1
|
Szaleniec M, Oleksy G, Sekuła A, Aleksić I, Pietras R, Sarewicz M, Krämer K, Pierik AJ, Heider J. Modeling the Initiation Phase of the Catalytic Cycle in the Glycyl-Radical Enzyme Benzylsuccinate Synthase. J Phys Chem B 2024; 128:5823-5839. [PMID: 38848492 PMCID: PMC11194802 DOI: 10.1021/acs.jpcb.4c01237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024]
Abstract
The reaction of benzylsuccinate synthase, the radical-based addition of toluene to a fumarate cosubstrate, is initiated by hydrogen transfer from a conserved cysteine to the nearby glycyl radical in the active center of the enzyme. In this study, we analyze this step by comprehensive computer modeling, predicting (i) the influence of bound substrates or products, (ii) the energy profiles of forward- and backward hydrogen-transfer reactions, (iii) their kinetic constants and potential mechanisms, (iv) enantiospecificity differences, and (v) kinetic isotope effects. Moreover, we support several of the computational predictions experimentally, providing evidence for the predicted H/D-exchange reactions into the product and at the glycyl radical site. Our data indicate that the hydrogen transfer reactions between the active site glycyl and cysteine are principally reversible, but their rates differ strongly depending on their stereochemical orientation, transfer of protium or deuterium, and the presence or absence of substrates or products in the active site. This is particularly evident for the isotope exchange of the remaining protium atom of the glycyl radical to deuterium, which appears dependent on substrate or product binding, explaining why the exchange is observed in some, but not all, glycyl-radical enzymes.
Collapse
Affiliation(s)
- Maciej Szaleniec
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy
of Sciences, Kraków 31-201, Poland
| | - Gabriela Oleksy
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy
of Sciences, Kraków 31-201, Poland
- Department
of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, Marburg 35043, Germany
| | - Anna Sekuła
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy
of Sciences, Kraków 31-201, Poland
| | - Ivana Aleksić
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy
of Sciences, Kraków 31-201, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 31-007, Poland
| | - Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 31-007, Poland
| | - Kai Krämer
- Department
of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, Marburg 35043, Germany
| | - Antonio J. Pierik
- Biochemistry,
Faculty of ChemistryRPTU Kaiserslautern-Landau, Kaiserslautern D-67663, Germany
| | - Johann Heider
- Department
of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, Marburg 35043, Germany
- Synmikro-Center
for Synthetic Microbiology, Philipps University
Marburg, Marburg 35043, Germany
| |
Collapse
|
2
|
Mock J, Schühle K, Linne U, Mock M, Heider J. A Synthetic Pathway for the Production of Benzylsuccinate in Escherichia coli. Molecules 2024; 29:415. [PMID: 38257328 PMCID: PMC10818641 DOI: 10.3390/molecules29020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
(R)-Benzylsuccinate is generated in anaerobic toluene degradation by the radical addition of toluene to fumarate and further degraded to benzoyl-CoA by a β-oxidation pathway. Using metabolic modules for benzoate transport and activation to benzoyl-CoA and the enzymes of benzylsuccinate β-oxidation, we established an artificial pathway for benzylsuccinate production in Escherichia coli, which is based on its degradation pathway running in reverse. Benzoate is supplied to the medium but needs to be converted to benzoyl-CoA by an uptake transporter and a benzoate-CoA ligase or CoA-transferase. In contrast, the second substrate succinate is endogenously produced from glucose under anaerobic conditions, and the constructed pathway includes a succinyl-CoA:benzylsuccinate CoA-transferase that activates it to the CoA-thioester. We present first evidence for the feasibility of this pathway and explore product yields under different growth conditions. Compared to aerobic cultures, the product yield increased more than 1000-fold in anaerobic glucose-fermenting cultures and showed further improvement under fumarate-respiring conditions. An important bottleneck to overcome appears to be product excretion, based on much higher recorded intracellular concentrations of benzylsuccinate, compared to those excreted. While no export system is known for benzylsuccinate, we observed an increased product yield after adding an unspecific mechanosensitive channel to the constructed pathway.
Collapse
Affiliation(s)
- Johanna Mock
- Fachbereich Biologe, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
- Synmikro Center Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Karola Schühle
- Fachbereich Biologe, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Uwe Linne
- Synmikro Center Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
- Fachbereich Chemie, Philipps-University Marburg, Hans-Meerwein-Str. 10, 35043 Marburg, Germany
| | - Marco Mock
- Fachbereich Biologe, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Johann Heider
- Fachbereich Biologe, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
- Synmikro Center Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| |
Collapse
|
3
|
Wu M, Li J, Lai CY, Leu AO, Sun S, Gu R, Erler DV, Liu L, Li L, Tyson GW, Yuan Z, McIlroy SJ, Guo J. Nitrate-driven anaerobic oxidation of ethane and butane by bacteria. THE ISME JOURNAL 2024; 18:wrad011. [PMID: 38365228 PMCID: PMC10811727 DOI: 10.1093/ismejo/wrad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 02/18/2024]
Abstract
The short-chain gaseous alkanes (ethane, propane, and butane; SCGAs) are important components of natural gas, yet their fate in environmental systems is poorly understood. Microbially mediated anaerobic oxidation of SCGAs coupled to nitrate reduction has been demonstrated for propane, but is yet to be shown for ethane or butane-despite being energetically feasible. Here we report two independent bacterial enrichments performing anaerobic ethane and butane oxidation, respectively, coupled to nitrate reduction to dinitrogen gas and ammonium. Isotopic 13C- and 15N-labelling experiments, mass and electron balance tests, and metabolite and meta-omics analyses collectively reveal that the recently described propane-oxidizing "Candidatus Alkanivorans nitratireducens" was also responsible for nitrate-dependent anaerobic oxidation of the SCGAs in both these enrichments. The complete genome of this species encodes alkylsuccinate synthase genes for the activation of ethane/butane via fumarate addition. Further substrate range tests confirm that "Ca. A. nitratireducens" is metabolically versatile, being able to degrade ethane, propane, and butane under anoxic conditions. Moreover, our study proves nitrate as an additional electron sink for ethane and butane in anaerobic environments, and for the first time demonstrates the use of the fumarate addition pathway in anaerobic ethane oxidation. These findings contribute to our understanding of microbial metabolism of SCGAs in anaerobic environments.
Collapse
Affiliation(s)
- Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jie Li
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Andy O Leu
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology (QUT), Woolloongabba, Queensland, Australia
| | - Shengjie Sun
- Computational Science Program, The University of Texas at El Paso, El Paso, TX, United States
| | - Rui Gu
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Dirk V Erler
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Lian Liu
- Metabolomics Australia (Queensland Node), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lin Li
- Department of Physics, University of Texas at El Paso, El Paso, TX, United States
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology (QUT), Woolloongabba, Queensland, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Simon J McIlroy
- Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology (QUT), Woolloongabba, Queensland, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
4
|
Andorfer MC, King-Roberts DT, Imrich CN, Brotheridge BG, Drennan CL. Development of an in vitro method for activation of X-succinate synthases for fumarate hydroalkylation. iScience 2023; 26:106902. [PMID: 37283811 PMCID: PMC10239695 DOI: 10.1016/j.isci.2023.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023] Open
Abstract
Anaerobic microbial degradation of hydrocarbons is often initiated through addition of the hydrocarbon to fumarate by enzymes known as X-succinate synthases (XSSs). XSSs use a glycyl radical cofactor, which is installed by an activating enzyme (XSS-AE), to catalyze this carbon-carbon coupling reaction. The activation step, although crucial for catalysis, has not previously been possible in vitro because of insolubility of XSS-AEs. Here, we take a genome mining approach to find an XSS-AE, a 4-isopropylbenzylsuccinate synthase (IBSS)-AE (IbsAE) that can be solubly expressed in Escherichia coli. This soluble XSS-AE can activate both IBSS and the well-studied benzylsuccinate synthase (BSS) in vitro, allowing us to explore XSSs biochemically. To start, we examine the role of BSS subunits and find that the beta subunit accelerates the rate of hydrocarbon addition. Looking forward, the methodology and insight gathered here can be used more broadly to understand and engineer XSSs as synthetically useful biocatalysts.
Collapse
Affiliation(s)
- Mary C. Andorfer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Devin T. King-Roberts
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christa N. Imrich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Balyn G. Brotheridge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Catherine L. Drennan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Environmental Health, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| |
Collapse
|
5
|
McDonald AG, Tipton KF. Enzyme Nomenclature and Classification: the State of the Art. FEBS J 2021; 290:2214-2231. [PMID: 34773359 DOI: 10.1111/febs.16274] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
The IUBMB Enzyme classification system, available at the IUBMB ExplorEnz website, uses a four component number (the EC number) that identifies an enzyme in terms of reaction catalysed. There were originally six recognised groups of enzymes: Oxidoreductases (EC 1), Transferases (EC 2), Hydrolases, Lyases (EC 4), Isomerases (EC 5) and Ligases (EC 6). Of these the lyases, which are defined as "enzymes that cleave C-C, C-O, C-N and other bonds by means other than by hydrolysis or oxidation" present particular recognition and classification problems. Recently a new class, the Translocases (EC 7) has been added, which incorporates enzymes that catalyse the movement of ions or molecules across membranes or their separation within membranes. A new subclass of the isomerases has also been included for those enzymes that alter the conformations of proteins and nucleic acids. Newly reported enzymes are being regularly added to the list after validation and where new information affects the classification of an existing entry, a new EC number is created, but the old one is not re-used.
Collapse
Affiliation(s)
- Andrew G McDonald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Keith F Tipton
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
6
|
Ranchou-Peyruse M, Guignard M, Casteran F, Abadie M, Defois C, Peyret P, Dequidt D, Caumette G, Chiquet P, Cézac P, Ranchou-Peyruse A. Microbial Diversity Under the Influence of Natural Gas Storage in a Deep Aquifer. Front Microbiol 2021; 12:688929. [PMID: 34721313 PMCID: PMC8549729 DOI: 10.3389/fmicb.2021.688929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022] Open
Abstract
Deep aquifers (up to 2km deep) contain massive volumes of water harboring large and diverse microbial communities at high pressure. Aquifers are home to microbial ecosystems that participate in physicochemical balances. These microorganisms can positively or negatively interfere with subsurface (i) energy storage (CH4 and H2), (ii) CO2 sequestration; and (iii) resource (water, rare metals) exploitation. The aquifer studied here (720m deep, 37°C, 88bar) is naturally oligotrophic, with a total organic carbon content of <1mg.L-1 and a phosphate content of 0.02mg.L-1. The influence of natural gas storage locally generates different pressures and formation water displacements, but it also releases organic molecules such as monoaromatic hydrocarbons at the gas/water interface. The hydrocarbon biodegradation ability of the indigenous microbial community was evaluated in this work. The in situ microbial community was dominated by sulfate-reducing (e.g., Sva0485 lineage, Thermodesulfovibriona, Desulfotomaculum, Desulfomonile, and Desulfovibrio), fermentative (e.g., Peptococcaceae SCADC1_2_3, Anaerolineae lineage and Pelotomaculum), and homoacetogenic bacteria ("Candidatus Acetothermia") with a few archaeal representatives (e.g., Methanomassiliicoccaceae, Methanobacteriaceae, and members of the Bathyarcheia class), suggesting a role of H2 in microenvironment functioning. Monoaromatic hydrocarbon biodegradation is carried out by sulfate reducers and favored by concentrated biomass and slightly acidic conditions, which suggests that biodegradation should preferably occur in biofilms present on the surfaces of aquifer rock, rather than by planktonic bacteria. A simplified bacterial community, which was able to degrade monoaromatic hydrocarbons at atmospheric pressure over several months, was selected for incubation experiments at in situ pressure (i.e., 90bar). These showed that the abundance of various bacterial genera was altered, while taxonomic diversity was mostly unchanged. The candidate phylum Acetothermia was characteristic of the community incubated at 90bar. This work suggests that even if pressures on the order of 90bar do not seem to select for obligate piezophilic organisms, modifications of the thermodynamic equilibria could favor different microbial assemblages from those observed at atmospheric pressure.
Collapse
Affiliation(s)
- Magali Ranchou-Peyruse
- IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
- Laboratoire de thermique, énergétique et procédés IPRA, EA1932, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
| | - Marion Guignard
- IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
| | - Franck Casteran
- Laboratoire de thermique, énergétique et procédés IPRA, EA1932, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
| | - Maïder Abadie
- IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
| | - Clémence Defois
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - Pierre Peyret
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - David Dequidt
- STORENGY – Geosciences Department, Bois-Colombes, France
| | - Guilhem Caumette
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
- Teréga, Pau, France
| | - Pierre Chiquet
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
- Teréga, Pau, France
| | - Pierre Cézac
- Laboratoire de thermique, énergétique et procédés IPRA, EA1932, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
| | - Anthony Ranchou-Peyruse
- IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, Université de Pau & Pays Adour/E2S-UPPA, Pau, France
- Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
| |
Collapse
|
7
|
McLean JT, Benny A, Nolan MD, Swinand G, Scanlan EM. Cysteinyl radicals in chemical synthesis and in nature. Chem Soc Rev 2021; 50:10857-10894. [PMID: 34397045 DOI: 10.1039/d1cs00254f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nature harnesses the unique properties of cysteinyl radical intermediates for a diverse range of essential biological transformations including DNA biosynthesis and repair, metabolism, and biological photochemistry. In parallel, the synthetic accessibility and redox chemistry of cysteinyl radicals renders them versatile reactive intermediates for use in a vast array of synthetic applications such as lipidation, glycosylation and fluorescent labelling of proteins, peptide macrocyclization and stapling, desulfurisation of peptides and proteins, and development of novel therapeutics. This review provides the reader with an overview of the role of cysteinyl radical intermediates in both chemical synthesis and biological systems, with a critical focus on mechanistic details. Direct insights from biological systems, where applied to chemical synthesis, are highlighted and potential avenues from nature which are yet to be explored synthetically are presented.
Collapse
Affiliation(s)
- Joshua T McLean
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Alby Benny
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Mark D Nolan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Glenna Swinand
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| |
Collapse
|
8
|
von Horsten S, Lippert ML, Geisselbrecht Y, Schühle K, Schall I, Essen LO, Heider J. Inactive pseudoenzyme subunits in heterotetrameric BbsCD, a novel short-chain alcohol dehydrogenase involved in anaerobic toluene degradation. FEBS J 2021; 289:1023-1042. [PMID: 34601806 DOI: 10.1111/febs.16216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Anaerobic toluene degradation proceeds by fumarate addition to produce (R)-benzylsuccinate as first intermediate, which is further degraded via β-oxidation by five enzymes encoded in the conserved bbs operon. This study characterizes two enzymes of this pathway, (E)-benzylidenesuccinyl-CoA hydratase (BbsH), and (S,R)-2-(α-hydroxybenzyl)succinyl-CoA dehydrogenase (BbsCD) from Thauera aromatica. BbsH, a member of the enoyl-CoA hydratase family, converts (E)-benzylidenesuccinyl-CoA to 2-(α-hydroxybenzyl)succinyl-CoA and was subsequently used in a coupled enzyme assay with BbsCD, which belongs to the short-chain dehydrogenases/reductase (SDR) family. The BbsCD crystal structure shows a C2-symmetric heterotetramer consisting of BbsC2 and BbsD2 dimers. BbsD subunits are catalytically active and capable of binding NAD+ and substrate, whereas BbsC subunits represent built-in pseudoenzyme moieties lacking all motifs of the SDR family required for substrate binding or catalysis. Molecular modeling studies predict that the active site of BbsD is specific for conversion of the (S,R)-diastereomer of 2-(α-hydroxybenzyl)succinyl-CoA to (S)-2-benzoylsuccinyl-CoA by hydride transfer to the re-face of nicotinamide adenine dinucleotide (NAD)+ . Furthermore, BbsC subunits are not engaged in substrate binding and merely serve as scaffold for the BbsD dimer. BbsCD represents a novel clade of related enzymes within the SDR family, which adopt a heterotetrameric architecture and catalyze the β-oxidation of aromatic succinate adducts.
Collapse
Affiliation(s)
| | | | | | - Karola Schühle
- Department of Biology, Philipps-Universität, Marburg, Germany
| | - Iris Schall
- Department of Biology, Philipps-Universität, Marburg, Germany
| | | | - Johann Heider
- Department of Biology, Philipps-Universität, Marburg, Germany
| |
Collapse
|
9
|
Wang B, Kuang S, Shao H, Wang L, Wang H. Anaerobic-petroleum degrading bacteria: Diversity and biotechnological applications for improving coastal soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112646. [PMID: 34399124 DOI: 10.1016/j.ecoenv.2021.112646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Due to the industrial emissions and accidental spills, the critical material for modern industrial society petroleum pollution causes severe ecological damage. The prosperous oil exploitation and transportation causes the recalcitrant, hazardous, and carcinogenic sludge widespread in the coastal wetlands. The costly physicochemical-based remediation remains the secondary and inadequate treatment for the derivatives along with the tailings. Anaerobic microbial petroleum degrading biotechnology has received extensive attention for its cost acceptable, eco-friendly, and fewer health hazards. As a result of the advances in biotechnology and microbiology, the anaerobic oil-degrading bacteria have been well developing to achieve the same remediation effects with lower operating costs. This review summarizes the advantages and potential scenarios of the anaerobic degrading bacteria, such as sulfate-reducing bacteria, denitrifying bacteria, and metal-reducing bacteria in the coastal area decomposing the alkanes, alkenes, aromatic hydrocarbons, polycyclic aromatic, and related derivatives. In the future, a complete theoretical basis of microbiological biotechnology, molecular biology, and electrochemistry is necessary to make efficient and environmental-friendly use of anaerobic degradation bacteria to mineralize oil sludge organic wastes.
Collapse
Affiliation(s)
- Bingchen Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Hongbo Shao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Institute of Agriculture Resources and Environment, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing 210014, PR China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224002, China.
| | - Lei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Huihui Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
10
|
Zhang C, Meckenstock RU, Weng S, Wei G, Hubert CRJ, Wang JH, Dong X. Marine sediments harbor diverse archaea and bacteria with the potential for anaerobic hydrocarbon degradation via fumarate addition. FEMS Microbiol Ecol 2021; 97:6171024. [PMID: 33720296 DOI: 10.1093/femsec/fiab045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
Marine sediments can contain large amounts of alkanes and methylated aromatic hydrocarbons that are introduced by natural processes or anthropogenic activities. These compounds can be biodegraded by anaerobic microorganisms via enzymatic addition of fumarate. However, the identity and ecological roles of a significant fraction of hydrocarbon degraders containing fumarate-adding enzymes (FAE) in various marine sediments remains unknown. By combining phylogenetic reconstructions, protein homolog modelling, and functional profiling of publicly available metagenomes and genomes, 61 draft bacterial and archaeal genomes encoding anaerobic hydrocarbon degradation via fumarate addition were obtained. Besides Desulfobacterota (previously known as Deltaproteobacteria) that are well-known to catalyze these reactions, Chloroflexi are dominant FAE-encoding bacteria in hydrocarbon-impacted sediments, potentially coupling sulfate reduction or fermentation to anaerobic hydrocarbon degradation. Among Archaea, besides Archaeoglobi previously shown to have this capability, genomes of Heimdallarchaeota, Lokiarchaeota, Thorarchaeota and Thermoplasmata also suggest fermentative hydrocarbon degradation using archaea-type FAE. These bacterial and archaeal hydrocarbon degraders occur in a wide range of marine sediments, including high abundances of FAE-encoding Asgard archaea associated with natural seeps and subseafloor ecosystems. Our results expand the knowledge of diverse archaeal and bacterial lineages engaged in anaerobic degradation of alkanes and methylated aromatic hydrocarbons.
Collapse
Affiliation(s)
- Chuwen Zhang
- School of Marine Sciences, Sun Yat-Sen University, 2 Daxue Road, Xiangzhou District, Zhuhai 519082, China
| | - Rainer U Meckenstock
- Environmental Microbiology and Biotechnology, University Duisburg-Essen, Universitätsstrasse 5, Essen 45141, Germany
| | - Shengze Weng
- School of Marine Sciences, Sun Yat-Sen University, 2 Daxue Road, Xiangzhou District, Zhuhai 519082, China
| | - Guangshan Wei
- School of Marine Sciences, Sun Yat-Sen University, 2 Daxue Road, Xiangzhou District, Zhuhai 519082, China.,Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Siming District, Xiamen 361005, China
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N1N4, Canada
| | - Jiang-Hai Wang
- School of Marine Sciences, Sun Yat-Sen University, 2 Daxue Road, Xiangzhou District, Zhuhai 519082, China
| | - Xiyang Dong
- School of Marine Sciences, Sun Yat-Sen University, 2 Daxue Road, Xiangzhou District, Zhuhai 519082, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 2 Daxue Road, XiangZhou District, Zhuhai 519000, China
| |
Collapse
|
11
|
Unraveling the Metabolic Potential of Asgardarchaeota in a Sediment from the Mediterranean Hydrocarbon-Contaminated Water Basin Mar Piccolo (Taranto, Italy). Microorganisms 2021; 9:microorganisms9040859. [PMID: 33923677 PMCID: PMC8072921 DOI: 10.3390/microorganisms9040859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/02/2022] Open
Abstract
Increasing number of metagenome sequencing studies have proposed a central metabolic role of still understudied Archaeal members in natural and artificial ecosystems. However, their role in hydrocarbon cycling, particularly in the anaerobic biodegradation of aliphatic and aromatic hydrocarbons, is still mostly unknown in both marine and terrestrial environments. In this work, we focused our study on the metagenomic characterization of the archaeal community inhabiting the Mar Piccolo (Taranto, Italy, central Mediterranean) sediments heavily contaminated by petroleum hydrocarbons and polychlorinated biphenyls (PCB). Among metagenomic bins reconstructed from Mar Piccolo microbial community, we have identified members of the Asgardarchaeota superphylum that has been recently proposed to play a central role in hydrocarbon cycling in natural ecosystems under anoxic conditions. In particular, we found members affiliated with Thorarchaeota, Heimdallarchaeota, and Lokiarchaeota phyla and analyzed their genomic potential involved in central metabolism and hydrocarbon biodegradation. Metabolic prediction based on metagenomic analysis identified the malonyl-CoA and benzoyl-CoA routes as the pathways involved in aliphatic and aromatic biodegradation in these Asgardarchaeota members. This is the first study to give insight into the archaeal community functionality and connection to hydrocarbon degradation in marine sediment historically contaminated by hydrocarbons.
Collapse
|
12
|
Dawson CD, Irwin SM, Backman LRF, Le C, Wang JX, Vennelakanti V, Yang Z, Kulik HJ, Drennan CL, Balskus EP. Molecular basis of C-S bond cleavage in the glycyl radical enzyme isethionate sulfite-lyase. Cell Chem Biol 2021; 28:1333-1346.e7. [PMID: 33773110 PMCID: PMC8473560 DOI: 10.1016/j.chembiol.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 02/04/2021] [Accepted: 03/03/2021] [Indexed: 01/07/2023]
Abstract
Desulfonation of isethionate by the bacterial glycyl radical enzyme (GRE) isethionate sulfite-lyase (IslA) generates sulfite, a substrate for respiration that in turn produces the disease-associated metabolite hydrogen sulfide. Here, we present a 2.7 Å resolution X-ray structure of wild-type IslA from Bilophila wadsworthia with isethionate bound. In comparison with other GREs, alternate positioning of the active site β strands allows for distinct residue positions to contribute to substrate binding. These structural differences, combined with sequence variations, create a highly tailored active site for the binding of the negatively charged isethionate substrate. Through the kinetic analysis of 14 IslA variants and computational analyses, we probe the mechanism by which radical chemistry is used for C-S bond cleavage. This work further elucidates the structural basis of chemistry within the GRE superfamily and will inform structure-based inhibitor design of IsIA and thus of microbial hydrogen sulfide production.
Collapse
Affiliation(s)
- Christopher D Dawson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephania M Irwin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Lindsey R F Backman
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chip Le
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Jennifer X Wang
- Harvard Center for Mass Spectrometry, Faculty of Arts and Sciences Division of Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - Vyshnavi Vennelakanti
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhongyue Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Catherine L Drennan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
Salii I, Szaleniec M, Zein AA, Seyhan D, Sekuła A, Schühle K, Kaplieva-Dudek I, Linne U, Meckenstock RU, Heider J. Determinants for Substrate Recognition in the Glycyl Radical Enzyme Benzylsuccinate Synthase Revealed by Targeted Mutagenesis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Iryna Salii
- Department of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, 35043 Marburg, Germany
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Science, 30-239 Kraków, Poland
| | - Ammar Alhaj Zein
- Department of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, 35043 Marburg, Germany
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Deniz Seyhan
- Department of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, 35043 Marburg, Germany
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | - Anna Sekuła
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Science, 30-239 Kraków, Poland
| | - Karola Schühle
- Department of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, 35043 Marburg, Germany
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| | | | - Uwe Linne
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
- Department of Chemistry, Philipps University Marburg, 35043 Marburg, Germany
| | | | - Johann Heider
- Department of Biology, Laboratory for Microbial Biochemistry, Philipps University Marburg, 35043 Marburg, Germany
- Synmikro-Center for Synthetic Microbiology, Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
14
|
Meyer-Cifuentes I, Gruhl S, Haange SB, Lünsmann V, Jehmlich N, von Bergen M, Heipieper HJ, Müller JA. Benzylsuccinate Synthase is Post-Transcriptionally Regulated in the Toluene-Degrading Denitrifier Magnetospirillum sp. Strain 15-1. Microorganisms 2020; 8:microorganisms8050681. [PMID: 32392861 PMCID: PMC7285207 DOI: 10.3390/microorganisms8050681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 01/15/2023] Open
Abstract
The facultative denitrifying alphaproteobacterium Magnetospirillum sp. strain 15-1 had been isolated from the hypoxic rhizosphere of a constructed wetland model fed with toluene. This bacterium can catabolize toluene anaerobically but not aerobically. Here, we used strain 15-1 to investigate regulation of expression of the highly oxygen-sensitive glycyl radical enzyme benzylsuccinate synthase, which catalyzes the first step in anaerobic toluene degradation. In cells growing aerobically with benzoate, the addition of toluene resulted in a ~20-fold increased transcription of bssA, encoding for the catalytically active subunit of the enzyme. Under anoxic conditions, bssA mRNA copy numbers were up to 129-fold higher in cells growing with toluene as compared to cells growing with benzoate. Proteomics showed that abundance of benzylsuccinate synthase increased in cells growing anaerobically with toluene. In contrast, peptides of this enzyme were never detected in oxic conditions. These findings show that synthesis of benzylsuccinate synthase was under stringent post-transcriptional control in the presence of oxygen, which is a novel level of regulation for glycyl radical enzymes.
Collapse
Affiliation(s)
- Ingrid Meyer-Cifuentes
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; (I.M.-C.); (S.G.); (J.A.M.)
- Junior Research Group of Microbial Biotechnology, Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124 Braunschweig, Germany
| | - Sylvie Gruhl
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; (I.M.-C.); (S.G.); (J.A.M.)
| | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany; (S.-B.H.); (V.L.); (N.J.); (M.v.B.)
| | - Vanessa Lünsmann
- Department of Molecular Systems Biology Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany; (S.-B.H.); (V.L.); (N.J.); (M.v.B.)
| | - Nico Jehmlich
- Department of Molecular Systems Biology Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany; (S.-B.H.); (V.L.); (N.J.); (M.v.B.)
| | - Martin von Bergen
- Department of Molecular Systems Biology Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany; (S.-B.H.); (V.L.); (N.J.); (M.v.B.)
- Group of Functional Proteomics, Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology University of Leipzig, Talstrastr. 33, 04103 Leipzig, Germany
| | - Hermann J. Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; (I.M.-C.); (S.G.); (J.A.M.)
- Correspondence: ; Tel.: +49-341-2351694
| | - Jochen A. Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; (I.M.-C.); (S.G.); (J.A.M.)
| |
Collapse
|
15
|
Fu B, Balskus EP. Discovery of CC bond-forming and bond-breaking radical enzymes: enabling transformations for metabolic engineering. Curr Opin Biotechnol 2020; 65:94-101. [PMID: 32171888 PMCID: PMC7670169 DOI: 10.1016/j.copbio.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 11/23/2022]
Abstract
Radical enzymes catalyze difficult C—C bond-forming and bond-breaking transformations. Radical enzymes catalyzing unprecedented reactions continue to be discovered. The products of radical enzymes are often of high value. Understanding mechanisms of radical enzymes will aid metabolic engineering efforts.
Radical enzymes catalyze some of the most chemically challenging C—C bond-forming and bond-breaking reactions. Advances in DNA sequencing have accelerated the discovery of radical enzymes from microbes, including radical S-adenosylmethionine (rSAM) enzymes, glycyl radical enzymes (GREs), and diiron enzymes. These enzymes catalyze various reactions that yield products of industrial relevance (e.g. aromatics, hydrocarbons, and natural product derivatives), making their incorporation into engineered metabolic pathways enticing. Elucidating the mechanisms of radical enzymes that cleave and construct C—C bonds will enable further enzyme discovery and engineering efforts.
Collapse
Affiliation(s)
- Beverly Fu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA 02138, United States
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA 02138, United States.
| |
Collapse
|
16
|
Rossmassler K, Snow CD, Taggart D, Brown C, De Long SK. Advancing biomarkers for anaerobic o-xylene biodegradation via metagenomic analysis of a methanogenic consortium. Appl Microbiol Biotechnol 2019; 103:4177-4192. [PMID: 30968165 DOI: 10.1007/s00253-019-09762-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 10/27/2022]
Abstract
Quantifying functional biomarker genes and their transcripts provides critical lines of evidence for contaminant biodegradation; however, accurate quantification depends on qPCR primers that contain no, or minimal, mismatches with the target gene. Developing accurate assays has been particularly challenging for genes encoding fumarate-adding enzymes (FAE) due to the high level of genetic diversity in this gene family. In this study, metagenomics applied to a field-derived, o-xylene-degrading methanogenic consortium revealed genes encoding FAE that would not be accurately quantifiable by any previously available PCR assays. Sequencing indicated that a gene similar to the napthylmethylsuccinate synthase gene (nmsA) was most abundant, although benzylsuccinate synthase genes (bssA) also were present along with genes encoding alkylsuccinate synthase (assA). Upregulation of the nmsA-like gene was observed during o-xylene degradation. Protein homology modeling indicated that mutations in the active site, relative to a BssA that acts on toluene, increase binding site volume and accessibility, potentially to accommodate the relatively larger o-xylene. The new nmsA-like gene was also detected at substantial concentrations at field sites with a history of xylene contamination.
Collapse
Affiliation(s)
- Karen Rossmassler
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Christopher D Snow
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | | | - Casey Brown
- Microbial Insights, Inc., Knoxville, TN, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
17
|
Discovery of enzymes for toluene synthesis from anoxic microbial communities. Nat Chem Biol 2018; 14:451-457. [PMID: 29556105 DOI: 10.1038/s41589-018-0017-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/18/2018] [Indexed: 11/08/2022]
Abstract
Microbial toluene biosynthesis was reported in anoxic lake sediments more than three decades ago, but the enzyme catalyzing this biochemically challenging reaction has never been identified. Here we report the toluene-producing enzyme PhdB, a glycyl radical enzyme of bacterial origin that catalyzes phenylacetate decarboxylation, and its cognate activating enzyme PhdA, a radical S-adenosylmethionine enzyme, discovered in two distinct anoxic microbial communities that produce toluene. The unconventional process of enzyme discovery from a complex microbial community (>300,000 genes), rather than from a microbial isolate, involved metagenomics- and metaproteomics-enabled biochemistry, as well as in vitro confirmation of activity with recombinant enzymes. This work expands the known catalytic range of glycyl radical enzymes (only seven reaction types had been characterized previously) and aromatic-hydrocarbon-producing enzymes, and will enable first-time biochemical synthesis of an aromatic fuel hydrocarbon from renewable resources, such as lignocellulosic biomass, rather than from petroleum.
Collapse
|
18
|
Bodea S, Balskus EP. Purification and Characterization of the Choline Trimethylamine-Lyase (CutC)-Activating Protein CutD. Methods Enzymol 2018; 606:73-94. [DOI: 10.1016/bs.mie.2018.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Levin BJ, Huang YY, Peck SC, Wei Y, Martínez-Del Campo A, Marks JA, Franzosa EA, Huttenhower C, Balskus EP. A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-l-proline. Science 2017; 355:355/6325/eaai8386. [PMID: 28183913 DOI: 10.1126/science.aai8386] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022]
Abstract
The human microbiome encodes vast numbers of uncharacterized enzymes, limiting our functional understanding of this community and its effects on host health and disease. By incorporating information about enzymatic chemistry into quantitative metagenomics, we determined the abundance and distribution of individual members of the glycyl radical enzyme superfamily among the microbiomes of healthy humans. We identified many uncharacterized family members, including a universally distributed enzyme that enables commensal gut microbes and human pathogens to dehydrate trans-4-hydroxy-l-proline, the product of the most abundant human posttranslational modification. This "chemically guided functional profiling" workflow can therefore use ecological context to facilitate the discovery of enzymes in microbial communities.
Collapse
Affiliation(s)
- B J Levin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Y Y Huang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - S C Peck
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Y Wei
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A Martínez-Del Campo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - J A Marks
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - E A Franzosa
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Broad Institute, Cambridge, MA 02139, USA
| | - C Huttenhower
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Broad Institute, Cambridge, MA 02139, USA
| | - E P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA. .,Broad Institute, Cambridge, MA 02139, USA
| |
Collapse
|
20
|
Backman LRF, Funk MA, Dawson CD, Drennan CL. New tricks for the glycyl radical enzyme family. Crit Rev Biochem Mol Biol 2017; 52:674-695. [PMID: 28901199 DOI: 10.1080/10409238.2017.1373741] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glycyl radical enzymes (GREs) are important biological catalysts in both strict and facultative anaerobes, playing key roles both in the human microbiota and in the environment. GREs contain a backbone glycyl radical that is post-translationally installed, enabling radical-based mechanisms. GREs function in several metabolic pathways including mixed acid fermentation, ribonucleotide reduction and the anaerobic breakdown of the nutrient choline and the pollutant toluene. By generating a substrate-based radical species within the active site, GREs enable C-C, C-O and C-N bond breaking and formation steps that are otherwise challenging for nonradical enzymes. Identification of previously unknown family members from genomic data and the determination of structures of well-characterized GREs have expanded the scope of GRE-catalyzed reactions as well as defined key features that enable radical catalysis. Here, we review the structures and mechanisms of characterized GREs, classifying members into five categories. We consider the open questions about each of the five GRE classes and evaluate the tools available to interrogate uncharacterized GREs.
Collapse
Affiliation(s)
- Lindsey R F Backman
- a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Michael A Funk
- a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA.,b Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Christopher D Dawson
- c Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Catherine L Drennan
- a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA.,c Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA.,d Howard Hughes Medical Institute , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
21
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
22
|
Bodea S, Funk MA, Balskus EP, Drennan CL. Molecular Basis of C-N Bond Cleavage by the Glycyl Radical Enzyme Choline Trimethylamine-Lyase. Cell Chem Biol 2016; 23:1206-1216. [PMID: 27642068 DOI: 10.1016/j.chembiol.2016.07.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/07/2016] [Accepted: 07/25/2016] [Indexed: 01/16/2023]
Abstract
Deamination of choline catalyzed by the glycyl radical enzyme choline trimethylamine-lyase (CutC) has emerged as an important route for the production of trimethylamine, a microbial metabolite associated with both human disease and biological methane production. Here, we have determined five high-resolution X-ray structures of wild-type CutC and mechanistically informative mutants in the presence of choline. Within an unexpectedly polar active site, CutC orients choline through hydrogen bonding with a putative general base, and through close interactions between phenolic and carboxylate oxygen atoms of the protein scaffold and the polarized methyl groups of the trimethylammonium moiety. These structural data, along with biochemical analysis of active site mutants, support a mechanism that involves direct elimination of trimethylamine. This work broadens our understanding of radical-based enzyme catalysis and will aid in the rational design of inhibitors of bacterial trimethylamine production.
Collapse
Affiliation(s)
- Smaranda Bodea
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Michael A Funk
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts, Avenue 68-680, Cambridge, MA 02139, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts, Avenue 68-680, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Seyhan D, Friedrich P, Szaleniec M, Hilberg M, Buckel W, Golding BT, Heider J. Stereochemischer Verlauf der enzymatischen Synthese von Benzylsuccinat mit chiral markiertem Toluol. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Deniz Seyhan
- Laboratorium für Mikrobielle Biochemie und Synmikro-Zentrum für synthetische Mikrobiologie; Philipps Universität Marburg; 35043 Marburg an der Lahn Deutschland
| | - Peter Friedrich
- School of Chemistry, Bedson Building; Newcastle University; Newcastle upon Tyne NE1 7RU Großbritannien
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry; Polish Academy of Science; 30-239 Krakau Polen
| | - Markus Hilberg
- Laboratorium für Mikrobielle Biochemie und Synmikro-Zentrum für synthetische Mikrobiologie; Philipps Universität Marburg; 35043 Marburg an der Lahn Deutschland
| | - Wolfgang Buckel
- Max-Planck-Institut für terrestrische Mikrobiologie; 35043 Marburg an der Lahn Deutschland
| | - Bernard T. Golding
- School of Chemistry, Bedson Building; Newcastle University; Newcastle upon Tyne NE1 7RU Großbritannien
| | - Johann Heider
- Laboratorium für Mikrobielle Biochemie und Synmikro-Zentrum für synthetische Mikrobiologie; Philipps Universität Marburg; 35043 Marburg an der Lahn Deutschland
| |
Collapse
|
24
|
Seyhan D, Friedrich P, Szaleniec M, Hilberg M, Buckel W, Golding BT, Heider J. Elucidating the Stereochemistry of Enzymatic Benzylsuccinate Synthesis with Chirally Labeled Toluene. Angew Chem Int Ed Engl 2016; 55:11664-7. [PMID: 27503670 DOI: 10.1002/anie.201605197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/01/2016] [Indexed: 11/08/2022]
Abstract
Benzylsuccinate synthase is a glycyl radical enzyme that initiates anaerobic toluene metabolism by adding fumarate to the methyl group of toluene to yield (R)-benzylsuccinate. To investigate whether the reaction occurs with retention or inversion of configuration at the methyl group of toluene, we synthesized both enantiomers of chiral toluene with all three H isotopes in their methyl groups. The chiral toluenes were converted into benzylsuccinates preferentially containing (2) H and (3) H at their benzylic C atoms, owing to a kinetic isotope effect favoring hydrogen abstraction from the methyl groups. The configuration of the products was analyzed by enzymatic CoA-thioester synthesis and stereospecific oxidation using enzymes involved in benzylsuccinate degradation. Assessment of the configurations of the benzylsuccinate isomers based on loss or retention of tritium showed that inversion of configuration at the methyl group occurs when the chiral toluenes react with fumarate.
Collapse
Affiliation(s)
- Deniz Seyhan
- Laboratorium für Mikrobielle Biochemie and Synmikro-Zentrum für synthetische Mikrobiologie, Philipps Universität Marburg, 35043, Marburg an der Lahn, Germany
| | - Peter Friedrich
- School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Science, 30-239, Kraków, Poland
| | - Markus Hilberg
- Laboratorium für Mikrobielle Biochemie and Synmikro-Zentrum für synthetische Mikrobiologie, Philipps Universität Marburg, 35043, Marburg an der Lahn, Germany
| | - Wolfgang Buckel
- Max-Planck-Institut für terrestrische Mikrobiologie, 35043, Marburg an der Lahn, Germany
| | - Bernard T Golding
- School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Johann Heider
- Laboratorium für Mikrobielle Biochemie and Synmikro-Zentrum für synthetische Mikrobiologie, Philipps Universität Marburg, 35043, Marburg an der Lahn, Germany.
| |
Collapse
|
25
|
Modeling of the Reaction Mechanism of Enzymatic Radical C-C Coupling by Benzylsuccinate Synthase. Int J Mol Sci 2016; 17:514. [PMID: 27070573 PMCID: PMC4848970 DOI: 10.3390/ijms17040514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/15/2016] [Accepted: 03/24/2016] [Indexed: 11/16/2022] Open
Abstract
Molecular modeling techniques and density functional theory calculations were performed to study the mechanism of enzymatic radical C–C coupling catalyzed by benzylsuccinate synthase (BSS). BSS has been identified as a glycyl radical enzyme that catalyzes the enantiospecific fumarate addition to toluene initiating its anaerobic metabolism in the denitrifying bacterium Thauera aromatica, and this reaction represents the general mechanism of toluene degradation in all known anaerobic degraders. In this work docking calculations, classical molecular dynamics (MD) simulations, and DFT+D2 cluster modeling was employed to address the following questions: (i) What mechanistic details of the BSS reaction yield the most probable molecular model? (ii) What is the molecular basis of enantiospecificity of BSS? (iii) Is the proposed mechanism consistent with experimental observations, such as an inversion of the stereochemistry of the benzylic protons, syn addition of toluene to fumarate, exclusive production of (R)-benzylsuccinate as a product and a kinetic isotope effect (KIE) ranging between 2 and 4? The quantum mechanics (QM) modeling confirms that the previously proposed hypothetical mechanism is the most probable among several variants considered, although C–H activation and not C–C coupling turns out to be the rate limiting step. The enantiospecificity of the enzyme seems to be enforced by a thermodynamic preference for binding of fumarate in the pro(R) orientation and reverse preference of benzyl radical attack on fumarate in pro(S) pathway which results with prohibitively high energy barrier of the radical quenching. Finally, the proposed mechanism agrees with most of the experimental observations, although the calculated intrinsic KIE from the model (6.5) is still higher than the experimentally observed values (4.0) which suggests that both C–H activation and radical quenching may jointly be involved in the kinetic control of the reaction.
Collapse
|
26
|
Heider J, Szaleniec M, Martins BM, Seyhan D, Buckel W, Golding BT. Structure and Function of Benzylsuccinate Synthase and Related Fumarate-Adding Glycyl Radical Enzymes. J Mol Microbiol Biotechnol 2016; 26:29-44. [PMID: 26959246 DOI: 10.1159/000441656] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pathway of anaerobic toluene degradation is initiated by a remarkable radical-type enantiospecific addition of the chemically inert methyl group to the double bond of a fumarate cosubstrate to yield (R)-benzylsuccinate as the first intermediate, as catalyzed by the glycyl radical enzyme benzylsuccinate synthase. In recent years, it has become clear that benzylsuccinate synthase is the prototype enzyme of a much larger family of fumarate-adding enzymes, which play important roles in the anaerobic metabolism of further aromatic and even aliphatic hydrocarbons. We present an overview on the biochemical properties of benzylsuccinate synthase, as well as its recently solved structure, and present the results of an initial structure-based modeling study on the reaction mechanism. Moreover, we compare the structure of benzylsuccinate synthase with those predicted for different clades of fumarate-adding enzymes, in particular the paralogous enzymes converting p-cresol, 2-methylnaphthalene or n-alkanes.
Collapse
Affiliation(s)
- Johann Heider
- Laboratory of Microbial Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Rabus R, Boll M, Heider J, Meckenstock RU, Buckel W, Einsle O, Ermler U, Golding BT, Gunsalus RP, Kroneck PMH, Krüger M, Lueders T, Martins BM, Musat F, Richnow HH, Schink B, Seifert J, Szaleniec M, Treude T, Ullmann GM, Vogt C, von Bergen M, Wilkes H. Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment. J Mol Microbiol Biotechnol 2016; 26:5-28. [PMID: 26960061 DOI: 10.1159/000443997] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl)succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and naphthalene), W-cofactor-containing enzymes for reductive dearomatization of benzoyl-CoA (class II benzoyl-CoA reductase) in obligate anaerobes and addition of water to acetylene, fermentative formation of cyclohexanecarboxylate from benzoate, and methanogenic degradation of hydrocarbons.
Collapse
Affiliation(s)
- Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|