1
|
Carranza M, Rea A, Pacheco D, Montiel C, Park J, Youn H. Unexpected Requirement of Small Amino Acids at Position 183 for DNA Binding in the Escherichia coli cAMP Receptor Protein. J Microbiol 2024; 62:871-882. [PMID: 39240506 DOI: 10.1007/s12275-024-00169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
The Escherichia coli cAMP receptor protein (CRP) relies on the F-helix, the recognition helix of the helix-turn-helix motif, for DNA binding. The importance of the CRP F-helix in DNA binding is well-established, yet there is little information on the roles of its non-base-contacting residues. Here, we show that a CRP F-helix position occupied by a non-base-contacting residue Val183 bears an unexpected importance in DNA binding. Codon randomization and successive in vivo screening selected six amino acids (alanine, cysteine, glycine, serine, threonine, and valine) at CRP position 183 to be compatible with DNA binding. These amino acids are quite different in their amino acid properties (polar, non-polar, hydrophobicity), but one commonality is that they are all relatively small. Larger amino acid substitutions such as histidine, methionine, and tyrosine were made site-directedly and showed to have no detectable DNA binding, further supporting the requirement of small amino acids at CRP position 183. Bioinformatics analysis revealed that small amino acids (92.15% valine and 7.75% alanine) exclusively occupy the position analogous to CRP Val183 in 1,007 core CRP homologs, consistent with our mutant data. However, in extended CRP homologs comprising 3700 proteins, larger amino acids could also occupy the position analogous to CRP Val183 albeit with low occurrence. Another bioinformatics analysis suggested that large amino acids could be tolerated by compensatory small-sized amino acids at their neighboring positions. A full understanding of the unexpected requirement of small amino acids at CRP position 183 for DNA binding entails the verification of the hypothesized compensatory change(s) in CRP.
Collapse
Affiliation(s)
- Marcus Carranza
- Department of Biology, California State University Fresno, Fresno, CA, 93740, USA
| | - Amanda Rea
- Department of Biology, California State University Fresno, Fresno, CA, 93740, USA
| | - Daisy Pacheco
- Department of Biology, California State University Fresno, Fresno, CA, 93740, USA
| | - Christian Montiel
- Department of Biology, California State University Fresno, Fresno, CA, 93740, USA
| | - Jin Park
- Department of Computer Science, California State University Fresno, Fresno, CA, 93740, USA
| | - Hwan Youn
- Department of Biology, California State University Fresno, Fresno, CA, 93740, USA.
| |
Collapse
|
2
|
Yuan D, Liu B, Yuan X, Feng L, Xu X, Zhu J, Chen Z, Xu R, Chen J, Xu G, Lin J, Yang L, Li M, Lian J, Wu M. Multisite Mutation of the Escherichia coli cAMP Receptor Protein: Enhancing Xylitol Biosynthesis by Activating Xylose Catabolism and Improving Strain Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37921650 DOI: 10.1021/acs.jafc.3c05445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The bioproduction of xylitol from hemicellulose hydrolysate has good potential for industrial development. However, xylitol productivity has always been limited due to corncob hydrolysate toxicity and glucose catabolic repression. To address these challenges, this work selected the S83 and S128 amino acid residues of the cyclic AMP receptor protein (CRP) as the modification target. By introducing multisite mutation in CRP, this approach successfully enhanced xylose catabolism and improved the strain's tolerance to corncob hydrolysate. The resulting mutant strain, designated as CPH (CRP S83H-S128P), underwent fermentation in a 20 L bioreactor with semicontinuous feeding of corncob hydrolysate. Remarkably, xylitol yield and xylitol productivity for 41 h fermentation were 175 and 4.32 g/L/h, respectively. Therefore, multisite CRP mutation was demonstrated as an efficient global regulatory strategy to effectively improve xylitol productivity from lime-pretreated corncob hydrolysates.
Collapse
Affiliation(s)
- Dongxu Yuan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Bingbing Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Xinsong Yuan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230601, PR China
| | - Leilei Feng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Xudong Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Jialin Zhu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Zhengjie Chen
- Shandong Weiyan Biotechnology Co., Ltd, Binzhou 256660, PR China
| | - Renhao Xu
- Hangzhou No. 14 Middle School, Hangzhou 310006, PR China
| | - Jiao Chen
- Zhejiang Key Laboratory of Antifungal Drugs, Taizhou 318000, PR China
- Haizheng Pharmaceutical Co., Ltd, Taizhou 318000, PR China
| | - Gang Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Jianping Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Lirong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd, Quzhou 324302, PR China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
| | - Mianbin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, PR China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, PR China
- Zhejiang Key Laboratory of Antifungal Drugs, Taizhou 318000, PR China
| |
Collapse
|
3
|
cAMP Activation of the cAMP Receptor Protein, a Model Bacterial Transcription Factor. J Microbiol 2023; 61:277-287. [PMID: 36892777 DOI: 10.1007/s12275-023-00028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023]
Abstract
The active and inactive structures of the Escherichia coli cAMP receptor protein (CRP), a model bacterial transcription factor, are compared to generate a paradigm in the cAMP-induced activation of CRP. The resulting paradigm is shown to be consistent with numerous biochemical studies of CRP and CRP*, a group of CRP mutants displaying cAMP-free activity. The cAMP affinity of CRP is dictated by two factors: (i) the effectiveness of the cAMP pocket and (ii) the protein equilibrium of apo-CRP. How these two factors interplay in determining the cAMP affinity and cAMP specificity of CRP and CRP* mutants are discussed. Both the current understanding and knowledge gaps of CRP-DNA interactions are also described. This review ends with a list of several important CRP issues that need to be addressed in the future.
Collapse
|
4
|
Liu C, Sun D, Liu J, Chen Y, Zhou X, Ru Y, Zhu J, Liu W. cAMP and c-di-GMP synergistically support biofilm maintenance through the direct interaction of their effectors. Nat Commun 2022; 13:1493. [PMID: 35315431 PMCID: PMC8938473 DOI: 10.1038/s41467-022-29240-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Nucleotide second messengers, such as cAMP and c-di-GMP, regulate many physiological processes in bacteria, including biofilm formation. There is evidence of cross-talk between pathways mediated by c-di-GMP and those mediated by the cAMP receptor protein (CRP), but the mechanisms are often unclear. Here, we show that cAMP-CRP modulates biofilm maintenance in Shewanella putrefaciens not only via its known effects on gene transcription, but also through direct interaction with a putative c-di-GMP effector on the inner membrane, BpfD. Binding of cAMP-CRP to BpfD enhances the known interaction of BpfD with protease BpfG, which prevents proteolytic processing and release of a cell surface-associated adhesin, BpfA, thus contributing to biofilm maintenance. Our results provide evidence of cross-talk between cAMP and c-di-GMP pathways through direct interaction of their effectors, and indicate that cAMP-CRP can play regulatory roles at the post-translational level. Nucleotide second messengers, such as cAMP and c-di-GMP, regulate many physiological processes in bacteria, including biofilm formation. Here, the authors provide evidence of cross-talk between cAMP and c-di-GMP pathways through direct interaction of their effectors, showing that the cAMP receptor protein (CRP) can play regulatory roles at the post-translational level.
Collapse
|
5
|
Rodríguez-Valverde D, León-Montes N, Soria-Bustos J, Martínez-Cruz J, González-Ugalde R, Rivera-Gutiérrez S, González-y-Merchand JA, Rosales-Reyes R, García-Morales L, Hirakawa H, Fox JG, Girón JA, De la Cruz MA, Ares MA. cAMP Receptor Protein Positively Regulates the Expression of Genes Involved in the Biosynthesis of Klebsiella oxytoca Tilivalline Cytotoxin. Front Microbiol 2021; 12:743594. [PMID: 34659176 PMCID: PMC8515920 DOI: 10.3389/fmicb.2021.743594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/31/2021] [Indexed: 01/09/2023] Open
Abstract
Klebsiella oxytoca is a resident of the human gut. However, certain K. oxytoca toxigenic strains exist that secrete the nonribosomal peptide tilivalline (TV) cytotoxin. TV is a pyrrolobenzodiazepine that causes antibiotic-associated hemorrhagic colitis (AAHC). The biosynthesis of TV is driven by enzymes encoded by the aroX and NRPS operons. In this study, we determined the effect of environmental signals such as carbon sources, osmolarity, and divalent cations on the transcription of both TV biosynthetic operons. Gene expression was enhanced when bacteria were cultivated in tryptone lactose broth. Glucose, high osmolarity, and depletion of calcium and magnesium diminished gene expression, whereas glycerol increased transcription of both TV biosynthetic operons. The cAMP receptor protein (CRP) is a major transcriptional regulator in bacteria that plays a key role in metabolic regulation. To investigate the role of CRP on the cytotoxicity of K. oxytoca, we compared levels of expression of TV biosynthetic operons and synthesis of TV in wild-type strain MIT 09-7231 and a Δcrp isogenic mutant. In summary, we found that CRP directly activates the transcription of the aroX and NRPS operons and that the absence of CRP reduced cytotoxicity of K. oxytoca on HeLa cells, due to a significant reduction in TV production. This study highlights the importance of the CRP protein in the regulation of virulence genes in enteric bacteria and broadens our knowledge on the regulatory mechanisms of the TV cytotoxin.
Collapse
Affiliation(s)
- Diana Rodríguez-Valverde
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nancy León-Montes
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge Soria-Bustos
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jessica Martínez-Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ricardo González-Ugalde
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sandra Rivera-Gutiérrez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge A. González-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lázaro García-Morales
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Hidetada Hirakawa
- Department of Bacteriology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jorge A. Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A. De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
6
|
Jeong SH, Park JB, Wang Y, Kim GH, Zhang G, Wei G, Wang C, Kim SW. Regulatory molecule cAMP changes cell fitness of the engineered Escherichia coli for terpenoids production. Metab Eng 2020; 65:178-184. [PMID: 33246165 DOI: 10.1016/j.ymben.2020.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/06/2023]
Abstract
Terpenoids are a class of natural compounds with many important functions and applications. They are synthesized from a long synthetic pathway of isoprenyl unit coupling with the myriads of terpene synthases. Owing to the catalytic divergence of terpenoids synthesis, microbial production of terpenoids is compromised to the complexity of pathway engineering and suffers from the metabolic engineering burden. In this work, the adaptive Escherichia coli HP variant exhibited a general cell fitness in terpenoid synthesis. Especially, it could yield taxadiene of 193.2 mg/L in a test tube culture, which is a five-fold increase over the production in the wild type E. coli DH5α. Mutational analyses indicated that IS10 insertion in adenylate cyclase CyaA (CyaAHP) resulted in lowering intracellular cyclic AMP (cAMP), which could regulate its receptor protein CRP to rewire cell metabolism and contributed to the improved cell fitness. Our results suggested a way to manipulate cell fitness for terpenoids production and other products.
Collapse
Affiliation(s)
- Seong-Hee Jeong
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Ji-Bin Park
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Yan Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Gye-Hwan Kim
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Gaochuan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Gongyuan Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Chonglong Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China.
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Four), PMBBRC, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
7
|
Evolution of gene knockout strains of E. coli reveal regulatory architectures governed by metabolism. Nat Commun 2018; 9:3796. [PMID: 30228271 PMCID: PMC6143558 DOI: 10.1038/s41467-018-06219-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 07/27/2018] [Indexed: 01/13/2023] Open
Abstract
Biological regulatory network architectures are multi-scale in their function and can adaptively acquire new functions. Gene knockout (KO) experiments provide an established experimental approach not just for studying gene function, but also for unraveling regulatory networks in which a gene and its gene product are involved. Here we study the regulatory architecture of Escherichia coli K-12 MG1655 by applying adaptive laboratory evolution (ALE) to metabolic gene KO strains. Multi-omic analysis reveal a common overall schema describing the process of adaptation whereby perturbations in metabolite concentrations lead regulatory networks to produce suboptimal states, whose function is subsequently altered and re-optimized through acquisition of mutations during ALE. These results indicate that metabolite levels, through metabolite-transcription factor interactions, have a dominant role in determining the function of a multi-scale regulatory architecture that has been molded by evolution. The function of metabolic genes in the context of regulatory networks is not well understood. Here, the authors investigate the adaptive responses of E. coli after knockout of metabolic genes and highlight the influence of metabolite levels in the evolution of regulatory function.
Collapse
|
8
|
Hicks MN, Gunasekara S, Serate J, Park J, Mosharaf P, Zhou Y, Lee JW, Youn H. Gly184 of the Escherichia coli cAMP receptor protein provides optimal context for both DNA binding and RNA polymerase interaction. J Microbiol 2017; 55:816-822. [DOI: 10.1007/s12275-017-7266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
|