we regard novel aspects of the functional expression of HV1 channels in mammals by differentially comparing their involvement in (1) close conjunction with the NADPH oxidase complex responsible for the respiratory burst of phagocytes, and (2) in respiratory burst independent functions such as pH homeostasis or acid extrusion. In the second part, we dissect expression of HV channels within the eukaryotic tree of life, revealing the immense diversity of the channel in other phylae, such as mollusks or dinoflagellates, where several genes encoding HV channels can be found within a single species. In the last part, a comprehensive overview of the biophysical properties of a set of twenty different HV channels characterized electrophysiologically, from Mammalia to unicellular protists, is given.
Collapse
Affiliation(s)
- Gustavo Chaves
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christophe Jardin
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christian Derst
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Boris Musset
- Center of Physiology, Pathophysiology and Biophysics, The Nuremberg Location, Paracelsus Medical University, 90419 Nuremberg, Germany
- Center of Physiology, Pathophysiology and Biophysics, The Salzburg Location, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
3
|
Structural basis of the selective sugar transport in sodium-glucose cotransporters. J Mol Biol 2022; 434:167464. [DOI: 10.1016/j.jmb.2022.167464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/23/2022]
|
4
|
Abstract
The voltage-gated proton channel Hv1 is a member of the voltage-gated ion channel superfamily, which stands out in design: It is a dimer of two voltage-sensing domains (VSDs), each containing a pore pathway, a voltage sensor (S4), and a gate (S1) and forming its own ion channel. Opening of the two channels in the dimer is cooperative. Part of the cooperativity is due to association between coiled-coil domains that extend intracellularly from the S4s. Interactions between the transmembrane portions of the subunits may also contribute, but the nature of transmembrane packing is unclear. Using functional analysis of a mutagenesis scan, biochemistry, and modeling, we find that the subunits form a dimer interface along the entire length of S1, and also have intersubunit contacts between S1 and S4. These interactions exert a strong effect on gating, in particular on the stability of the open state. Our results suggest that gating in Hv1 is tuned by extensive VSD-VSD interactions between the gates and voltage sensors of the dimeric channel.
Collapse
Affiliation(s)
- Laetitia Mony
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, 75005 Paris, France
| | - David Stroebel
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197, INSERM U1024, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, 75005 Paris, France
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720;
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
- Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
5
|
Guidelli R, Becucci L, Aloisi G. Role of the time dependence of Boltzmann open probability in voltage-gated proton channels. Bioelectrochemistry 2020; 134:107520. [PMID: 32279034 DOI: 10.1016/j.bioelechem.2020.107520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/28/2022]
Abstract
The modeling and simulation of experimental families of current-time (I-t) curves of dimeric voltage-gated proton channels and of proton-conducting voltage sensing domains (VSDs) with a minimum of free parameters requires the movement of protons to be controlled by the rate of increase of the Boltzmann open probability p over time in passing from the holding to the depolarizing potential. Families of I-t curves of protomers and proton-conducting VSDs can be satisfactorily fitted by the use of a single free parameter expressing the rate constant kp for the increase of p over time. Families of I-t curves of dimeric Hv1 channels can be fitted by a model that assumes an initial proton current I1 flowing along the two monomeric units, while they are still operating separately; I1 is gradually replaced by a slower and more potential-dependent current I2 flowing when the two monomers start operating jointly under the control of the coiled-coil domain. Here too, p is assumed to increase over time with a rate constant kp that doubles in passing from I1 to I2, with fit requiring three free parameters. Chord conductance yields erroneously high gating charges when fitted by the Boltzmann function, differently from slope conductance.
Collapse
Affiliation(s)
- Rolando Guidelli
- Department of Chemistry "Ugo Schiff", Florence University, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Lucia Becucci
- Department of Chemistry "Ugo Schiff", Florence University, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy
| | - Giovanni Aloisi
- Department of Chemistry "Ugo Schiff", Florence University, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
6
|
De La Rosa V, Ramsey IS. Gating Currents in the Hv1 Proton Channel. Biophys J 2019; 114:2844-2854. [PMID: 29925021 DOI: 10.1016/j.bpj.2018.04.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/19/2018] [Accepted: 04/30/2018] [Indexed: 11/25/2022] Open
Abstract
The Hv1 proton channel shares striking structural homology with fourth transmembrane helical segment-type voltage-sensor (VS) domains but manifests distinctive functional properties, including a proton-selective "aqueous" conductance and allosteric control of voltage-dependent gating by changes in the transmembrane pH gradient. The mechanisms responsible for Hv1's functional properties remain poorly understood, in part because methods for measuring gating currents that directly report VS activation have not yet been described. Here, we describe an approach that allows robust and reproducible measurement of gating-associated charge movements in Hv1. Gating currents reveal that VS activation and proton-selective aqueous conductance opening are thermodynamically distinct steps in the Hv1 activation pathway and show that pH changes directly alter VS activation. The availability of an assay for gating currents in Hv1 may aid future efforts to elucidate the molecular mechanisms of gating cooperativity, pH-dependent modulation, and H+ selectivity in a model VS domain protein.
Collapse
Affiliation(s)
- Victor De La Rosa
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ian Scott Ramsey
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
7
|
OKAMURA Y, OKOCHI Y. Molecular mechanisms of coupling to voltage sensors in voltage-evoked cellular signals. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:111-135. [PMID: 30853698 PMCID: PMC6541726 DOI: 10.2183/pjab.95.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
The voltage sensor domain (VSD) has long been studied as a unique domain intrinsic to voltage-gated ion channels (VGICs). Within VGICs, the VSD is tightly coupled to the pore-gate domain (PGD) in diverse ways suitable for its specific function in each physiological context, including action potential generation, muscle contraction and relaxation, hormone and neurotransmitter secretion, and cardiac pacemaking. However, some VSD-containing proteins lack a PGD. Voltage-sensing phosphatase contains a cytoplasmic phosphoinositide phosphatase with similarity to phosphatase and tensin homolog (PTEN). Hv1, a voltage-gated proton channel, also lacks a PGD. Within Hv1, the VSD operates as a voltage sensor, gate, and pore for both proton sensing and permeation. Hv1 has a C-terminal coiled coil that mediates dimerization for cooperative gating. Recent progress in the structural biology of VGICs and VSD proteins provides insights into the principles of VSD coupling conserved among these proteins as well as the hierarchy of protein organization for voltage-evoked cell signaling.
Collapse
Affiliation(s)
- Yasushi OKAMURA
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
- Graduate School of Frontier Bioscience, Osaka University, Suita, Japan
| | - Yoshifumi OKOCHI
- Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
8
|
DeCoursey TE, Morgan D, Musset B, Cherny VV. Insights into the structure and function of HV1 from a meta-analysis of mutation studies. J Gen Physiol 2017; 148:97-118. [PMID: 27481712 PMCID: PMC4969798 DOI: 10.1085/jgp.201611619] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/30/2016] [Indexed: 01/26/2023] Open
Abstract
The voltage-gated proton channel (HV1) is a widely distributed, proton-specific ion channel with unique properties. Since 2006, when genes for HV1 were identified, a vast array of mutations have been generated and characterized. Accessing this potentially useful resource is hindered, however, by the sheer number of mutations and interspecies differences in amino acid numbering. This review organizes all existing information in a logical manner to allow swift identification of studies that have characterized any particular mutation. Although much can be gained from this meta-analysis, important questions about the inner workings of HV1 await future revelation.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Boris Musset
- Institut für Physiologie, PMU Klinikum Nürnberg, 90419 Nürnberg, Germany
| | - Vladimir V Cherny
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| |
Collapse
|
9
|
Sakata S, Matsuda M, Kawanabe A, Okamura Y. Domain-to-domain coupling in voltage-sensing phosphatase. Biophys Physicobiol 2017; 14:85-97. [PMID: 28744425 PMCID: PMC5515349 DOI: 10.2142/biophysico.14.0_85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/10/2017] [Indexed: 01/12/2023] Open
Abstract
Voltage-sensing phosphatase (VSP) consists of a transmembrane voltage sensor and a cytoplasmic enzyme region. The enzyme region contains the phosphatase and C2 domains, is structurally similar to the tumor suppressor phosphatase PTEN, and catalyzes the dephosphorylation of phosphoinositides. The transmembrane voltage sensor is connected to the phosphatase through a short linker region, and phosphatase activity is induced upon membrane depolarization. Although the detailed molecular characteristics of the voltage sensor domain and the enzyme region have been revealed, little is known how these two regions are coupled. In addition, it is important to know whether mechanism for coupling between the voltage sensor domain and downstream effector function is shared among other voltage sensor domain-containing proteins. Recent studies in which specific amino acid sites were genetically labeled using a fluorescent unnatural amino acid have enabled detection of the local structural changes in the cytoplasmic region of Ciona intestinalis VSP that occur with a change in membrane potential. The results of those studies provide novel insight into how the enzyme activity of the cytoplasmic region of VSP is regulated by the voltage sensor domain.
Collapse
Affiliation(s)
- Souhei Sakata
- Department of Physiology, Division of Life Sciences, Faculty of Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Makoto Matsuda
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akira Kawanabe
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Graduate School of Frontier Bioscience, Osaka University
| |
Collapse
|
10
|
Sakata S, Miyawaki N, McCormack TJ, Arima H, Kawanabe A, Özkucur N, Kurokawa T, Jinno Y, Fujiwara Y, Okamura Y. Comparison between mouse and sea urchin orthologs of voltage-gated proton channel suggests role of S3 segment in activation gating. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2972-2983. [PMID: 27637155 DOI: 10.1016/j.bbamem.2016.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
Abstract
The voltage-gated proton channel, Hv1, is expressed in blood cells, airway epithelium, sperm and microglia, playing important roles in diverse biological contexts including phagocytosis or sperm maturation through its regulation of membrane potential and pH. The gene encoding Hv1, HVCN1, is widely found across many species and is also conserved in unicellular organisms such as algae or dinoflagellates where Hv1 plays role in calcification or bioluminescence. Voltage-gated proton channels exhibit a large variation of activation rate among different species. Here we identify an Hv1 ortholog from sea urchin, Strongylocentrotus purpuratus, SpHv1. SpHv1 retains most of key properties of Hv1 but exhibits 20-60 times more rapid activation kinetics than mammalian orthologs upon heterologous expression in HEK293T cells. Comparison between SpHv1 and mHv1 highlights novel roles of the third transmembrane segment S3 in activation gating of Hv1.
Collapse
Affiliation(s)
- Souhei Sakata
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Institute of Academic Initiative, Osaka University, Suita, Osaka 565-0871, Japan; National Institute of Natural Sciences, Okazaki, Aichi, Japan
| | - Nana Miyawaki
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Thomas J McCormack
- Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Aichi, Japan
| | - Hiroki Arima
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akira Kawanabe
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nurdan Özkucur
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Anatomy, Medical Theoretical Center, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Tatsuki Kurokawa
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Aichi, Japan
| | - Yuka Jinno
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuichiro Fujiwara
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasushi Okamura
- Lab. of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Section of Developmental Neurophysiology, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), Okazaki, Aichi, Japan; National Institute of Natural Sciences, Okazaki, Aichi, Japan; Graduate School of Frontier Bioscience, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|