1
|
Vaccaro FA, Faber DA, Andree GA, Born DA, Kang G, Fonseca DR, Jost M, Drennan CL. Structural insight into G-protein chaperone-mediated maturation of a bacterial adenosylcobalamin-dependent mutase. J Biol Chem 2023; 299:105109. [PMID: 37517695 PMCID: PMC10481361 DOI: 10.1016/j.jbc.2023.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023] Open
Abstract
G-protein metallochaperones are essential for the proper maturation of numerous metalloenzymes. The G-protein chaperone MMAA in humans (MeaB in bacteria) uses GTP hydrolysis to facilitate the delivery of adenosylcobalamin (AdoCbl) to AdoCbl-dependent methylmalonyl-CoA mutase, an essential metabolic enzyme. This G-protein chaperone also facilitates the removal of damaged cobalamin (Cbl) for repair. Although most chaperones are standalone proteins, isobutyryl-CoA mutase fused (IcmF) has a G-protein domain covalently attached to its target mutase. We previously showed that dimeric MeaB undergoes a 180° rotation to reach a state capable of GTP hydrolysis (an active G-protein state), in which so-called switch III residues of one protomer contact the G-nucleotide of the other protomer. However, it was unclear whether other G-protein chaperones also adopted this conformation. Here, we show that the G-protein domain in a fused system forms a similar active conformation, requiring IcmF oligomerization. IcmF oligomerizes both upon Cbl damage and in the presence of the nonhydrolyzable GTP analog, guanosine-5'-[(β,γ)-methyleno]triphosphate, forming supramolecular complexes observable by mass photometry and EM. Cryo-EM structural analysis reveals that the second protomer of the G-protein intermolecular dimer props open the mutase active site using residues of switch III as a wedge, allowing for AdoCbl insertion or damaged Cbl removal. With the series of structural snapshots now available, we now describe here the molecular basis of G-protein-assisted AdoCbl-dependent mutase maturation, explaining how GTP binding prepares a mutase for cofactor delivery and how GTP hydrolysis allows the mutase to capture the cofactor.
Collapse
Affiliation(s)
- Francesca A Vaccaro
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daphne A Faber
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gisele A Andree
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - David A Born
- Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gyunghoon Kang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dallas R Fonseca
- Amgen Scholar Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Marco Jost
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
2
|
Mascarenhas R, Ruetz M, Gouda H, Heitman N, Yaw M, Banerjee R. Architecture of the human G-protein-methylmalonyl-CoA mutase nanoassembly for B 12 delivery and repair. Nat Commun 2023; 14:4332. [PMID: 37468522 PMCID: PMC10356863 DOI: 10.1038/s41467-023-40077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
G-proteins function as molecular switches to power cofactor translocation and confer fidelity in metal trafficking. The G-protein, MMAA, together with MMAB, an adenosyltransferase, orchestrate cofactor delivery and repair of B12-dependent human methylmalonyl-CoA mutase (MMUT). The mechanism by which the complex assembles and moves a >1300 Da cargo, or fails in disease, are poorly understood. Herein, we report the crystal structure of the human MMUT-MMAA nano-assembly, which reveals a dramatic 180° rotation of the B12 domain, exposing it to solvent. The complex, stabilized by MMAA wedging between two MMUT domains, leads to ordering of the switch I and III loops, revealing the molecular basis of mutase-dependent GTPase activation. The structure explains the biochemical penalties incurred by methylmalonic aciduria-causing mutations that reside at the MMAA-MMUT interfaces we identify here.
Collapse
Affiliation(s)
- Romila Mascarenhas
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Markus Ruetz
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Harsha Gouda
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Natalie Heitman
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Madeline Yaw
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Mascarenhas R, Ruetz M, Gouda H, Heitman N, Yaw M, Banerjee R. Architecture of the human G-protein-methylmalonyl-CoA mutase nanoassembly for B 12 delivery and repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533963. [PMID: 36993209 PMCID: PMC10055420 DOI: 10.1101/2023.03.23.533963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
G-proteins function as molecular switches to power cofactor translocation and confer fidelity in metal trafficking. MMAA, a G-protein motor, together with MMAB, an adenosyltransferase, orchestrate cofactor delivery and repair of B 12 -dependent human methylmalonyl-CoA mutase (MMUT). The mechanism by which the motor assembles and moves a >1300 Da cargo, or fails in disease, are poorly understood. Herein, we report the crystal structure of the human MMUT-MMAA nanomotor assembly, which reveals a dramatic 180° rotation of the B 12 domain, exposing it to solvent. The nanomotor complex, stabilized by MMAA wedging between two MMUT domains, leads to ordering of the switch I and III loops, revealing the molecular basis of mutase-dependent GTPase activation. The structure explains the biochemical penalties incurred by methylmalonic aciduria-causing mutations that reside at the newly identified MMAA-MMUT interfaces.
Collapse
|
4
|
McCorvie TJ, Ferreira D, Yue WW, Froese DS. The complex machinery of human cobalamin metabolism. J Inherit Metab Dis 2023; 46:406-420. [PMID: 36680553 DOI: 10.1002/jimd.12593] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Vitamin B12 (cobalamin, Cbl) is required as a cofactor by two human enzymes, 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) and methylmalonyl-CoA mutase (MMUT). Within the body, a vast array of transporters, enzymes and chaperones are required for the generation and delivery of these cofactor forms. How they perform these functions is dictated by the structure and interactions of the proteins involved, the molecular bases of which are only now being elucidated. In this review, we highlight recent insights into human Cbl metabolism and address open questions in the field by employing a protein structure and interactome based perspective. We discuss how three very similar proteins-haptocorrin, intrinsic factor and transcobalamin-exploit slight structural differences and unique ligand receptor interactions to effect selective Cbl absorption and internalisation. We describe recent advances in the understanding of how endocytosed Cbl is transported across the lysosomal membrane and the implications of the recently solved ABCD4 structure. We detail how MMACHC and MMADHC cooperate to modify and target cytosolic Cbl to the client enzymes MTR and MMUT using ingenious modifications to an ancient nitroreductase fold, and how MTR and MMUT link with their accessory enzymes to sustainably harness the supernucleophilic potential of Cbl. Finally, we provide an outlook on how future studies may combine structural and interactome based approaches and incorporate knowledge of post-translational modifications to bring further insights.
Collapse
Affiliation(s)
- Thomas J McCorvie
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Douglas Ferreira
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wyatt W Yue
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Cobalamin Riboswitches Are Broadly Sensitive to Corrinoid Cofactors to Enable an Efficient Gene Regulatory Strategy. mBio 2022; 13:e0112122. [PMID: 35993747 PMCID: PMC9600662 DOI: 10.1128/mbio.01121-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In bacteria, many essential metabolic processes are controlled by riboswitches, gene regulatory RNAs that directly bind and detect metabolites. Highly specific effector binding enables riboswitches to respond to a single biologically relevant metabolite. Cobalamin riboswitches are a potential exception because over a dozen chemically similar but functionally distinct cobalamin variants (corrinoid cofactors) exist in nature. Here, we measured cobalamin riboswitch activity in vivo using a Bacillus subtilis fluorescent reporter system and found, among 38 tested riboswitches, a subset responded to corrinoids promiscuously, while others were semiselective. Analyses of chimeric riboswitches and structural models indicate, unlike other riboswitch classes, cobalamin riboswitches indirectly differentiate among corrinoids by sensing differences in their structural conformation. This regulatory strategy aligns riboswitch-corrinoid specificity with cellular corrinoid requirements in a B. subtilis model. Thus, bacteria can employ broadly sensitive riboswitches to cope with the chemical diversity of essential metabolites. IMPORTANCE Some bacterial mRNAs contain a region called a riboswitch which controls gene expression by binding to a metabolite in the cell. Typically, riboswitches sense and respond to a limited range of cellular metabolites, often just one type. In this work, we found the cobalamin (vitamin B12) riboswitch class is an exception, capable of sensing and responding to multiple variants of B12-collectively called corrinoids. We found cobalamin riboswitches vary in corrinoid specificity with some riboswitches responding to each of the corrinoids we tested, while others responding only to a subset of corrinoids. Our results suggest the latter class of riboswitches sense intrinsic conformational differences among corrinoids in order to support the corrinoid-specific needs of the cell. These findings provide insight into how bacteria sense and respond to an exceptionally diverse, often essential set of enzyme cofactors.
Collapse
|
6
|
Gut Microbiota Functional Traits, Blood pH, and Anti-GAD Antibodies Concur in the Clinical Characterization of T1D at Onset. Int J Mol Sci 2022; 23:ijms231810256. [PMID: 36142163 PMCID: PMC9499637 DOI: 10.3390/ijms231810256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations of gut microbiota have been identified before clinical manifestation of type 1 diabetes (T1D). To identify the associations amongst gut microbiome profile, metabolism and disease markers, the 16S rRNA-based microbiota profiling and 1H-NMR metabolomic analysis were performed on stool samples of 52 T1D patients at onset, 17 T1D siblings and 57 healthy subjects (CTRL). Univariate, multivariate analyses and classification models were applied to clinical and -omic integrated datasets. In T1D patients and their siblings, Clostridiales and Dorea were increased and Dialister and Akkermansia were decreased compared to CTRL, while in T1D, Lachnospiraceae were higher and Collinsella was lower, compared to siblings and CTRL. Higher levels of isobutyrate, malonate, Clostridium, Enterobacteriaceae, Clostridiales, Bacteroidales, were associated to T1D compared to CTRL. Patients with higher anti-GAD levels showed low abundances of Roseburia, Faecalibacterium and Alistipes and those with normal blood pH and low serum HbA1c levels showed high levels of purine and pyrimidine intermediates. We detected specific gut microbiota profiles linked to both T1D at the onset and to diabetes familiarity. The presence of specific microbial and metabolic profiles in gut linked to anti-GAD levels and to blood acidosis can be considered as predictive biomarker associated progression and severity of T1D.
Collapse
|
7
|
Gruber K, Csitkovits V, Łyskowski A, Kratky C, Kräutler B. Structure-Based Demystification of Radical Catalysis by a Coenzyme B 12 Dependent Enzyme-Crystallographic Study of Glutamate Mutase with Cofactor Homologues. Angew Chem Int Ed Engl 2022; 61:e202208295. [PMID: 35793207 PMCID: PMC9545868 DOI: 10.1002/anie.202208295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 12/04/2022]
Abstract
Catalysis by radical enzymes dependent on coenzyme B12 (AdoCbl) relies on the reactive primary 5'-deoxy-5'adenosyl radical, which originates from reversible Co-C bond homolysis of AdoCbl. This bond homolysis is accelerated roughly 1012 -fold upon binding the enzyme substrate. The structural basis for this activation is still strikingly enigmatic. As revealed here, a displaced firm adenosine binding cavity in substrate-loaded glutamate mutase (GM) causes a structural misfit for intact AdoCbl that is relieved by the homolytic Co-C bond cleavage. Strategically interacting adjacent adenosine- and substrate-binding protein cavities provide a tight caged radical reaction space, controlling the entire radical path. The GM active site is perfectly structured for promoting radical catalysis, including "negative catalysis", a paradigm for AdoCbl-dependent mutases.
Collapse
Affiliation(s)
- Karl Gruber
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
- BioTechMed-Graz8010GrazAustria
- Field of Excellence “BioHealth”University of Graz8010GrazAustria
| | - Vanessa Csitkovits
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Andrzej Łyskowski
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
- Present address: Department of Biotechnology and BioinformaticsRzeszów University of Technologyal. Powstańców Warszawy 1235-959RzeszówPoland
| | - Christoph Kratky
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Bernhard Kräutler
- Institute of Organic ChemistryUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
- Center of Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| |
Collapse
|
8
|
Gruber K, Csitkovits V, Łyskowski A, Kratky C, Kräutler B. Structure-Based Demystification of Radical Catalysis by a Coenzyme B 12 Dependent Enzyme-Crystallographic Study of Glutamate Mutase with Cofactor Homologues. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202208295. [PMID: 38505740 PMCID: PMC10947579 DOI: 10.1002/ange.202208295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 03/21/2024]
Abstract
Catalysis by radical enzymes dependent on coenzyme B12 (AdoCbl) relies on the reactive primary 5'-deoxy-5'adenosyl radical, which originates from reversible Co-C bond homolysis of AdoCbl. This bond homolysis is accelerated roughly 1012-fold upon binding the enzyme substrate. The structural basis for this activation is still strikingly enigmatic. As revealed here, a displaced firm adenosine binding cavity in substrate-loaded glutamate mutase (GM) causes a structural misfit for intact AdoCbl that is relieved by the homolytic Co-C bond cleavage. Strategically interacting adjacent adenosine- and substrate-binding protein cavities provide a tight caged radical reaction space, controlling the entire radical path. The GM active site is perfectly structured for promoting radical catalysis, including "negative catalysis", a paradigm for AdoCbl-dependent mutases.
Collapse
Affiliation(s)
- Karl Gruber
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
- BioTechMed-Graz8010GrazAustria
- Field of Excellence “BioHealth”University of Graz8010GrazAustria
| | - Vanessa Csitkovits
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Andrzej Łyskowski
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
- Present address: Department of Biotechnology and BioinformaticsRzeszów University of Technologyal. Powstańców Warszawy 1235-959RzeszówPoland
| | - Christoph Kratky
- Institute of Molecular BiosciencesUniversity of GrazHumboldtstraße 508010GrazAustria
| | - Bernhard Kräutler
- Institute of Organic ChemistryUniversity of InnsbruckInnrain 80/826020InnsbruckAustria
- Center of Molecular Biosciences (CMBI)University of Innsbruck6020InnsbruckAustria
| |
Collapse
|
9
|
Drozdowska M, Tromans J, Zhang B, Jarling R, Wilkes H, Golding BT. Defining Pathways of Anaerobic Alkane Oxidation: Synthesis of Enantiomers of 4‐Methylalkanoic Acids and (2‐Methylalkyl)malonic Acids. ChemistrySelect 2021. [DOI: 10.1002/slct.202100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marta Drozdowska
- School of Natural and Environmental Sciences – Chemistry Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Jay Tromans
- School of Natural and Environmental Sciences – Chemistry Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Bian Zhang
- BiBerChem Research Limited The Biosphere Drayman's Way, Newcastle Helix, Corporation Street Newcastle upon Tyne NE4 5BX UK
| | - René Jarling
- Organische Geochemie Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum Haus B228, Telegrafenberg 14473 Potsdam Germany
- Organic Geochemistry Institute for Chemistry and Biology of the Marine Environment (ICBM) Carl von Ossietzky University Oldenburg Carl-von-Ossietzky-Straße 9–11 D-26111 Oldenburg Germany
| | - Heinz Wilkes
- Organische Geochemie Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum Haus B228, Telegrafenberg 14473 Potsdam Germany
- Organic Geochemistry Institute for Chemistry and Biology of the Marine Environment (ICBM) Carl von Ossietzky University Oldenburg Carl-von-Ossietzky-Straße 9–11 D-26111 Oldenburg Germany
| | - Bernard T. Golding
- School of Natural and Environmental Sciences – Chemistry Bedson Building Newcastle University Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
10
|
Banerjee R, Gouda H, Pillay S. Redox-Linked Coordination Chemistry Directs Vitamin B 12 Trafficking. Acc Chem Res 2021; 54:2003-2013. [PMID: 33797888 DOI: 10.1021/acs.accounts.1c00083] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metals are partners for an estimated one-third of the proteome and vary in complexity from mononuclear centers to organometallic cofactors. Vitamin B12 or cobalamin represents the epitome of this complexity and is the product of an assembly line comprising some 30 enzymes. Unable to biosynthesize cobalamin, mammals rely on dietary provision of this essential cofactor, which is needed by just two enzymes, one each in the cytoplasm (methionine synthase) and the mitochondrion (methylmalonyl-CoA mutase). Brilliant clinical genetics studies on patients with inborn errors of cobalamin metabolism spanning several decades had identified at least seven genetic loci in addition to the two encoding B12 enzymes. While cells are known to house a cadre of chaperones dedicated to metal trafficking pathways that contain metal reactivity and confer targeting specificity, the seemingly supernumerary chaperones in the B12 pathway had raised obvious questions as to the rationale for their existence.With the discovery of the genes underlying cobalamin disorders, our laboratory has been at the forefront of ascribing functions to B12 chaperones and elucidating the intricate redox-linked coordination chemistry and protein-linked cofactor conformational dynamics that orchestrate the processing and translocation of cargo along the trafficking pathway. These studies have uncovered novel chemistry that exploits the innate chemical versatility of alkylcobalamins, i.e., the ability to form and dismantle the cobalt-carbon bond using homolytic or heterolytic chemistry. In addition, they have revealed the practical utility of the dimethylbenzimidazole tail, an appendage unique to cobalamins and absent in the structural cousins, porphyrin, chlorin, and corphin, as an instrument for facilitating cofactor transfer between active sites.In this Account, we navigate the chemistry of the B12 trafficking pathway from its point of entry into cells, through lysosomes, and into the cytoplasm, where incoming cobalamin derivatives with a diversity of upper ligands are denuded by the β-ligand transferase activity of CblC to the common cob(II)alamin intermediate. The broad reaction and lax substrate specificity of CblC also enables conversion of cyanocobalamin (technically, vitamin B12, i.e., the form of the cofactor in one-a-day supplements), to cob(II)alamin. CblD then hitches up with CblC via a unique Co-sulfur bond to cob(II)alamin at a bifurcation point, leading to the cytoplasmic methylcobalamin or mitochondrial 5'-deoxyadenosylcobalamin branch. Mutations at loci upstream of the junction point typically affect both branches, leading to homocystinuria and methylmalonic aciduria, whereas mutations in downstream loci lead to one or the other disease. Elucidation of the biochemical penalties associated with individual mutations is providing molecular insights into the clinical data and, in some instances, identifying which cobalamin derivative(s) might be therapeutically beneficial.Our studies on B12 trafficking are revealing strategies for cofactor sequestration and mobilization from low- to high-affinity and low- to high-coordination-number sites, which in turn are regulated by protein dynamics that constructs ergonomic cofactor binding pockets. While these B12 lessons might be broadly relevant to other metal trafficking pathways, much remains to be learned. This Account concludes by identifying some of the major gaps and challenges that are needed to complete our understanding of B12 trafficking.
Collapse
Affiliation(s)
- Ruma Banerjee
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Harsha Gouda
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shubhadra Pillay
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Ünsaldı E, Kurt-Kızıldoğan A, Özcan S, Becher D, Voigt B, Aktaş C, Özcengiz G. Proteomic analysis of a hom-disrupted, cephamycin C overproducing Streptomyces clavuligerus. Protein Pept Lett 2021; 28:205-220. [PMID: 32707026 DOI: 10.2174/0929866527666200723163655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Streptomyces clavuligerus is prolific producer of cephamycin C, a medically important antibiotic. In our former study, cephamycin C titer was 2-fold improved by disrupting homoserine dehydrogenase (hom) gene of aspartate pahway in Streptomyces clavuligerus NRRL 3585. OBJECTIVE In this article, we aimed to provide a comprehensive understanding at the proteome level on potential complex metabolic changes as a consequence of hom disruption in Streptomyces clavuligerus AK39. METHODS A comparative proteomics study was carried out between the wild type and its hom disrupted AK39 strain by 2 Dimensional Electrophoresis-Matrix Assisted Laser Desorption and Ionization Time-Of-Flight Mass Spectrometry (2DE MALDI-TOF/MS) and Nanoscale Liquid Chromatography- Tandem Mass Spectrometry (nanoLC-MS/MS) analyses. Clusters of Orthologous Groups (COG) database was used to determine the functional categories of the proteins. The theoretical pI and Mw values of the proteins were calculated using Expasy pI/Mw tool. RESULTS "Hypothetical/Unknown" and "Secondary Metabolism" were the most prominent categories of the differentially expressed proteins. Upto 8.7-fold increased level of the positive regulator CcaR was a key finding since CcaR was shown to bind to cefF promoter thereby direcly controlling its expression. Consistently, CeaS2, the first enzyme of CA biosynthetic pathway, was 3.3- fold elevated. There were also many underrepresented proteins associated with the biosynthesis of several Non-Ribosomal Peptide Synthases (NRPSs), clavams, hybrid NRPS/Polyketide synthases (PKSs) and tunicamycin. The most conspicuously underrepresented protein of amino acid metabolism was 4-Hydroxyphenylpyruvate dioxygenase (HppD) acting in tyrosine catabolism. The levels of a Two Component System (TCS) response regulator containing a CheY-like receiver domain and an HTH DNA-binding domain as well as DNA-binding protein HU were elevated while a TetR-family transcriptional regulator was underexpressed. CONCLUSION The results obtained herein will aid in finding out new targets for further improvement of cephamycin C production in Streptomyces clavuligerus.
Collapse
Affiliation(s)
- Eser Ünsaldı
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | | | - Servet Özcan
- Department of Biology, Erciyes University, Kayseri 38280, Turkey
| | - Dörte Becher
- Institute of Microbiology, Ernst- Moritz-Arndt-University of Greifswald, Greifswald D-17487, Germany
| | - Birgit Voigt
- Institute of Microbiology, Ernst- Moritz-Arndt-University of Greifswald, Greifswald D-17487, Germany
| | - Caner Aktaş
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Gülay Özcengiz
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
12
|
Zhu Z, Han Z, Halabelian L, Yang X, Ding J, Zhang N, Ngo L, Song J, Zeng H, He M, Zhao Y, Arrowsmith CH, Luo M, Bartlett MG, Zheng YG. Identification of lysine isobutyrylation as a new histone modification mark. Nucleic Acids Res 2021; 49:177-189. [PMID: 33313896 PMCID: PMC7797053 DOI: 10.1093/nar/gkaa1176] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/05/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Short-chain acylations of lysine residues in eukaryotic proteins are recognized as essential posttranslational chemical modifications (PTMs) that regulate cellular processes from transcription, cell cycle, metabolism, to signal transduction. Lysine butyrylation was initially discovered as a normal straight chain butyrylation (Knbu). Here we report its structural isomer, branched chain butyrylation, i.e. lysine isobutyrylation (Kibu), existing as a new PTM on nuclear histones. Uniquely, isobutyryl-CoA is derived from valine catabolism and branched chain fatty acid oxidation which is distinct from the metabolism of n-butyryl-CoA. Several histone acetyltransferases were found to possess lysine isobutyryltransferase activity in vitro, especially p300 and HAT1. Transfection and western blot experiments showed that p300 regulated histone isobutyrylation levels in the cell. We resolved the X-ray crystal structures of HAT1 in complex with isobutyryl-CoA that gleaned an atomic level insight into HAT-catalyzed isobutyrylation. RNA-Seq profiling revealed that isobutyrate greatly affected the expression of genes associated with many pivotal biological pathways. Together, our findings identify Kibu as a novel chemical modification mark in histones and suggest its extensive role in regulating epigenetics and cellular physiology.
Collapse
Affiliation(s)
- Zhesi Zhu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Zhen Han
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Jun Ding
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Nawei Zhang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Liza Ngo
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Jiabao Song
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Maomao He
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 20021, USA
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
13
|
New perspectives on butyrate assimilation in Rhodospirillum rubrum S1H under photoheterotrophic conditions. BMC Microbiol 2020; 20:126. [PMID: 32434546 PMCID: PMC7238569 DOI: 10.1186/s12866-020-01814-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 05/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The great metabolic versatility of the purple non-sulfur bacteria is of particular interest in green technology. Rhodospirillum rubrum S1H is an α-proteobacterium that is capable of photoheterotrophic assimilation of volatile fatty acids (VFAs). Butyrate is one of the most abundant VFAs produced during fermentative biodegradation of crude organic wastes in various applications. While there is a growing understanding of the photoassimilation of acetate, another abundantly produced VFA, the mechanisms involved in the photoheterotrophic metabolism of butyrate remain poorly studied. RESULTS In this work, we used proteomic and functional genomic analyses to determine potential metabolic pathways involved in the photoassimilation of butyrate. We propose that a fraction of butyrate is converted to acetyl-CoA, a reaction shared with polyhydroxybutyrate metabolism, while the other fraction supplies the ethylmalonyl-CoA (EMC) pathway used as an anaplerotic pathway to replenish the TCA cycle. Surprisingly, we also highlighted a potential assimilation pathway, through isoleucine synthesis and degradation, allowing the conversion of acetyl-CoA to propionyl-CoA. We tentatively named this pathway the methylbutanoyl-CoA pathway (MBC). An increase in isoleucine abundance was observed during the early growth phase under butyrate condition. Nevertheless, while the EMC and MBC pathways appeared to be concomitantly used, a genome-wide mutant fitness assay highlighted the EMC pathway as the only pathway strictly required for the assimilation of butyrate. CONCLUSION Photoheterotrophic growth of Rs. rubrum with butyrate as sole carbon source requires a functional EMC pathway. In addition, a new assimilation pathway involving isoleucine synthesis and degradation, named the methylbutanoyl-CoA (MBC) pathway, could also be involved in the assimilation of this volatile fatty acid by Rs. rubrum.
Collapse
|
14
|
Ruetz M, Campanello GC, McDevitt L, Yokom AL, Yadav PK, Watkins D, Rosenblatt DS, Ohi MD, Southworth DR, Banerjee R. Allosteric Regulation of Oligomerization by a B 12 Trafficking G-Protein Is Corrupted in Methylmalonic Aciduria. Cell Chem Biol 2019; 26:960-969.e4. [PMID: 31056463 DOI: 10.1016/j.chembiol.2019.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/07/2019] [Accepted: 03/25/2019] [Indexed: 10/26/2022]
Abstract
Allosteric regulation of methylmalonyl-CoA mutase (MCM) by the G-protein chaperone CblA is transduced via three "switch" elements that gate the movement of the B12 cofactor to and from MCM. Mutations in CblA and MCM cause hereditary methylmalonic aciduria. Unlike the bacterial orthologs used previously to model disease-causing mutations, human MCM and CblA exhibit a complex pattern of regulation that involves interconverting oligomers, which are differentially sensitive to the presence of GTP versus GDP. Patient mutations in the switch III region of CblA perturb the nucleotide-sensitive distribution of the oligomeric complexes with MCM, leading to loss of regulated movement of B12 to and/or from MCM and explain the molecular mechanism of the resulting disease.
Collapse
Affiliation(s)
- Markus Ruetz
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Gregory C Campanello
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Liam McDevitt
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Adam L Yokom
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pramod K Yadav
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Watkins
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - David S Rosenblatt
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Black WB, Zhang L, Kamoku C, Liao JC, Li H. Rearrangement of Coenzyme A-Acylated Carbon Chain Enables Synthesis of Isobutanol via a Novel Pathway in Ralstonia eutropha. ACS Synth Biol 2018; 7:794-800. [PMID: 29429336 DOI: 10.1021/acssynbio.7b00409] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Coenzyme A (CoA)-dependent pathways have been explored extensively for the biosynthesis of fuels and chemicals. While CoA-dependent mechanisms are widely used to elongate carbon chains in a linear fashion, branch-making chemistry has not been incorporated. In this study, we demonstrated the production of isobutanol, a branched-chain alcohol that can be used as a gasoline substitute, using a novel CoA-dependent pathway in recombinant Ralstonia eutropha H16. The designed pathway is constituted of three modules: chain elongation, rearrangement, and modification. We first integrated and optimized the chain elongation and modification modules, and we achieved the production of ∼200 mg/L n-butanol from fructose or ∼30 mg/L from formate by engineered R. eutropha. Subsequently, we incorporated the rearrangement module, which features a previously uncharacterized, native isobutyryl-CoA mutase in R. eutropha. The engineered strain produced ∼30 mg/L isobutanol from fructose. The carbon skeleton rearrangement chemistry demonstrated here may be used to expand the range of the chemicals accessible with CoA-dependent pathways.
Collapse
Affiliation(s)
- William B. Black
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 90697, United States
| | - Linyue Zhang
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 90697, United States
| | - Cody Kamoku
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 90697, United States
| | - James C. Liao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Han Li
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 90697, United States
| |
Collapse
|
16
|
Campanello GC, Lofgren M, Yokom AL, Southworth DR, Banerjee R. Switch I-dependent allosteric signaling in a G-protein chaperone-B 12 enzyme complex. J Biol Chem 2017; 292:17617-17625. [PMID: 28882898 DOI: 10.1074/jbc.m117.786095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/14/2017] [Indexed: 11/06/2022] Open
Abstract
G-proteins regulate various processes ranging from DNA replication and protein synthesis to cytoskeletal dynamics and cofactor assimilation and serve as models for uncovering strategies deployed for allosteric signal transduction. MeaB is a multifunctional G-protein chaperone, which gates loading of the active 5'-deoxyadenosylcobalamin cofactor onto methylmalonyl-CoA mutase (MCM) and precludes loading of inactive cofactor forms. MeaB also safeguards MCM, which uses radical chemistry, against inactivation and rescues MCM inactivated during catalytic turnover by using the GTP-binding energy to offload inactive cofactor. The conserved switch I and II signaling motifs used by G-proteins are predicted to mediate allosteric regulation in response to nucleotide binding and hydrolysis in MeaB. Herein, we targeted conserved residues in the MeaB switch I motif to interrogate the function of this loop. Unexpectedly, the switch I mutations had only modest effects on GTP binding and on GTPase activity and did not perturb stability of the MCM-MeaB complex. However, these mutations disrupted multiple MeaB chaperone functions, including cofactor editing, loading, and offloading. Hence, although residues in the switch I motif are not essential for catalysis, they are important for allosteric regulation. Furthermore, single-particle EM analysis revealed, for the first time, the overall architecture of the MCM-MeaB complex, which exhibits a 2:1 stoichiometry. These EM studies also demonstrate that the complex exhibits considerable conformational flexibility. In conclusion, the switch I element does not significantly stabilize the MCM-MeaB complex or influence the affinity of MeaB for GTP but is required for transducing signals between MeaB and MCM.
Collapse
Affiliation(s)
- Gregory C Campanello
- From the Departments of Biological Chemistry, University of Michigan Medical Center, and
| | - Michael Lofgren
- From the Departments of Biological Chemistry, University of Michigan Medical Center, and
| | - Adam L Yokom
- From the Departments of Biological Chemistry, University of Michigan Medical Center, and.,the Department of Biological Chemistry and.,the Graduate Program in Chemical Biology, Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600
| | - Daniel R Southworth
- From the Departments of Biological Chemistry, University of Michigan Medical Center, and.,the Department of Biological Chemistry and
| | - Ruma Banerjee
- From the Departments of Biological Chemistry, University of Michigan Medical Center, and
| |
Collapse
|
17
|
Li Z, Kitanishi K, Twahir UT, Cracan V, Chapman D, Warncke K, Banerjee R. Cofactor Editing by the G-protein Metallochaperone Domain Regulates the Radical B 12 Enzyme IcmF. J Biol Chem 2017; 292:3977-3987. [PMID: 28130442 DOI: 10.1074/jbc.m117.775957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Indexed: 11/06/2022] Open
Abstract
IcmF is a 5'-deoxyadenosylcobalamin (AdoCbl)-dependent enzyme that catalyzes the carbon skeleton rearrangement of isobutyryl-CoA to butyryl-CoA. It is a bifunctional protein resulting from the fusion of a G-protein chaperone with GTPase activity and the cofactor- and substrate-binding mutase domains with isomerase activity. IcmF is prone to inactivation during catalytic turnover, thus setting up its dependence on a cofactor repair system. Herein, we demonstrate that the GTPase activity of IcmF powers the ejection of the inactive cob(II)alamin cofactor and requires the presence of an acceptor protein, adenosyltransferase, for receiving it. Adenosyltransferase in turn converts cob(II)alamin to AdoCbl in the presence of ATP and a reductant. The repaired cofactor is then reloaded onto IcmF in a GTPase-gated step. The mechanistic details of cofactor loading and offloading from the AdoCbl-dependent IcmF are distinct from those of the better characterized and homologous methylmalonyl-CoA mutase/G-protein chaperone system.
Collapse
Affiliation(s)
- Zhu Li
- From the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600 and
| | - Kenichi Kitanishi
- From the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600 and
| | - Umar T Twahir
- the Department of Physics, Emory University, Atlanta, Georgia 30322-2430
| | - Valentin Cracan
- From the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600 and
| | - Derrell Chapman
- From the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600 and
| | - Kurt Warncke
- the Department of Physics, Emory University, Atlanta, Georgia 30322-2430
| | - Ruma Banerjee
- From the Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600 and
| |
Collapse
|