1
|
Rotti PG, Yi Y, Gasser G, Yuan F, Sun X, Apak-Evans I, Wu P, Liu G, Choi S, Reeves R, Scioneaux AE, Zhang Y, Winter M, Liang B, Cunicelli N, Uc A, Norris AW, Sussel L, Wells KL, Engelhardt JF. CFTR represses a PDX1 axis to govern pancreatic ductal cell fate. iScience 2024; 27:111393. [PMID: 39687022 PMCID: PMC11647141 DOI: 10.1016/j.isci.2024.111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammation, acinar atrophy, and ductal hyperplasia drive pancreatic remodeling in newborn cystic fibrosis (CF) ferrets lacking a functional cystic fibrosis conductance regulator (CFTR) channel. These changes are associated with a transient phase of glucose intolerance that involves islet destruction and subsequent regeneration near hyperplastic ducts. The phenotypic changes in CF ductal epithelium and their impact on islet function are unknown. Using bulk RNA sequencing (RNA-seq), single-cell RNA sequencing (scRNA-seq), and assay for transposase-accessible chromatin using sequencing (ATAC-seq) on CF ferret models, we demonstrate that ductal CFTR protein constrains PDX1 expression by maintaining PTEN and GSK3β activation. In the absence of CFTR protein, centroacinar cells adopted a bipotent progenitor-like state associated with enhanced WNT/β-Catenin, transforming growth factor β (TGF-β), and AKT signaling. We show that the level of CFTR protein, not its channel function, regulates PDX1 expression. Thus, this study has discovered a cell-autonomous CFTR-dependent mechanism by which CFTR mutations that produced little to no protein could impact pancreatic exocrine/endocrine remodeling in people with CF.
Collapse
Affiliation(s)
| | - Yaling Yi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Grace Gasser
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Feng Yuan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Idil Apak-Evans
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Peipei Wu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Guangming Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Soon Choi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rosie Reeves
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Attilina E. Scioneaux
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yulong Zhang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael Winter
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bo Liang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathan Cunicelli
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Aliye Uc
- Stead Family Department of Pediatrics, Carver College of Medicine, Iowa City, IA, USA
| | - Andrew W. Norris
- Center for Gene Therapy, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lori Sussel
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz, Medical Campus, Aurora, CO, USA
| | - Kristen L. Wells
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz, Medical Campus, Aurora, CO, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
2
|
Alam S, Sargeant MS, Patel R, Jayaram P. Exploring Metabolic Mechanisms in Calcific Tendinopathy and Shoulder Arthrofibrosis: Insights and Therapeutic Implications. J Clin Med 2024; 13:6641. [PMID: 39597785 PMCID: PMC11595303 DOI: 10.3390/jcm13226641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Rotator cuff calcific tendinopathy and arthrofibrosis of the shoulder (adhesive capsulitis) are debilitating musculoskeletal disorders that significantly impact joint function and impair quality of life. Despite its high prevalence and common clinical presentation, the metabolic mechanisms underlying these conditions characterized by pain, and reduced mobility, remain poorly understood. This review aims to elucidate the role of metabolic processes implicated in the pathogenesis of calcific tendinopathy and shoulder arthrofibrosis. We will be focusing on the mechanistic role of how these processes contribute to disease progression and can direct potential therapeutic targets. Calcific tendinopathy is marked by aberrant calcium deposition within tendons, influenced by disrupted calcium and phosphate homeostasis, and altered cellular responses. Key molecular pathways, including bone morphogenetic proteins (BMPs), Wnt signaling, and transforming growth factor-beta (TGF-β), play crucial roles in the pathophysiology of calcification, calcium imbalance, and muscle fibrosis. In contrast, shoulder arthrofibrosis involves excessive collagen deposition and fibrosis within the shoulder joint capsule, driven by metabolic dysregulation and inflammation. The TGF-β signaling pathway and inflammatory cytokines, such as interleukin-6 (IL-6), are central to the fibrotic response. A comparative analysis reveals both shared and distinct metabolic pathways between these conditions, highlighting the interplay between inflammation, cellular metabolism, extracellular matrix remodeling, calcific deposition, and calcium migration to the glenohumeral joints, resulting in adhesive capsulitis, thereby providing insights into their pathophysiology. This review discusses current therapeutic approaches and their limitations, advocating for the development of targeted therapies that address specific metabolic dysregulations. Future therapeutic strategies focus on developing targeted interventions that address the underlying metabolic dysregulation, aiming to improve patient outcomes and advance clinical management. This review offers a comprehensive overview of the metabolic mechanisms involved in calcific tendinopathy and shoulder arthrofibrosis, providing a foundation for future research and therapeutic development.
Collapse
Affiliation(s)
| | | | | | - Prathap Jayaram
- Department of Orthopedics, Musculoskeletal Institute, School of Medicine, Emory University, Atlanta, GA 30329, USA (M.S.S.); (R.P.)
| |
Collapse
|
3
|
Strunz F, Stähli C, Heverhagen JT, Hofstetter W, Egli RJ. Gadolinium-Based Contrast Agents and Free Gadolinium Inhibit Differentiation and Activity of Bone Cell Lineages. Invest Radiol 2024; 59:495-503. [PMID: 38117137 DOI: 10.1097/rli.0000000000001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
OBJECTIVES Administration of gadolinium-based contrast agents (GBCA) in magnetic resonance imaging results in the long-term retention of gadolinium (Gd) in tissues and organs, including the bone, and may affect their function and metabolism. This study aims to investigate the effects of Gd and GBCA on the proliferation/survival, differentiation, and function of bone cell lineages. MATERIALS AND METHODS Primary murine osteoblasts (OB) and osteoclast progenitor cells (OPC) isolated from C57BL/6J mice were used to test the effects of Gd 3+ (12.5-100 μM) and GBCA (100-2000 μM). Cultures were supplemented with the nonionic linear Gd-DTPA-BMA (gadodiamide), ionic linear Gd-DTPA (gadopentetic acid), and macrocyclic Gd-DOTA (gadoteric acid). Cell viability and differentiation were analyzed on days 4-6 of the culture. To assess the resorptive activity of osteoclasts, the cells were grown in OPC cultures and were seeded onto layers of amorphous calcium phosphate with incorporated Gd. RESULTS Gd 3+ did not affect OB viability, but differentiation was reduced dose-dependently up to 72.4% ± 6.2%-73.0% ± 13.2% (average ± SD) at 100 μM Gd 3+ on days 4-6 of culture as compared with unexposed controls ( P < 0.001). Exposure to GBCA had minor effects on OB viability with a dose-dependent reduction up to 23.3% ± 10.2% for Gd-DTPA-BMA at 2000 μM on day 5 ( P < 0.001). In contrast, all 3 GBCA caused a dose-dependent reduction of differentiation up to 88.3% ± 5.2% for Gd-DTPA-BMA, 49.8% ± 16.0% for Gd-DTPA, and 23.1% ± 8.7% for Gd-DOTA at 2000 μM on day 5 ( P < 0.001). In cultures of OPC, cell viability was not affected by Gd 3+ , whereas differentiation was decreased by 45.3% ± 9.8%-48.5% ± 15.8% at 100 μM Gd 3+ on days 4-6 ( P < 0.05). Exposure of OPC to GBCA resulted in a dose-dependent increase in cell viability of up to 34.1% ± 11.4% at 2000 μM on day 5 of culture ( P < 0.001). However, differentiation of OPC cultures was reduced on day 5 by 24.2% ± 9.4% for Gd-DTPA-BMA, 47.1% ± 14.0% for Gd-DTPA, and 38.2% ± 10.0% for Gd-DOTA ( P < 0.001). The dissolution of amorphous calcium phosphate by mature osteoclasts was reduced by 36.3% ± 5.3% upon incorporation of 4.3% Gd/Ca wt/wt ( P < 0.001). CONCLUSIONS Gadolinium and GBCA inhibit differentiation and activity of bone cell lineages in vitro. Thus, Gd retention in bone tissue could potentially impair the physiological regulation of bone turnover on a cellular level, leading to pathological changes in bone metabolism.
Collapse
Affiliation(s)
- Franziska Strunz
- From the Bone and Joint Program, Department for BioMedical Research, University of Bern, Bern, Switzerland (F.S., W.H., R.J.E.); Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland (F.S.); RMS-Foundation, Bettlach, Switzerland (C.S.); Department of Diagnostic, Interventional, and Pediatric Radiology, University Hospital, Inselspital, University of Bern, Bern, Switzerland (J.T.H., R.J.E.); and Clinic for Cranio-Maxillofacial Surgery, Department for BioMedical Research, University of Bern, Bern, Switzerland (W.H.)
| | | | | | | | | |
Collapse
|
4
|
Das R, Le D, Kan HM, Le TT, Park J, Nguyen TD, Lo KWH. Osteo-inductive effect of piezoelectric stimulation from the poly(l-lactic acid) scaffolds. PLoS One 2024; 19:e0299579. [PMID: 38412168 PMCID: PMC10898771 DOI: 10.1371/journal.pone.0299579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Piezoelectric biomaterials can generate piezoelectrical charges in response to mechanical activation. These generated charges can directly stimulate bone regeneration by triggering signaling pathway that is important for regulating osteogenesis of cells seeded on the materials. On the other hand, mechanical forces applied to the biomaterials play an important role in bone regeneration through the process called mechanotransduction. While mechanical force and electrical charges are both important contributing factors to bone tissue regeneration, they operate through different underlying mechanisms. The utilizations of piezoelectric biomaterials have been explored to serve as self-charged scaffolds which can promote stem cell differentiation and the formation of functional bone tissues. However, it is still not clear how mechanical activation and electrical charge act together on such a scaffold and which factors play more important role in the piezoelectric stimulation to induce osteogenesis. In our study, we found Poly(l-lactic acid) (PLLA)-based piezoelectric scaffolds with higher piezoelectric charges had a more pronounced osteoinductive effect than those with lower charges. This provided a new mechanistic insight that the observed osteoinductive effect of the piezoelectric PLLA scaffolds is likely due to the piezoelectric stimulation they provide, rather than mechanical stimulation alone. Our findings provide a crucial guide for the optimization of piezoelectric material design and usage.
Collapse
Affiliation(s)
- Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
- National Institute of Biomedical Imaging and Bioengineering, National Institute of Health, Bethesda, MD, United States of America
| | - Duong Le
- Department of Mechanical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Health System, Hanoi, Vietnam, United States of America
| | - Ho-Man Kan
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Thinh T. Le
- Department of Mechanical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
| | - Jinyoung Park
- Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
| | - Thanh D. Nguyen
- Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
- Department of Mechanical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
- Institute of Materials Science (IMS), University of Connecticut, School of Engineering, Storrs, CT, United States of America
| | - Kevin W.-H. Lo
- Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT, United States of America
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT, United States of America
- Institute of Materials Science (IMS), University of Connecticut, School of Engineering, Storrs, CT, United States of America
- Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT, United States of America
| |
Collapse
|
5
|
Yadav P, Makwana S, Bansal S, Soni S, Mahapatra MK, Bandyopadhayaya S, Tailor R, Shrivastava SK, Sharma LK, Mandal CC. Metformin prevents osteoblast-like potential and calcification in lung cancer A549 cells. J Biochem Mol Toxicol 2023; 37:e23454. [PMID: 37409753 DOI: 10.1002/jbt.23454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
In spite of recent advances made in understanding its progression, cancer is still a leading cause of death across the nations. Molecular pathophysiology of these cancer cells largely differs depending on cancer types and even within the same tumor. Pathological mineralization/calcification is seen in various tissues including breast, prostate, and lung cancer. Osteoblast-like cells derived after trans-differentiation of mesenchymal cells usually drive calcium deposition in various tissues. This study aims to explore the presence of osteoblast-like potential in lung cancer cells and its prevention. ALP assay, ALP staining, nodule formation, RT-PCR, RT-qPCR, and western blot analysis experiments were carried out in lung cancer A549 cells to achieve said objective. Expressions of various osteoblast markers (e.g., ALP, OPN, RUNX2, and Osterix) along with osteoinducer genes (BMP-2 and BMP-4) were observed in A549 cells. Moreover, ALP activity and ability leading to nodule formation revealed the presence of osteoblast-like potential in lung cancer cells. Here, BMP-2 treatment increased expressions of osteoblast transcription factors such as RUNX2 and Osterix, enhanced ALP activity, and augmented calcification in this cell line. It was also observed that antidiabetic metformin inhibited BMP-2 mediated increase in osteoblast-like potential and calcification in these cancer cells. The current study noted that metformin blocked BMP-2 mediated increase in epithelial to mesenchymal transition (EMT) in A549 cells. The above findings for the first time unravel that A549 cells possess osteoblast-like potential which drives lung cancer calcification. Metformin might prevent BMP-2 induced osteoblast-like phenotype of the lung cancer cells with concomitant inhibition of EMT to inhibit lung cancer tissue calcification.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Sweta Makwana
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shivani Bansal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Sneha Soni
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Manas K Mahapatra
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Rashmi Tailor
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Sandeep K Shrivastava
- Centre for Innovation, Research & Development, Dr. B. Lal Clinical Laboratory Pvt Ltd., Jaipur, Rajasthan, India
| | - Lokendra K Sharma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
6
|
Yadav P, Bandyopadhayaya S, Soni S, Saini S, Sharma LK, Shrivastava SK, Mandal CC. Simvastatin prevents BMP-2 driven cell migration and invasion by suppressing oncogenic DNMT1 expression in breast cancer cells. Gene 2023; 882:147636. [PMID: 37442305 DOI: 10.1016/j.gene.2023.147636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Both epigenetic and genetic changes in the cancer genome act simultaneously to promote tumor development and metastasis. Aberrant DNA methylation, a prime epigenetic event, is often observed in various cancer types. The elevated DNA methyltransferase 1 (DNMT1) enzyme creates DNA hypermethylation at CpG islands to drive oncogenic potential. This study emphasized to decipher the molecular mechanism of endogenous regulation of DNMT1 expression for finding upstream signaling molecules. Cancer database analyses found an upregulated DNMT1 expression in most cancer types including breast cancer. Overexpression of DNMT1 showed an increased cell migration, invasion, and stemness potential whereas 5-azacytidine (DNMT1 inhibitor) and siRNA mediated knockdown of DNMT1 exhibited inhibition of such cancer activities in breast cancer MDA-MB-231 and MCF-7 cells. Infact, cancer database analyses further found a positive correlation of DNMT1 transcript with both cholesterol pathway regulatory genes and BMP signaling molecules. Experimental observations documented that the cholesterol-lowering drug, simvastatin decreased DNMT1 transcript as well as protein, whereas BMP-2 treatment increased DNMT1 expression in breast cancer cells. In addition, expression of various key cholesterol regulatory genes was found to be upregulated in response to BMP-2 treatment. Moreover, simvastatin inhibited BMP-2 induced DNMT1 expression in breast cancer cells. Thus, this study for the first time reveals that both BMP-2 signaling and cholesterol pathways could regulate endogenous DNMT1 expression in cancer cells.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Sneha Soni
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Sunil Saini
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Lokendra K Sharma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, U.P., India
| | - Sandeep K Shrivastava
- Centre for Innovation, Research & Development, Dr. B. Lal Clinical Laboratory Pvt Ltd. Jaipur, Rajasthan, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
7
|
Besio R, Contento BM, Garibaldi N, Filibian M, Sonntag S, Shmerling D, Tonelli F, Biggiogera M, Brini M, Salmaso A, Jovanovic M, Marini JC, Rossi A, Forlino A. CaMKII inhibition due to TRIC-B loss-of-function dysregulates SMAD signaling in osteogenesis imperfecta. Matrix Biol 2023; 120:43-59. [PMID: 37178987 PMCID: PMC11123566 DOI: 10.1016/j.matbio.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Ca2+ is a second messenger that regulates a variety of cellular responses in bone, including osteoblast differentiation. Mutations in trimeric intracellular cation channel B (TRIC-B), an endoplasmic reticulum channel specific for K+, a counter ion for Ca2+flux, affect bone and cause a recessive form of osteogenesis imperfecta (OI) with a still puzzling mechanism. Using a conditional Tmem38b knock out mouse, we demonstrated that lack of TRIC-B in osteoblasts strongly impairs skeleton growth and structure, leading to bone fractures. At the cellular level, delayed osteoblast differentiation and decreased collagen synthesis were found consequent to the Ca2+ imbalance and associated with reduced collagen incorporation in the extracellular matrix and poor mineralization. The impaired SMAD signaling detected in mutant mice, and validated in OI patient osteoblasts, explained the osteoblast malfunction. The reduced SMAD phosphorylation and nuclear translocation were mainly caused by alteration in Ca2+ calmodulin kinase II (CaMKII)-mediated signaling and to a less extend by a lower TGF-β reservoir. SMAD signaling, osteoblast differentiation and matrix mineralization were only partially rescued by TGF-β treatment, strengthening the impact of CaMKII-SMAD axes on osteoblast function. Our data established the TRIC-B role in osteoblasts and deepened the contribution of the CaMKII-SMAD signaling in bone.
Collapse
Affiliation(s)
- Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Barbara M Contento
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Nadia Garibaldi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Marta Filibian
- Centro Grandi Strumenti, University of Pavia, Pavia, Italy; INFN, Istituto Nazionale di Fisica Nucleare-Pavia Unit, Pavia, Italy
| | - Stephan Sonntag
- PolyGene AG, Rümlang, Switzerland; LIMES-Institute, University of Bonn, Bonn , Germany
| | | | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy; Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Andrea Salmaso
- Department of Biology, University of Padova, Padova, Italy
| | - Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States of America
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States of America
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| |
Collapse
|
8
|
Bandyopadhayaya S, Yadav P, Sharma A, Dey SK, Nag A, Maheshwari R, Ford BM, Mandal CC. Oncogenic role of an uncharacterized cold-induced zinc finger protein 726 in breast cancer. J Cell Biochem 2023. [PMID: 37192271 DOI: 10.1002/jcb.30417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 05/18/2023]
Abstract
The unobtrusive cold environmental temperature can be linked to the development of cancer. This study, for the first time, envisaged cold stress-mediated induction of a zinc finger protein 726 (ZNF726) in breast cancer. However, the role of ZNF726 in tumorigenesis has not been defined. This study investigated the putative role of ZNF726 in breast cancer tumorigenic potency. Gene expression analysis using multifactorial cancer databases predicted overexpression of ZNF726 in various cancers, including breast cancer. Experimental observations found that malignant breast tissues and highly aggressive MDA-MB-231 cells showed an elevated ZNF726 expression as compared to benign and luminal A type (MCF-7), respectively. Furthermore, ZNF726 silencing decreased breast cancer cell proliferation, epithelial-mesenchymal transition, and invasion accompanied by the inhibition of colony-forming ability. Concordantly, ZNF726 overexpression significantly demonstrated opposite outcomes than ZNF726 knockdown. Taken together, our findings propose cold-inducible ZNF726 as a functional oncogene demonstrating its prominent role in facilitating breast tumorigenesis. An inverse correlation between environmental temperature and total serum cholesterol was observed in the previous study. Furthermore, experimental outcomes illustrate that cold stress elevated cholesterol content hinting at the involvement of the cholesterol regulatory pathway in cold-induced ZNF726 gene regulation. This observation was bolstered by a positive correlation between the expression of cholesterol-regulatory genes and ZNF726. Exogenous cholesterol treatment elevated ZNF726 transcript levels while knockdown of ZNF726 decreased the cholesterol content via downregulating various cholesterol regulatory gene expressions (e.g., SREBF1/2, HMGCoR, LDLR). Moreover, an underlying mechanism supporting cold-driven tumorigenesis is proposed through interdependent regulation of cholesterol regulatory pathway and cold-inducible ZNF726 expression.
Collapse
Affiliation(s)
- Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Pooja Yadav
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Ankit Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Sanjay Kumar Dey
- Dr. B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Rekha Maheshwari
- Department of General Surgery, JLN Medical College, Ajmer, Rajasthan, India
| | - Bridget M Ford
- Department of Biology, University of the Incarnate Word, San Antonio, Texas, USA
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
9
|
Kapoor A, Mandal CC. A Perspective on Bone Morphogenetic Proteins: Dilemma behind Cancer- related Responses. Curr Drug Targets 2023; 24:382-387. [PMID: 36725830 DOI: 10.2174/1389450124666230201144605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 02/03/2023]
Abstract
Bone morphogenetic proteins are a center of serious concern and are known to execute various cancer-related issues. The BMP signaling cascades have become more unpredictable as a result of their pleiotropic and risky characteristics, particularly when it comes to cancer responses. This perspective discusses the current therapeutic implications, emphasizes different cellular aspects that impact the failures of the current drug treatments, and speculates on future research avenues that include novel strategies like metabolomic studies and bio-mimetic peptide therapeutics to mitigate cancerous outcomes.
Collapse
Affiliation(s)
- Anmol Kapoor
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
10
|
Hu Y, Huang J, Chen C, Wang Y, Hao Z, Chen T, Wang J, Li J. Strategies of Macrophages to Maintain Bone Homeostasis and Promote Bone Repair: A Narrative Review. J Funct Biomater 2022; 14:18. [PMID: 36662065 PMCID: PMC9864083 DOI: 10.3390/jfb14010018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Bone homeostasis (a healthy bone mass) is regulated by maintaining a delicate balance between bone resorption and bone formation. The regulation of physiological bone remodeling by a complex system that involves multiple cells in the skeleton is closely related to bone homeostasis. Loss of bone mass or repair of bone is always accompanied by changes in bone homeostasis. However, due to the complexity of bone homeostasis, we are currently unable to identify all the mechanisms that affect bone homeostasis. To date, bone macrophages have been considered a third cellular component in addition to osteogenic spectrum cells and osteoclasts. As confirmed by co-culture models or in vivo experiments, polarized or unpolarized macrophages interact with multiple components within the bone to ensure bone homeostasis. Different macrophage phenotypes are prone to resorption and formation of bone differently. This review comprehensively summarizes the mechanisms by which macrophages regulate bone homeostasis and concludes that macrophages can control bone homeostasis from osteoclasts, mesenchymal cells, osteoblasts, osteocytes, and the blood/vasculature system. The elaboration of these mechanisms in this narrative review facilitates the development of macrophage-based strategies for the treatment of bone metabolic diseases and bone defects.
Collapse
Affiliation(s)
- Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Jinghuan Huang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200000, China
| | - Chunying Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Junwu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| |
Collapse
|
11
|
Sharma T, Kapoor A, Mandal CC. Duality of bone morphogenetic proteins in cancer: A comprehensive analysis. J Cell Physiol 2022; 237:3127-3163. [DOI: 10.1002/jcp.30785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Anmol Kapoor
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Chandi C. Mandal
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| |
Collapse
|
12
|
Bordukalo-Nikšić T, Kufner V, Vukičević S. The Role Of BMPs in the Regulation of Osteoclasts Resorption and Bone Remodeling: From Experimental Models to Clinical Applications. Front Immunol 2022; 13:869422. [PMID: 35558080 PMCID: PMC9086899 DOI: 10.3389/fimmu.2022.869422] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
In response to mechanical forces and the aging process, bone in the adult skeleton is continuously remodeled by a process in which old and damaged bone is removed by bone-resorbing osteoclasts and subsequently is replaced by new bone by bone-forming cells, osteoblasts. During this essential process of bone remodeling, osteoclastic resorption is tightly coupled to osteoblastic bone formation. Bone-resorbing cells, multinuclear giant osteoclasts, derive from the monocyte/macrophage hematopoietic lineage and their differentiation is driven by distinct signaling molecules and transcription factors. Critical factors for this process are Macrophage Colony Stimulating Factor (M-CSF) and Receptor Activator Nuclear Factor-κB Ligand (RANKL). Besides their resorption activity, osteoclasts secrete coupling factors which promote recruitment of osteoblast precursors to the bone surface, regulating thus the whole process of bone remodeling. Bone morphogenetic proteins (BMPs), a family of multi-functional growth factors involved in numerous molecular and signaling pathways, have significant role in osteoblast-osteoclast communication and significantly impact bone remodeling. It is well known that BMPs help to maintain healthy bone by stimulating osteoblast mineralization, differentiation and survival. Recently, increasing evidence indicates that BMPs not only help in the anabolic part of bone remodeling process but also significantly influence bone catabolism. The deletion of the BMP receptor type 1A (BMPRIA) in osteoclasts increased osteoblastic bone formation, suggesting that BMPR1A signaling in osteoclasts regulates coupling to osteoblasts by reducing bone-formation activity during bone remodeling. The dual effect of BMPs on bone mineralization and resorption highlights the essential role of BMP signaling in bone homeostasis and they also appear to be involved in pathological processes in inflammatory disorders affecting bones and joints. Certain BMPs (BMP2 and -7) were approved for clinical use; however, increased bone resorption rather than formation were observed in clinical applications, suggesting the role BMPs have in osteoclast activation and subsequent osteolysis. Here, we summarize the current knowledge of BMP signaling in osteoclasts, its role in osteoclast resorption, bone remodeling, and osteoblast–osteoclast coupling. Furthermore, discussion of clinical application of recombinant BMP therapy is based on recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Tatjana Bordukalo-Nikšić
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Slobodan Vukičević
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
13
|
Liu K, Li Y, Iqbal M, Tang Z, Zhang H. Thiram exposure in environment: A critical review on cytotoxicity. CHEMOSPHERE 2022; 295:133928. [PMID: 35149006 DOI: 10.1016/j.chemosphere.2022.133928] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Thiram is used in large quantities in agriculture and may contaminate the environment by improper handling or storage in chemical plants and warehouses. A review of the literature has shown that thiram can affect different organs in animals and its toxic mechanisms can be elucidated in more detail at molecular level. We have summarized several impacts of thiram on animals: the effects of the perspectives of oxidative stress, mitochondrial damage, autophagy, apoptosis, and the IHH/PTHrP pathway on regulating abnormal skeletal development in particular tibial dyschondroplasia and kyphosis; angiogenesis inhibition was investigated from the perspective of angiogenesis factor inhibition, PI3K/AKT signaling pathway and CD147; the inhibition effect of thiram on fibroblasts and erythrocytes via the perspective of oxidative stress, mitochondrial damage and inhibition of growth factors in animal skin fibroblasts and erythrocytes; studied fertilized egg size, reduced fertility, neurodegeneration, and immune damage from the perspectives of CYP51 inhibition and dopamine-b-hydroxylase inhibition in the reproductive system, vitamin D deficiency in the nervous system, and inflammatory damage in the immune system; embryonic dysplasia in terms of thyroid hormone repression in animal embryonic development and repression of the SOX9a transcription factor. The elucidation of the mechanisms of toxicity of thiram on various organs of animals at molecular level will enable a more detailed understanding of the mechanisms of toxicity of thiram in animals and will facilitate the exploration of the treatment of thiram poisoning at molecular level.
Collapse
Affiliation(s)
- Kai Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Orth M, Fritz T, Stutz J, Scheuer C, Ganse B, Bullinger Y, Lee JS, Murphy WL, Laschke MW, Menger MD, Pohlemann T. Local Application of Mineral-Coated Microparticles Loaded With VEGF and BMP-2 Induces the Healing of Murine Atrophic Non-Unions. Front Bioeng Biotechnol 2022; 9:809397. [PMID: 35087807 PMCID: PMC8787303 DOI: 10.3389/fbioe.2021.809397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Deficient angiogenesis and disturbed osteogenesis are key factors for the development of nonunions. Mineral-coated microparticles (MCM) represent a sophisticated carrier system for the delivery of vascular endothelial growth factor (VEGF) and bone morphogenetic protein (BMP)-2. In this study, we investigated whether a combination of VEGF- and BMP-2-loaded MCM (MCM + VB) with a ratio of 1:2 improves bone repair in non-unions. For this purpose, we applied MCM + VB or unloaded MCM in a murine non-union model and studied the process of bone healing by means of radiological, biomechanical, histomorphometric, immunohistochemical and Western blot techniques after 14 and 70 days. MCM-free non-unions served as controls. Bone defects treated with MCM + VB exhibited osseous bridging, an improved biomechanical stiffness, an increased bone volume within the callus including ongoing mineralization, increased vascularization, and a histologically larger total periosteal callus area consisting predominantly of osseous tissue when compared to defects of the other groups. Western blot analyses on day 14 revealed a higher expression of osteoprotegerin (OPG) and vice versa reduced expression of receptor activator of NF-κB ligand (RANKL) in bone defects treated with MCM + VB. On day 70, these defects exhibited an increased expression of erythropoietin (EPO), EPO-receptor and BMP-4. These findings indicate that the use of MCM for spatiotemporal controlled delivery of VEGF and BMP-2 shows great potential to improve bone healing in atrophic non-unions by promoting angiogenesis and osteogenesis as well as reducing early osteoclast activity.
Collapse
Affiliation(s)
- M Orth
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany.,Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - T Fritz
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - J Stutz
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany.,Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - C Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - B Ganse
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany.,Werner Siemens Endowed Chair of Innovative Implant Development (Fracture Healing), Saarland University, Homburg, Germany
| | - Y Bullinger
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| | - J S Lee
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - W L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - M W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - M D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - T Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
15
|
Sun Y, Li J, Xie X, Gu F, Sui Z, Zhang K, Yu T. Macrophage-Osteoclast Associations: Origin, Polarization, and Subgroups. Front Immunol 2021; 12:778078. [PMID: 34925351 PMCID: PMC8672114 DOI: 10.3389/fimmu.2021.778078] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/15/2021] [Indexed: 12/31/2022] Open
Abstract
Cellular associations in the bone microenvironment are involved in modulating the balance between bone remodeling and resorption, which is necessary for maintaining a normal bone morphology. Macrophages and osteoclasts are both vital components of the bone marrow. Macrophages can interact with osteoclasts and regulate bone metabolism by secreting a variety of cytokines, which make a significant contribution to the associations. Although, recent studies have fully explored either macrophages or osteoclasts, indicating the significance of these two types of cells. However, it is of high importance to report the latest discoveries on the relationships between these two myeloid-derived cells in the field of osteoimmunology. Therefore, this paper reviews this topic from three novel aspects of the origin, polarization, and subgroups based on the previous work, to provide a reference for future research and treatment of bone-related diseases.
Collapse
Affiliation(s)
- Yang Sun
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Jiangbi Li
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xiaoping Xie
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Feng Gu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Zhenjiang Sui
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Ke Zhang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Tiecheng Yu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Kumar N, Mandal CC. Cholesterol-Lowering Drugs on Akt Signaling for Prevention of Tumorigenesis. Front Genet 2021; 12:724149. [PMID: 34603386 PMCID: PMC8483559 DOI: 10.3389/fgene.2021.724149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cholesterol has been reported to be accumulated in cancer cells. The metabolic dysregulation of the cholesterol is associated with tumor development and progression. The cholesterol-lowering drugs have been found to be involved in the prevention and treatment of various cancers. Akt, a serine/threonine kinase, can modulate the role of several downstream proteins involved in cell proliferation, migration, invasion, metabolism, and apoptosis. Since its involvement in several signaling pathways, its dysregulation is commonly reported in several cancers. Thus, targeting Akt could be an effective approach for cancer prevention and therapy. Cholesterol-lowering drugs have been found to affect the expression of Akt, and its activation in the cancer cells and thus have shown anticancer activity in different type of cancers. These drugs act on various signaling pathways such as PTEN/Akt, PI3k/Akt, Akt/NF-κB, Akt/FOXO1, Akt/mTOR, etc., which will be discussed in this article. This review article will discuss the significance of cholesterol in cancer cells, cholesterol-lowering drugs, the role of Akt in cancer cells, and the effects of cholesterol-lowering drugs on Akt in the prevention of therapy resistance and metastasis.
Collapse
Affiliation(s)
- Navneet Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
17
|
Cheng L, Xie M, Qiao W, Song Y, Zhang Y, Geng Y, Xu W, Wang L, Wang Z, Huang K, Dong N, Sun Y. Generation and characterization of cardiac valve endothelial-like cells from human pluripotent stem cells. Commun Biol 2021; 4:1039. [PMID: 34489520 PMCID: PMC8421482 DOI: 10.1038/s42003-021-02571-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 08/18/2021] [Indexed: 12/31/2022] Open
Abstract
The cardiac valvular endothelial cells (VECs) are an ideal cell source that could be used for making the valve organoids. However, few studies have been focused on the derivation of this important cell type. Here we describe a two-step chemically defined xeno-free method for generating VEC-like cells from human pluripotent stem cells (hPSCs). HPSCs were specified to KDR+/ISL1+ multipotent cardiac progenitors (CPCs), followed by differentiation into valve endothelial-like cells (VELs) via an intermediate endocardial cushion cell (ECC) type. Mechanistically, administration of TGFb1 and BMP4 may specify VEC fate by activating the NOTCH/WNT signaling pathways and previously unidentified targets such as ATF3 and KLF family of transcription factors. When seeded onto the surface of the de-cellularized porcine aortic valve (DCV) matrix scaffolds, hPSC-derived VELs exhibit superior proliferative and clonogenic potential than the primary VECs and human aortic endothelial cells (HAEC). Our results show that hPSC-derived valvular cells could be efficiently generated from hPSCs, which might be used as seed cells for construction of valve organoids or next generation tissue engineered heart valves. Cheng et al. provide a detailed characterization of the differentiation of human pluripotent stem cells to valve endothelial cells and their function. Their results show that the valve endothelial-like cells express key markers for valve endothelial cells, exhibiting proliferative and clonogenic potential.
Collapse
Affiliation(s)
- LinXi Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - MingHui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - WeiHua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - YanYong Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - YingChao Geng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - WeiLin Xu
- Wuhan Textile University, Wuhan, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Department of Cardiovascular Internal Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - NianGuo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - YuHua Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Heubel B, Nohe A. The Role of BMP Signaling in Osteoclast Regulation. J Dev Biol 2021; 9:24. [PMID: 34203252 PMCID: PMC8293073 DOI: 10.3390/jdb9030024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The osteogenic effects of Bone Morphogenetic Proteins (BMPs) were delineated in 1965 when Urist et al. showed that BMPs could induce ectopic bone formation. In subsequent decades, the effects of BMPs on bone formation and maintenance were established. BMPs induce proliferation in osteoprogenitor cells and increase mineralization activity in osteoblasts. The role of BMPs in bone homeostasis and repair led to the approval of BMP2 by the Federal Drug Administration (FDA) for anterior lumbar interbody fusion (ALIF) to increase the bone formation in the treated area. However, the use of BMP2 for treatment of degenerative bone diseases such as osteoporosis is still uncertain as patients treated with BMP2 results in the stimulation of not only osteoblast mineralization, but also osteoclast absorption, leading to early bone graft subsidence. The increase in absorption activity is the result of direct stimulation of osteoclasts by BMP2 working synergistically with the RANK signaling pathway. The dual effect of BMPs on bone resorption and mineralization highlights the essential role of BMP-signaling in bone homeostasis, making it a putative therapeutic target for diseases like osteoporosis. Before the BMP pathway can be utilized in the treatment of osteoporosis a better understanding of how BMP-signaling regulates osteoclasts must be established.
Collapse
Affiliation(s)
- Brian Heubel
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
19
|
Povoroznyuk VV, Dedukh NV, Bystrytska MA, Shapovalov VS. Bone remodeling stages under physiological conditions and glucocorticoid in excess: Focus on cellular and molecular mechanisms. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review provides a rationale for the cellular and molecular mechanisms of bone remodeling stages under physiological conditions and glucocorticoids (GCs) in excess. Remodeling is a synchronous process involving bone resorption and formation, proceeding through stages of: (1) resting bone, (2) activation, (3) bone resorption, (4) reversal, (5) formation, (6) termination. Bone remodeling is strictly controlled by local and systemic regulatory signaling molecules. This review presents current data on the interaction of osteoclasts, osteoblasts and osteocytes in bone remodeling and defines the role of osteoprogenitor cells located above the resorption area in the form of canopies and populating resorption cavities. The signaling pathways of proliferation, differentiation, viability, and cell death during remodeling are presented. The study of signaling pathways is critical to understanding bone remodeling under normal and pathological conditions. The main signaling pathways that control bone resorption and formation are RANK / RANKL / OPG; M-CSF – c-FMS; canonical and non-canonical signaling pathways Wnt; Notch; MARK; TGFβ / SMAD; ephrinB1/ephrinB2 – EphB4, TNFα – TNFβ, and Bim – Bax/Bak. Cytokines, growth factors, prostaglandins, parathyroid hormone, vitamin D, calcitonin, and estrogens also act as regulators of bone remodeling. The role of non-encoding microRNAs and long RNAs in the process of bone cell differentiation has been established. MicroRNAs affect many target genes, have both a repressive effect on bone formation and activate osteoblast differentiation in different ways. Excess of glucocorticoids negatively affects all stages of bone remodeling, disrupts molecular signaling, induces apoptosis of osteocytes and osteoblasts in different ways, and increases the life cycle of osteoclasts. Glucocorticoids disrupt the reversal stage, which is critical for the subsequent stages of remodeling. Negative effects of GCs on signaling molecules of the canonical Wingless (WNT)/β-catenin pathway and other signaling pathways impair osteoblastogenesis. Under the influence of excess glucocorticoids biosynthesis of biologically active growth factors is reduced, which leads to a decrease in the expression by osteoblasts of molecules that form the osteoid. Glucocorticoids stimulate the expression of mineralization inhibitor proteins, osteoid mineralization is delayed, which is accompanied by increased local matrix demineralization. Although many signaling pathways involved in bone resorption and formation have been discovered and described, the temporal and spatial mechanisms of their sequential turn-on and turn-off in cell proliferation and differentiation require additional research.
Collapse
|
20
|
Oliveira GJPLD, Pinotti FE, Aroni MAT, Marcantonio E, Marcantonio RAC. Effect of different low-level intensity laser therapy (LLLT) irradiation protocols on the osseointegration of implants placed in grafted areas. J Appl Oral Sci 2021; 29:e20200647. [PMID: 33886940 PMCID: PMC8054649 DOI: 10.1590/1678-7757-2020-0647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/14/2020] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To evaluate the effect of different protocols of low-level intensity laser therapy (LLLT) irradiation on the osseointegration of implants placed in grafted areas. METHODOLOGY 84 rats were randomly allocated into six groups: DBB: defect filled with deproteinized bovine bone; HA/TCP: defect filled with biphasic ceramic of hydroxyapatite/β-tricalcium phosphate ; DBB-LI: defect filled with DBB and treated with LLLT after implant placement; HA/TCP-LI: defect filled with HA/TCP and treated with LLLT after implant placement; DBB-LIB: defect filled with DBB and treated with LLLT after graft procedure and implant placement; and HA/TCP-LIB: defect filled HA/TCP and treated with LLLT after graft procedure and implant placement. The bone defects were made in the tibia and they were grafted. After 60 days, the implants were placed. The rats were subsequently subjected to euthanasia 15 and 45 days after implant placement. The pattern of osseointegration and bone repair in the grafted area was evaluated by biomechanical, microtomographic, and histometric analyses. Furthermore, the expression of bone biomarker proteins was assessed. RESULTS The LLLT groups presented higher removal torque, mineralized tissue volume, and a greater degree of osseointegration, especially when LLLT was performed only after implant placement, and these findings were associated with higher expression of BMP2 and alkaline phosphatase. CONCLUSION LLLT performed on implants placed in grafted areas enhances the osseointegration process.
Collapse
Affiliation(s)
| | - Felipe Eduardo Pinotti
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araraquara, Departmento de Diagnóstico e Cirurgia, Araraquara, SP, Brasil
| | | | - Elcio Marcantonio
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araraquara, Departmento de Diagnóstico e Cirurgia, Araraquara, SP, Brasil
| | | |
Collapse
|
21
|
Bandyopadhayaya S, Akimov MG, Verma R, Sharma A, Sharma D, Kundu GC, Gretskaya NM, Bezuglov VV, Mandal CC. N-arachidonoyl dopamine inhibits epithelial-mesenchymal transition of breast cancer cells through ERK signaling and decreasing the cellular cholesterol. J Biochem Mol Toxicol 2021; 35:e22693. [PMID: 33393692 DOI: 10.1002/jbt.22693] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/04/2020] [Accepted: 12/11/2020] [Indexed: 01/02/2023]
Abstract
N-acyl dopamines (NADAs) are bioactive lipids of the endovanilloid family with known cytotoxicity for the cancer cells; however, the available data on the participation of the endovanilloids in epithelial-mesenchymal transition (EMT) and cancer stemness are controversial. This study unveils the inhibitory role of N-arachidonoyl dopamine (AA-DA), a typical representative of the NADA family, in breast cancer cell migration, EMT, and stemness. AA-DA treatment also led to a decrease in cholesterol biosynthesis gene expressions, and addition of exogenous cholesterol reverted these AA-DA-mediated inhibitory effects. Notably, AA-DA treatment inhibited the key regulatory gene of the cholesterol biosynthesis pathway, sterol regulatory element-binding protein 1 (SREBP1), with concurrent repression of the endoplasmic reticulum kinase 1/2 (ERK1/2) pathway. Furthermore, U0126, an ERK inhibitor, inhibited SREBP1 and decreased cellular cholesterol level, unwinding the molecular mechanism behind AA-DA-mediated anticancer activity. Thus, we, for the first time, revealed that AA-DA counteracts breast cancer EMT via inhibition of ERK signaling and cholesterol content.
Collapse
Affiliation(s)
- Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mikhail G Akimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Ranjeet Verma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Ankit Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Divya Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Gopal C Kundu
- School of Biotechnology, Institute of Eminence, KIIT Deemed to be University, Bhubaneswar, India
| | - Natalia M Gretskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Vladimir V Bezuglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
22
|
Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci 2020; 21:ijms21207597. [PMID: 33066607 PMCID: PMC7589189 DOI: 10.3390/ijms21207597] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.
Collapse
|
23
|
Mandal CC. Osteolytic metastasis in breast cancer: effective prevention strategies. Expert Rev Anticancer Ther 2020; 20:797-811. [PMID: 32772585 DOI: 10.1080/14737140.2020.1807950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Breast cancer is the most common cancer in women throughout the world. Patients who are diagnosed early generally have better prognosis and survivability. Indeed, advanced stage breast cancer often develops osteolytic metastases, leading to bone destruction. Although there are select drugs available to treat bone metastatic disease, these drugs have shown limited success. AREA COVERED This paper emphasizes updated mechanisms of bone remodeling and osteolytic bone metastases of breast cancer. This article also aims to explore the potential of novel natural and synthetic therapeutics in the effective prevention of breast cancer-induced osteolysis and osteolytic metastases of breast cancer. EXPERT OPINION Targeting TGFβ and BMP signaling pathways, along with osteoclast activity, appears to be a promising therapeutic strategy in the prevention of breast cancer-induced osteolytic bone destruction and metastatic growth at bone metastatic niches. Pilot studies in animal models suggest various natural and synthetic compounds and monoclonal antibodies as putative therapeutics in the prevention of breast cancer stimulated osteolytic activity. However, comprehensive pre-clinical studies demonstrating the PK/PD and in-depth understanding of molecular mechanism(s) by which these potential molecules exhibit anti-tumor growth and anti-osteolytic activity are still required to develop effective therapies against breast cancer-induced osteolytic bone disease.
Collapse
Affiliation(s)
- Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan , Ajmer, India
| |
Collapse
|
24
|
Sharma T, Mandal CC. Omega-3 fatty acids in pathological calcification and bone health. J Food Biochem 2020; 44:e13333. [PMID: 32548903 DOI: 10.1111/jfbc.13333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 01/19/2023]
Abstract
Omega-3 fatty acids (ω-3FAs) such as Docosahexaenoic acid (DHA) and Eicosapentanoic acid (EPA), are active ingredient of fish oil, which have larger health benefits against various diseases including cardiovascular, neurodegenerative, cancers and bone diseases. Substantial studies documented a preventive role of omega-3 fatty acids in pathological calcification like vascular calcification and microcalcification in cancer tissues. In parallel, these fatty acids improve bone quality probably by preventing bone decay and augmenting bone mineralization. This study also addresses that the functions of ω-3FAs not only depend on tissue types, but also work through different molecular mechanisms for preventing pathological calcification in various tissues and improving bone health. PRACTICAL APPLICATIONS: Practical applications of the current study are to improve the knowledge about the supplementation of omega-3 fatty acids. This study infers that supplementation of omega-3 fatty acids aids in bone preservation in elder females at the risk of osteoporosis and also, on the contrary, omega-3 fatty acids interfere with pathological calcification of vascular cells and cancer cells. Omega-3 supplementation should be given to the cardiac patients because of its cardio protective role. In line with this, omega-3 supplementation should be included with chemotherapy for cancer patients as it can prevent osteoblastic potential of breast cancer patients, responsible for pathological mineralization, and blocks off target toxicities. Administration of omega-3 fatty acid with chemotherapy will not only improve survival of cancer patients, but also improve the bone quality. Thus, this study allows a better understanding on omega-3 fatty acids in combating pathological complications such as osteoporosis, vascular calcification, and breast microcalcification.
Collapse
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
25
|
Maung WM, Nakata H, Miura M, Miyasaka M, Kim YK, Kasugai S, Kuroda S. Low-Intensity Pulsed Ultrasound Stimulates Osteogenic Differentiation of Periosteal Cells In Vitro. Tissue Eng Part A 2020; 27:63-73. [PMID: 32164486 DOI: 10.1089/ten.tea.2019.0331] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adequate bone volume is required for osseointegrated implants to restore lost teeth and oral function. Several studies have demonstrated potential advantage of stem cells in regenerative medicine using osteoblasts. The periosteum is composed of osteoblasts, fibroblasts, and osteoprogenitor cells. It may be an alternative source for bone tissue engineering because of easy isolation and rapid proliferation in vivo and in vitro. Low-intensity pulsed ultrasound (LIPUS) has proved successful in recoveries from nonunions, delayed unions, and fracture of the bone in both animal experiments and clinical treatments. The study was to investigate the influence of LIPUS on the osteogenic differentiation in murine periosteum-derived cells (PDCs) and the underlying mechanism of LIPUS. PDCs were treated daily with LIPUS for 20 min up to 21 days with 3 MHz frequency, 30 mW/cm2 intensity, and pulse repetition frequency of 1 kHz. The effects of LIPUS on cell proliferation and viability were investigated. Osteogenic differentiation was analyzed by alkaline phosphatase (ALP)-positive cell staining, ALP activity assay, mineralized nodule formation, real-time reverse transcription-polymerase chain reaction, as well as western blotting. The results indicated that ultrasound stimulation did not significantly affect the proliferation of PDCs. But LIPUS significantly increased ALP activity on day 7 and markedly promoted formation of mineralized nodules on day 21. mRNA expression of ALP and osteocalcin was significantly upregulated by stimulation with LIPUS. LIPUS enhanced gene expression of both bone morphogenetic protein-2 (BMP-2) and osterix only in the presence of osteogenic medium. LIPUS stimulation did not affect Smad 1 and Smad 5 protein expression, but significantly upregulated protein levels of BMP-2 and phosphor-Smad 1/5/9 in PDCs. Thus, LIPUS stimulation increased early osteogenic differentiation in a normal medium and further enhanced expression of BMP-2 and subsequent osterix expression through the canonical Smad-signaling pathway in an osteogenic medium, leading to mineral apposition. Therefore, LIPUS might have potential to promote osteogenesis in PDCs. Impact statement There are few studies on periosteum-derived cells (PDCs) because conventional methods of their isolation are relatively difficult to procure abundant cells for cell culture and the total cell numbers are limited. In this study, a modified isolation technique of murine calvarial PDCs using gelatin is described. PDCs were initiated to emerge as early as day 3 and showed increased proliferation, which can be used for further studies. Low-intensity pulsed ultrasound stimulation increased early osteogenic differentiation in a normal medium and further enhanced expression of bone morphogenic protein-2 and subsequent osterix expression through the canonical Smad-signaling pathway in an osteogenic medium, leading to mineral apposition.
Collapse
Affiliation(s)
- Wai Myo Maung
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - Hidemi Nakata
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - Motoi Miura
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - Munemitsu Miyasaka
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - You-Kyoung Kim
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - Shohei Kasugai
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - Shinji Kuroda
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| |
Collapse
|
26
|
Low-level laser therapy (LLLT) in sites grafted with osteoconductive bone substitutes improves osseointegration. Lasers Med Sci 2020; 35:1519-1529. [DOI: 10.1007/s10103-019-02943-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/22/2019] [Indexed: 10/25/2022]
|
27
|
Wang S, Gu M, Jiang H, Zheng X. BMP-2 upregulates the AKT/mTOR pathway in breast cancer with microcalcification and indicates a poor prognosis. Clin Transl Oncol 2019; 22:1263-1271. [PMID: 31863351 DOI: 10.1007/s12094-019-02248-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/24/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND As a reliable biomarker of breast cancer, breast microcalcification has been reported to be correlated with poor prognosis. Bone morphogenetic protein 2 (BMP-2) plays an important role in microcalcification of breast cancer. Studies in other tissues have shown an association between BMP-2 and AKT/mTOR pathway, while their relationship in breast cancer still remains largely undetermined. To clarify the relationship of these three factors, we collected patients of invasive breast cancer with/without microcalcification and immunohistochemical examination was performed. METHOD/PATIENTS A total of 272 patients with primary invasive breast cancer were selected from the First Hospital of China Medical University from January 2010 to January 2012. Immunohistochemical examination of the BMP-2, p-AKT and p-mTOR was performed on 4-µm tissue microarray (TMA) sections. Then, we analyzed the relationship of BMP-2, p-AKT, and p-mTOR and their correlation with disease-free survival (DFS) in breast cancer with/without microcalcification. RESULTS We found that breast cancer patients with microcalcification were correlated with HER-2 positive expression and poor prognosis. Immunohistochemical examination showed that the expressions of BMP-2 and p-mTOR were increased in breast cancer with microcalcification and the expressions of BMP-2, p-AKT, and p-mTOR were correlated with each other. Moreover, the high expressions of BMP-2, p-AKT, and p-mTOR were significantly correlated with poor prognosis. CONCLUSIONS Based on the abovementioned findings, we hypothesized that the high expression of BMP-2 not only played a vital role in the formation of microcalcification, but also activated the AKT/mTOR pathway. Collectively, breast cancer patients with microcalcification were more likely to be resistant to targeted or endocrine therapy and be correlated with poor prognosis.
Collapse
Affiliation(s)
- S Wang
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - M Gu
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - H Jiang
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - X Zheng
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, 155 North Nanjing Street, Shenyang, 110001, Liaoning, China. .,Lab 1, Cancer Institute, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
28
|
Omi M, Kaartinen V, Mishina Y. Activin A receptor type 1-mediated BMP signaling regulates RANKL-induced osteoclastogenesis via canonical SMAD-signaling pathway. J Biol Chem 2019; 294:17818-17836. [PMID: 31619522 DOI: 10.1074/jbc.ra119.009521] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are important mediators of osteoclast differentiation. Although accumulating evidence has implicated BMPs in osteoblastogenesis, the mechanisms by which BMPs regulate osteoclastogenesis remain unclear. Activin A receptor type 1 (ACVR1) is a BMP type 1 receptor essential for skeletal development. Here, we observed that BMP-7, which preferentially binds to ACVR1, promotes osteoclast differentiation, suggesting ACVR1 is involved in osteoclastogenesis. To investigate this further, we isolated osteoclasts from either Acvr1-floxed mice or mice with constitutively-activated Acvr1 (caAcvr1) carrying tamoxifen-inducible Cre driven by a ubiquitin promotor and induced Cre activity in culture. Osteoclasts from the Acvr1-floxed mice had reduced osteoclast numbers and demineralization activity, whereas those from the caAcvr1-mutant mice formed large osteoclasts and demineralized pits, suggesting that BMP signaling through ACVR1 regulates osteoclast fusion and activity. It is reported that BMP-2 binds to BMPR1A, another BMP type 1 receptor, whereas BMP-7 binds to ACVR1 to activate SMAD1/5/9 signaling. Here, Bmpr1a-disrupted osteoclasts displayed reduced phospho-SMAD1/5/9 (pSMAD1/5/9) levels when induced by BMP-2, whereas no impacts on pSMAD1/5/9 were observed when induced by BMP-7. In contract, Acvr1-disrupted osteoclasts displayed reduced pSMAD1/5/9 levels when induced either by BMP-2 or BMP-7, suggesting that ACVR1 is the major receptor for transducing BMP-7 signals in osteoclasts. Indeed, LDN-193189 and LDN-212854, which specifically block SMAD1/5/9 phosphorylation, inhibited osteoclastogenesis of caAcvr1-mutant cells. Moreover, increased BMP signaling promoted nuclear translocation of nuclear factor-activated T-cells 1 (NFATc1), which was inhibited by LDN treatments. Taken together, ACVR1-mediated BMP-SMAD signaling activates NFATc1, a regulatory protein crucial for receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Yuji Mishina
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
29
|
Sharma T, Sharma A, Maheshwari R, Pachori G, Kumari P, Mandal CC. Docosahexaenoic Acid (DHA) Inhibits Bone Morphogenetic Protein-2 (BMP-2) Elevated Osteoblast Potential of Metastatic Breast Cancer (MDA-MB-231) Cells in Mammary Microcalcification. Nutr Cancer 2019; 72:873-883. [DOI: 10.1080/01635581.2019.1651879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Ankit Sharma
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Rekha Maheshwari
- Department of General Surgery, JLN Medical College, Ajmer, India
| | - Geeta Pachori
- Department of Pathology, JLN Medical College, Ajmer, India
| | - Poonam Kumari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| | - Chandi C. Mandal
- Department of Biochemistry, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
30
|
Xie Z, Yan D, Zhou Q, Wu Z, Weng S, Boodhun V, Bai B, Shen Z, Tang J, Chen L, Wang B, Yang L. The fast degradation of β-TCP ceramics facilitates healing of bone defects by the combination of BMP-2 and Teriparatide. Biomed Pharmacother 2019; 112:108578. [PMID: 30784943 DOI: 10.1016/j.biopha.2019.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence suggests that the degradation and resorption of calcium phosphate ceramics is always relatively slow, which may inhibit calcium phosphate ceramics' replacement by new bone tissues and the ultimate bone defect repair. Bone morphogenetic proteins (BMPs) and Teriparatide (PTH) are extensively applied in the treatment of bone pathologies, while their effects on the degradation of calcium phosphate ceramics is limited. In this study, we tested the effects of BMP and PTH on degradation of β-tricalcium phosphate (β-TCP) ceramics and bone formation on β-TCP in ovariectomized (OVX) rat models. After establishment of femur defect model on OVX rats, the BMP + PTH group's rats were injected Teriparatide (30 μg/kg) subcutaneous every other day, while rats of control group and group BMP were injected equal-to-group volume sterilized saline water. Twelve weeks after femur surgery, all rats were sacrificed for Micro-CT scanning and histology tests. The results showed that BMP facilitated degradation of β-TCP and new bone formation on β-TCP ceramics. And PTH showed an additional effect on degradation of β-TCP when combined with BMP. In addition, the results explained that PTH promoted the remodeling of the bone callus occurred during repair.
Collapse
Affiliation(s)
- Zhongjie Xie
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Deyi Yan
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Qiang Zhou
- Department of Orthopaedics Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 75, Jingxiu Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Zongyi Wu
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Sheji Weng
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Viraj Boodhun
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Bingli Bai
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Zijian Shen
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Jiahao Tang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Liang Chen
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Bingzhang Wang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China
| | - Lei Yang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, Xueyuan West Road, Lucheng District, Wenzhou, 325000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
31
|
Neelam DK, Agrawal A, Tomer AK, Bandyopadhayaya S, Sharma A, Jagannadham MV, Mandal CC, Dadheech PK. A Piscibacillus sp. Isolated from A Soda Lake Exhibits Anticancer Activity Against Breast Cancer MDA-MB-231 Cells. Microorganisms 2019; 7:microorganisms7020034. [PMID: 30691094 PMCID: PMC6406920 DOI: 10.3390/microorganisms7020034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/04/2023] Open
Abstract
Microorganisms thrive in extreme environments and are known for synthesizing valuable metabolites. Salt-loving microorganisms can flourish in saline environments which inhibit the growth of other microbial life, and they possess the potential to produce stable and novel biomolecules for the use in biotechnological applications, including anticancer compounds. Sambhar Lake is the largest inland soda lake in India and is an appropriate habitat for halophilic bacterial and archaeal strains in terms of diversity and potential production of bioactive compounds. In the present study, a moderately halo-alkaliphilic bacterial strain C12A1 was isolated from Sambhar Lake, located in Rajasthan, India. C12A1 was gram-positive, motile, rod-shaped, formed oval endospores, produced carotenoids, and exhibited optimal growth at 37 °C in 10–15% NaCl (pH 8). C12A1 was found to be able to hydrolyze skimmed milk, gelatin, and Tween 80 but unable to hydrolyze starch and carboxymethylcellulose. C12A1 showed 98.87% and 98.50% identity in 16S rRNA gene sequence to P. halophilus and P. salipiscarius, respectively. Nevertheless, C12A1 was clustered within the clade consisting of P. salipiscarius strains, but it showed a distinct lineage. Thus, C12A1 was designated as Piscibacillus sp. Cell proliferation assay results showed that C12A1 broth extract (BEP) decreased cell viability in breast cancer MDA-MB-231 cells, which was confirmed by the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. Induction of cell toxicity was visualized by microscopy. Reverse Transcriptase PCR (RT-PCR) analysis demonstrated that BEP inhibited the expression of proliferative B-cell lymphoma-extra large (Bcl-xL) and cell cycle marker Cyclin-dependent kinase 2 (CDK2) at transcript levels. Similarly, cell migration and colony formation along with mesenchymal marker vimentin and stem cell marker BMI transcripts were found to be inhibited when cells were treated with the BEP. The anti-breast cancer potential of C12A1 indicates that microorganisms inhabiting saline-alkaline habitats, with Piscibacillus sp. in particular, are a promising source for discovery of novel bioactive substances.
Collapse
Affiliation(s)
- Deepesh Kumar Neelam
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri 305817, Ajmer, India.
| | - Akhil Agrawal
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri 305817, Ajmer, India.
| | - Anuj Kumar Tomer
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri 305817, Ajmer, India.
| | - Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri 305817, Ajmer, India.
| | - Ankit Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri 305817, Ajmer, India.
| | | | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandarsindri 305817, Ajmer, India.
| | - Pawan K Dadheech
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri 305817, Ajmer, India.
| |
Collapse
|
32
|
Metformin exhibited anticancer activity by lowering cellular cholesterol content in breast cancer cells. PLoS One 2019; 14:e0209435. [PMID: 30625181 PMCID: PMC6326520 DOI: 10.1371/journal.pone.0209435] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
Metformin, a widely prescribed anti-diabetic drug, shows anticancer activity in various cancer types. Few studies documented that there was a decreased level of LDL and total cholesterol in blood serum of metformin users. Based on these views, this study aimed to determine if metformin exhibits anticancer activity by alleviating cholesterol level in cancer cells. The present study found that treatment of breast cancer MDA-MB-231 cells with metformin significantly decreased cholesterol content with concomitant inhibition of various cholesterol regulatory genes (e.g., HMGCoR, LDLR and SREBP1). Metformin decreased cell viability, migration and stemness in metastatic MDA-MB-231 cells. Similarly, metformin treatment suppressed expressions of anti-apoptotic genes BCL2 and Bcl-xL, and mesenchymal genes vimentin, N-cadherin, Zeb1 and Zeb2 with simultaneous enhancement of apoptotic caspase 3 and Bax, and epithelial genes E-cadherin and keratin 19 expressions, confirming an inhibitory effect of metformin in tumorigenesis. Similar to metformin, depletion of cholesterol by methyl beta cyclodextrin (MBCD) diminished cell viability, migration, EMT and stemness in breast cancer cells. Moreover, metformin-inhibited cell viability, migration, colony and sphere formations were reversed back by cholesterol treatment. Similarly, cholesterol treatment inverted metformin-reduced several gene expressions (e.g., Bcl-xL, BCL2, Zeb1, vimentin, and BMI-1). Additionally, zymography data demonstrated that cholesterol upregulated metformin-suppressed MMP activity. These findings suggested that metformin revealed anticancer activity by lowering of cholesterol content in breast cancer cells. Thus, this study, for the first time, unravelled this additional mechanism of metformin-mediated anticancer activity.
Collapse
|
33
|
Posritong S, Hong JM, Eleniste PP, McIntyre PW, Wu JL, Himes ER, Patel V, Kacena MA, Bruzzaniti A. Pyk2 deficiency potentiates osteoblast differentiation and mineralizing activity in response to estrogen or raloxifene. Mol Cell Endocrinol 2018; 474:35-47. [PMID: 29428397 PMCID: PMC6057828 DOI: 10.1016/j.mce.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 02/07/2023]
Abstract
Bone remodeling is controlled by the actions of bone-degrading osteoclasts and bone-forming osteoblasts (OBs). Aging and loss of estrogen after menopause affects bone mass and quality. Estrogen therapy, including selective estrogen receptor modulators (SERMs), can prevent bone loss and increase bone mineral density in post-menopausal women. Although investigations of the effects of estrogen on osteoclast activity are well advanced, the mechanism of action of estrogen on OBs is still unclear. The proline-rich tyrosine kinase 2 (Pyk2) is important for bone formation and female mice lacking Pyk2 (Pyk2-KO) exhibit elevated bone mass, increased bone formation rate and reduced osteoclast activity. Therefore, in the current study, we examined the role of estrogen signaling on the mechanism of action of Pyk2 in OBs. As expected, Pyk2-KO OBs showed significantly higher proliferation, matrix formation, and mineralization than WT OBs. In addition we found that Pyk2-KO OBs cultured in the presence of either 17β-estradiol (E2) or raloxifene, a SERM used for the treatment of post-menopausal osteoporosis, showed a further robust increase in alkaline phosphatase (ALP) activity and mineralization. We examined the possible mechanism of action and found that Pyk2 deletion promotes the proteasome-mediated degradation of estrogen receptor α (ERα), but not estrogen receptor β (ERβ). As a consequence, E2 signaling via ERβ was enhanced in Pyk2-KO OBs. In addition, we found that Pyk2 deletion and E2 stimulation had an additive effect on ERK phosphorylation, which is known to stimulate cell differentiation and survival. Our findings suggest that in the absence of Pyk2, estrogen exerts an osteogenic effect on OBs through altered ERα and ERβ signaling. Thus, targeting Pyk2, in combination with estrogen or raloxifene, may be a novel strategy for the prevention and/or treatment of bone loss diseases.
Collapse
Affiliation(s)
- Sumana Posritong
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Jung Min Hong
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Pierre P Eleniste
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Patrick W McIntyre
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Jennifer L Wu
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Evan R Himes
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Vruti Patel
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Angela Bruzzaniti
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| |
Collapse
|
34
|
Park KL, Oh DG, Kim YO, Song KS, Ahn DW. Rosiglitazone suppresses RANKL-induced NFATc1 autoamplification by disrupting the physical interaction between NFATc1 and PPARγ. FEBS Open Bio 2018; 8:1584-1593. [PMID: 30338210 PMCID: PMC6168694 DOI: 10.1002/2211-5463.12513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/20/2018] [Accepted: 03/15/2018] [Indexed: 11/09/2022] Open
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL) is required for initiation of osteoclastogenesis, with the signaling pathway including the NF-kB, c-Fos, and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) transcription factors. Because NFATc1 expression is autoamplified, we investigated the molecular mechanism by which peroxisome proliferator-activated receptor gamma (PPARγ) activation by the thiazolidinedione drug rosiglitazone decreases NFATc1 expression during RANKL stimulation. Western blotting demonstrated that rosiglitazone attenuated the increase in NFATc1 protein level induced by RANKL without affecting that of PPARγ. Immunofluorescence data indicated that rosiglitazone tended to suppress RANKL-induced NFATc1 nuclear translocation, partly by reducing calcineurin activity, as reflected by the observed decrease in nuclear NFATc1 abundance. On coimmunoprecipitation, the intensity of the physical interaction between NFATc1 and PPARγ was unexpectedly higher in the RANKL-stimulated group than in the control, but rosiglitazone reduced this to basal levels. Furthermore, RANKL failed to elevate mRNA expression of NFATc1 after PPARγ knockdown. ChIP assay indicated that rosiglitazone significantly reduced the binding of NFATc1 to its own promoter despite RANKL stimulation. These findings suggest that PPARγ activation by rosiglitazone blocks NFATc1 from binding to its own promoter, thereby reducing RANKL-induced NFATc1 autoamplification.
Collapse
Affiliation(s)
- Kyeong-Lok Park
- Department of Dentistry Kosin University Gospel Hospital Seo-gu Korea
| | - Da-Gyo Oh
- Department of Physiology Kosin University College of Medicine Seo-gu Korea
| | - Young-Ok Kim
- Department of Pathology Kosin University College of Medicine Seo-gu Korea
| | - Kyeong-Seob Song
- Department of Physiology Kosin University College of Medicine Seo-gu Korea
| | - Do-Whan Ahn
- Department of Physiology Kosin University College of Medicine Seo-gu Korea
| |
Collapse
|
35
|
Kim RY, Seong Y, Cho TH, Lee B, Kim IS, Hwang SJ. Local administration of nuclear factor of activated T cells (NFAT) c1 inhibitor to suppress early resorption and inflammation induced by bone morphogenetic protein-2. J Biomed Mater Res A 2018; 106:1299-1310. [PMID: 29316218 DOI: 10.1002/jbm.a.36332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/15/2017] [Accepted: 01/05/2018] [Indexed: 11/05/2022]
Abstract
Nuclear factor of activated T cells (NFAT)-c1 is known as a key regulator in osteoclast differentiation and immune response. This study is a follow-up to our previous study showing the antiresorptive activity of VIVIT, a peptide type NFATc1 inhibitor, using absorbable collagen sponge (ACS). This study aimed to investigate the effective concentration range of local VIVIT that suppresses early excessive osteoclast activation and inflammation induced by high-dose recombinant human bone morphogenetic protein (rhBMP)-2 and concomitantly enhances bone healing in a rat critical-sized calvaria defect model. High-dose rhBMP-2 (40 μg/defect) alone significantly increased in vivo osteoclast activation and expression of the inflammatory cytokines interleukin-1β and transforming necrosis factor-α on the scaffold at 7 days after surgery. However, rhBMP-2 had no direct effect on osteoclast activation in vitro. Osteoclast activation by rhBMP-2 was significantly suppressed by combined treatment with VIVIT at concentrations of 75 and 150 μM, but not at 15 μM, whereas suppression of inflammation occurred at all doses of VIVIT. Microcomputed tomography at 4 and 8 weeks after implantation revealed that the combination of rhBMP-2 and VIVIT at 75 μM VIVIT led to a greater bone fraction at the initial defect area, compared with rhBMP-2 alone. These findings revealed that local administration of VIVIT at certain concentrations has multiple positive effects that weaken early excessive osteoimmunological responses and enhance bone healing after rhBMP-2 administration. VIVIT has the potential to expand the therapeutic area of high-dose rhBMP-2 therapy to inflammatory bone loss. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1299-1310, 2018.
Collapse
Affiliation(s)
- Ri Youn Kim
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea
| | - Yeju Seong
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea
| | - Tae Hyung Cho
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea
| | - Beomseok Lee
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea
| | - In Sook Kim
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea
| | - Soon Jung Hwang
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea.,Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea
| |
Collapse
|
36
|
de Oliveira GJPL, Aroni MAT, Medeiros MC, Marcantonio E, Marcantonio RAC. Effect of low-level laser therapy on the healing of sites grafted with coagulum, deproteinized bovine bone, and biphasic ceramic made of hydroxyapatite and β-tricalcium phosphate. In vivo study in rats. Lasers Surg Med 2018; 50:651-660. [PMID: 29331041 DOI: 10.1002/lsm.22787] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of low-level laser therapy (LLLT) on the healing of biomaterial graft areas (i.e., coagulum, deproteinized bovine bone, and biphasic ceramics comprising hydroxyapatite and β-tricalcium phosphate). MATERIAL AND METHODS Ninety rats were divided into two groups according to laser irradiation use (λ 808 nm, 100 mW, φ ∼600 μm, seven sessions with 28 J of irradiation dose in total): a laser group and a control group. Each of these groups was divided into three subgroups of 15 animals each according to the type of biomaterial used: Coagulum (COA), deproteinized bovine bone (DBB), and hydroxyapatite/β-tricalcium phosphate (HA/βTCP). Biomaterials were inserted into Teflon domes, and these domes were grafted to the lateral aspect of the mandibular branch of the rats. The animals were sacrificed after 30, 60, and 90 days. Scarring patterns were evaluated by microtomography and histometry. The expression levels of BMP2, osteocalcin (OCN), and alkaline phosphatase (ALP) were evaluated by immunohistochemistry. The mRNA expression levels of ALP, BMP2, Jagged1, Osterix, Runx2, and TGFβ1 were determined by RT-qPCR. RESULTS The animals treated with LLLT exhibited increased mineralized tissues and bone, particularly after 90 days. These increases were associated with increased BMP2, OCN, and ALP protein expression and ALP, BMP2, and Jagged1 mRNA expression. CONCLUSION LLLT improved the osteoconductive potential of DBB and HA/βTCP grafts and bone formation in ungrafted areas. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guilherme J P L de Oliveira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, State University of Sao Paulo (Universidade Estadual Paulista-UNESP), Humaitá st.1680, Araraquara, São Paulo, 14801-930, Brazil
| | - Maurício A T Aroni
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, State University of Sao Paulo (Universidade Estadual Paulista-UNESP), Humaitá st.1680, Araraquara, São Paulo, 14801-930, Brazil
| | - Marcell C Medeiros
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, State University of Sao Paulo (Universidade Estadual Paulista-UNESP), Humaitá st.1680, Araraquara, São Paulo, 14801-930, Brazil
| | - Elcio Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, State University of Sao Paulo (Universidade Estadual Paulista-UNESP), Humaitá st.1680, Araraquara, São Paulo, 14801-930, Brazil
| | - Rosemary A C Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, State University of Sao Paulo (Universidade Estadual Paulista-UNESP), Humaitá st.1680, Araraquara, São Paulo, 14801-930, Brazil
| |
Collapse
|
37
|
Chowdhury K, Sharma A, Kumar S, Gunjan GK, Nag A, Mandal CC. Colocynth Extracts Prevent Epithelial to Mesenchymal Transition and Stemness of Breast Cancer Cells. Front Pharmacol 2017; 8:593. [PMID: 28928657 PMCID: PMC5591978 DOI: 10.3389/fphar.2017.00593] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022] Open
Abstract
Modern treatment strategies provide better overall survival in cancer patients, primarily by controlling tumor growth. However, off-target and systemic toxicity, tumor recurrence, and resistance to therapy are still inadvertent hurdles in current treatment regimens. Similarly, metastasis is another deadly threat to patients suffering from cancer. This has created an urgent demand to come up with new drugs having anti-metastatic potential and minimum side effects. Thus, this study was aimed at exploring the anti-proliferative and anti-metastatic potential of colocynth medicinal plant. Results from MTT assay, morphological visualization of cells and scratch assay indicated a role of ethanol and acetone extracts of fruit pulp of the colocynth plant in inhibiting cell viability, enhancing cell cytotoxicity and preventing cell migration in various cancer cell types, including breast cancer cell lines MCF-7 and MDA-MB-231, and cervical cancer cell line SiHa, subsequently having a low cytotoxic effect on mononuclear PBMC and macrophage J774A cells. Our study in metastatic MDA-MB-231 cells showed that both ethanol and acetone pulp extracts decreased transcript levels of the anti-apoptotic genes BCL2 and BCLXL, and a reverse effect was observed for the pro-apoptotic genes BAX and caspase 3. Additionally, enhanced caspase 3 activity and downregulated BCL2 protein were seen, indicating a role of these extracts in inducing apoptotic activity. Moreover, MDA-MB-231 cells treated with both these extracts demonstrated up-regulation of the epithelial gene keratin 19 and down-regulation of the mesenchymal genes, vimentin, N-cadherin, Zeb1 and Zeb2 compared to control, suggesting a suppressive impact of these extracts in epithelial to mesenchymal transition (EMT). In addition, these extracts inhibited colony and sphere formation with simultaneous reduction in the transcript level of the stemness associated genes, BMI-1 and CD44. It was also found that both the plant extracts exhibited synergistic potential with the chemotherapeutic drug doxorubicin to inhibit cancer viability. Furthermore, GC-MS/MS analysis revealed the presence of certain novel compounds in both the extracts that are responsible for the anti-cancer role of the extracts. Overall, the results of this report suggest, for the first time, that colocynth fruit pulp extracts may block the proliferative as well as metastatic activity of breast cancer cells.
Collapse
Affiliation(s)
- Kaushik Chowdhury
- Department of Biochemistry, School of Life Sciences, Central University of RajasthanAjmer, India
| | - Ankit Sharma
- Department of Biochemistry, School of Life Sciences, Central University of RajasthanAjmer, India
| | - Suresh Kumar
- Department of Biochemistry, School of Life Sciences, Central University of RajasthanAjmer, India
| | - Gyanesh K Gunjan
- Department of Biochemistry, School of Life Sciences, Central University of RajasthanAjmer, India
| | - Alo Nag
- Department of Biochemistry, University of DelhiNew Delhi, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of RajasthanAjmer, India
| |
Collapse
|
38
|
Abstract
Osteoclasts begin as mononuclear cells that fuse to form multinuclear cells able to resorb bone. The mechanisms that regulate all the steps of osteoclast differentiation are not entirely known. MYO10, an unconventional myosin, has previously been shown in mature osteoclasts to play a role in attachment and podosome positioning. We determined that MYO10 is also expressed early during osteoclast differentiation. Loss of MYO10 expression in osteoclast precursors inhibits the ability of mononuclear osteoclasts to fuse into multinuclear osteoclasts. Expression of Nfatc1, Dc-stamp, Ctsk, and β3integrin is reduced in the osteoclasts with reduced MYO10 expression. A slight reduction in the osteoclasts ability to migrate, as well as a reduction in SMAD 1/5/8 phosphorylation are also noted with reduced MYO10 expression. Interestingly we also detected a change in the ability of the osteoclast precursors to form tunneling nanotubes (TNTs), which suggests that MYO10 may regulate the presence of TNTs through its interaction with the cytoskeletal proteins.
Collapse
|
39
|
Aquino-Martínez R, Artigas N, Gámez B, Rosa JL, Ventura F. Extracellular calcium promotes bone formation from bone marrow mesenchymal stem cells by amplifying the effects of BMP-2 on SMAD signalling. PLoS One 2017; 12:e0178158. [PMID: 28542453 PMCID: PMC5444778 DOI: 10.1371/journal.pone.0178158] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/09/2017] [Indexed: 11/23/2022] Open
Abstract
Understanding the molecular events that regulate osteoblast differentiation is essential for the development of effective approaches to bone regeneration. In this study, we analysed the osteoinductive properties of extracellular calcium in bone marrow-derived mesenchymal stem cell (BM-MSC) differentiation. We cultured BM-MSCs in 3D gelatin scaffolds with Ca2+ and BMP-2 as osteoinductive agents. Early and late osteogenic gene expression and bone regeneration in a calvarial critical-size defect model demonstrate that extracellular Ca2+ enhances the effects of BMP-2 on Osteocalcin, Runx2 and Osterix expression and promotes bone regeneration in vivo. Moreover, we analysed the molecular mechanisms involved and observed an antagonistic effect between Ca2+ and BMP-2 on SMAD1/5, ERK and S6K signalling after 24 hours. More importantly, a cooperative effect between Ca2+ and BMP-2 on the phosphorylation of SMAD1/5, S6, GSK3 and total levels of β-CATENIN was observed at a later differentiation time (10 days). Furthermore, Ca2+ alone favoured the phosphorylation of SMAD1, which correlates with the induction of Bmp2 and Bmp4 gene expression. These data suggest that Ca2+ and BMP-2 cooperate and promote an autocrine/paracrine osteogenic feed-forward loop. On the whole, these results demonstrate the usefulness of calcium-based bone grafts or the addition of exogenous Ca2+ in bone tissue engineering.
Collapse
Affiliation(s)
- Rubén Aquino-Martínez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Natalia Artigas
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - José Luis Rosa
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L’Hospitalet de Llobregat, Spain
- * E-mail:
| |
Collapse
|
40
|
Chowdhury K, Sharma A, Sharma T, Kumar S, Mandal CC. Simvastatin and MBCD Inhibit Breast Cancer-Induced Osteoclast Activity by Targeting Osteoclastogenic Factors. Cancer Invest 2017; 35:403-413. [PMID: 28463564 DOI: 10.1080/07357907.2017.1309548] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous reports have documented that cholesterol-lowering simvastatin prevented osteolytic metastasis of breast cancer in animal model in which cancer cells were placed into blood circulation. Thus, simvastatin treatment might have a preventive effect in inhibiting osteoclast activity of metastatic bone microenvironment. This study documented that both simvastatin and MBCD (cholesterol depleting drug) blocked the breast cancer-induced TRAP and MMP activity, and expressions of various osteoclastogenic genes (TRAP, Cathepsin K, and NFATc1) in pre-osteoclast RAW264.7 cells, and osteoclastogenic CSF-1 and RANKL expressions in breast cancer MCF-7 cells. Thus, these findings unravel a molecular mechanism of simvastatin-/MBCD-mediated inhibition of breast cancer-driven osteoclast activity.
Collapse
Affiliation(s)
- Kaushik Chowdhury
- a Department of Biochemistry, School of Life Sciences , Central University of Rajasthan , Ajmer , India
| | - Ankit Sharma
- a Department of Biochemistry, School of Life Sciences , Central University of Rajasthan , Ajmer , India
| | - Tanu Sharma
- a Department of Biochemistry, School of Life Sciences , Central University of Rajasthan , Ajmer , India
| | - Suresh Kumar
- a Department of Biochemistry, School of Life Sciences , Central University of Rajasthan , Ajmer , India
| | - Chandi C Mandal
- a Department of Biochemistry, School of Life Sciences , Central University of Rajasthan , Ajmer , India
| |
Collapse
|
41
|
Fierro FA, Nolta JA, Adamopoulos IE. Concise Review: Stem Cells in Osteoimmunology. Stem Cells 2017; 35:1461-1467. [PMID: 28390147 DOI: 10.1002/stem.2625] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/06/2017] [Accepted: 03/16/2017] [Indexed: 12/11/2022]
Abstract
Bone remodeling is a lifelong process in which mature bone tissue is removed from the skeleton by bone resorption and is replenished by new during ossification or bone formation. The remodeling cycle requires both the differentiation and activation of two cell types with opposing functions; the osteoclast, which orchestrates bone resorption, and the osteoblast, which orchestrates bone formation. The differentiation of these cells from their respective precursors is a process which has been overshadowed by enigma, particularly because the precise osteoclast precursor has not been identified and because the identification of skeletal stem cells, which give rise to osteoblasts, is very recent. Latest advances in the area of stem cell biology have enabled us to gain a better understanding of how these differentiation processes occur in physiological and pathological conditions. In this review we postulate that modulation of stem cells during inflammatory conditions is a necessary prerequisite of bone remodeling and therefore an essential new component to the field of osteoimmunology. In this context, we highlight the role of transcription factor nuclear factor of activated T cells cytoplasmic 1 (NFATc1), because it directly links inflammation with differentiation of osteoclasts and osteoblasts. Stem Cells 2017;35:1461-1467.
Collapse
Affiliation(s)
- Fernando A Fierro
- Stem Cell Program, University of California at Davis, Sacramento, California, USA.,Department of Cell Biology and Human Anatomy, University of California at Davis, Sacramento, California, USA
| | - Jan A Nolta
- Stem Cell Program, University of California at Davis, Sacramento, California, USA.,Department of Cell Biology and Human Anatomy, University of California at Davis, Sacramento, California, USA.,Department of Internal Medicine, University of California at Davis, Sacramento, California, USA
| | - Iannis E Adamopoulos
- Institute for Pediatric Regenerative Medicine, University of California at Davis, Sacramento, California, USA.,Department of Rheumatology, University of California at Davis, Sacramento, California, USA
| |
Collapse
|
42
|
Bozec A, Soulat D. Latest perspectives on macrophages in bone homeostasis. Pflugers Arch 2017; 469:517-525. [PMID: 28247013 DOI: 10.1007/s00424-017-1952-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/17/2022]
Abstract
Knowledge about macrophages residing in the bone, also known as osteal macrophages or osteomacs, is still limited. A hallmark of this peculiar myeloid population is the expression of macrophage markers distinct from the markers found on osteoclast surface. In bone, osteomacs are in contact with osteoblasts, where they are involved in regulating bone homeostasis. However, additional macrophage subtypes already present in the bone marrow or recruited from the blood circulation could have further functions, which could be all important for the maintenance of the bone architecture and its associated functions. Indeed, bone marrow macrophages have been found to eliminate apoptotic cells, particularly apoptotic osteoblasts through a process named efferocytosis. This phagocytic process plays an essential role in bone tissue homeostasis and new bone formation. In addition, bone marrow macrophages can influence the hematopoietic stem cell (HSC) niches. They contribute to the regulation of the HSC progenitor cell maintenance, mobilization, and function. To do so, macrophages secrete cytokines in steady state or during stress conditions. These cytokines influence hematopoiesis either by a direct effect on HSCs or through the control of stromal cells that are essential for the HSC niches. Interestingly, the similarities between the niches for HSCs and the niche for metastatic tumor cells support the possibility that bone-resident macrophages could control the homing of tumor cells and their proliferation within the bone. In general, macrophage role during metastatic processes is well described; however, their direct involvement in bone metastasis is a rising research area. In this review, we will highlight the macrophage functions in the skeleton, in the maintenance of the HCS niches, and their importance in bone metastasis.
Collapse
Affiliation(s)
- Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany.
| | - Didier Soulat
- Department of Microbiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| |
Collapse
|
43
|
Minami A, Ogino M, Nakano N, Ichimura M, Nakanishi A, Murai T, Kitagishi Y, Matsuda S. Roles of oncogenes and tumor-suppressor genes in osteoclastogenesis (Review). Int J Mol Med 2017; 39:261-267. [DOI: 10.3892/ijmm.2017.2847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/28/2016] [Indexed: 11/06/2022] Open
|