1
|
Pero ME, Chowdhury F, Bartolini F. Role of tubulin post-translational modifications in peripheral neuropathy. Exp Neurol 2023; 360:114274. [PMID: 36379274 PMCID: PMC11320756 DOI: 10.1016/j.expneurol.2022.114274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Peripheral neuropathy is a common disorder that results from nerve damage in the periphery. The degeneration of sensory axon terminals leads to changes or loss of sensory functions, often manifesting as debilitating pain, weakness, numbness, tingling, and disability. The pathogenesis of most peripheral neuropathies remains to be fully elucidated. Cumulative evidence from both early and recent studies indicates that tubulin damage may provide a common underlying mechanism of axonal injury in various peripheral neuropathies. In particular, tubulin post-translational modifications have been recently implicated in both toxic and inherited forms of peripheral neuropathy through regulation of axonal transport and mitochondria dynamics. This knowledge forms a new area of investigation with the potential for developing therapeutic strategies to prevent or delay peripheral neuropathy by restoring tubulin homeostasis.
Collapse
Affiliation(s)
- Maria Elena Pero
- Department of Pathology and Cell Biology, Columbia University, New York, USA; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy
| | - Farihah Chowdhury
- Department of Pathology and Cell Biology, Columbia University, New York, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, USA.
| |
Collapse
|
2
|
Schröder HC, Wang X, Neufurth M, Wang S, Müller WEG. Biomimetic Polyphosphate Materials: Toward Application in Regenerative Medicine. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:83-130. [PMID: 35697938 DOI: 10.1007/978-3-031-01237-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, inorganic polyphosphate (polyP) has attracted increasing attention as a biomedical polymer or biomaterial with a great potential for application in regenerative medicine, in particular in the fields of tissue engineering and repair. The interest in polyP is based on two properties of this physiological polymer that make polyP stand out from other polymers: polyP has morphogenetic activity by inducing cell differentiation through specific gene expression, and it functions as an energy store and donor of metabolic energy, especially in the extracellular matrix or in the extracellular space. No other biopolymer applicable in tissue regeneration/repair is known that is endowed with this combination of properties. In addition, polyP can be fabricated both in the form of a biologically active coacervate and as biomimetic amorphous polyP nano/microparticles, which are stable and are activated by transformation into the coacervate phase after contact with protein/body fluids. PolyP can be used in the form of various metal salts and in combination with various hydrogel-forming polymers, whereby (even printable) hybrid materials with defined porosities and mechanical and biological properties can be produced, which can even be loaded with cells for 3D cell printing or with drugs and support the growth and differentiation of (stem) cells as well as cell migration/microvascularization. Potential applications in therapy of bone, cartilage and eye disorders/injuries and wound healing are summarized and possible mechanisms are discussed.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
3
|
Khan A, Kuriachan G, Mahalakshmi R. Cellular Interactome of Mitochondrial Voltage-Dependent Anion Channels: Oligomerization and Channel (Mis)Regulation. ACS Chem Neurosci 2021; 12:3497-3515. [PMID: 34503333 DOI: 10.1021/acschemneuro.1c00429] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voltage-dependent anion channels (VDACs) of the outer mitochondrial membrane are known conventionally as metabolite flux proteins. However, research findings in the past decade have revealed the multifaceted regulatory roles of VDACs, from governing cellular physiology and mitochondria-mediated apoptosis to directly regulating debilitating cancers and neurodegenerative diseases. VDACs achieve these diverse functions by establishing isoform-dependent stereospecific interactomes in the cell with the cytosolic constituents and endoplasmic reticulum complexes, and the machinery of the mitochondrial compartments. VDACs are now increasingly recognized as regulatory hubs of the cell. Not surprisingly, even the transient misregulation of VDACs results directly in mitochondrial dysfunction. Additionally, human VDACs are now implicated in interaction with aggregation-prone cytosolic proteins, including Aβ, tau, and α-synuclein, contributing directly to the onset of Alzheimer's and Parkinson's diseases. Deducing the interaction dynamics and mechanisms can lead to VDAC-targeted peptide-based therapeutics that can alleviate neurodegenerative states. This review succinctly presents the latest findings of the VDAC interactome, and the mode(s) of VDAC-dependent regulation of biochemical physiology. We also discuss the relevance of VDACs in pathophysiological states and aggregation-associated diseases and address how VDACs will facilitate the development of next-generation precision medicines.
Collapse
Affiliation(s)
- Altmash Khan
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Gifty Kuriachan
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
4
|
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating “dying back” neuropathy featuring a distal-to-proximal peripheral nerve degeneration seen in cancer patients undergoing chemotherapy. The pathogenenic mechanisms of CIPN are largely unknown. We report that in sensory neurons, the CIPN-inducing drug bortezomib caused axonopathy and disrupted mitochondria motility by increasing delta 2 tubulin (D2), the only irreversible tubulin posttranslational modification and a marker of hyper-stable microtubules. These data provide a new paradigm for the risk associated with enhanced tubulin longevity in peripheral neuropathy and suggest that targeting the enzymes regulating this tubulin modification may provide therapies that prevent the axonal injury observed in bortezomib-induced peripheral neuropathy. The pathogenesis of chemotherapy-induced peripheral neuropathy (CIPN) is poorly understood. Here, we report that the CIPN-causing drug bortezomib (Bort) promotes delta 2 tubulin (D2) accumulation while affecting microtubule stability and dynamics in sensory neurons in vitro and in vivo and that the accumulation of D2 is predominant in unmyelinated fibers and a hallmark of bortezomib-induced peripheral neuropathy (BIPN) in humans. Furthermore, while D2 overexpression was sufficient to cause axonopathy and inhibit mitochondria motility, reduction of D2 levels alleviated both axonal degeneration and the loss of mitochondria motility induced by Bort. Together, our data demonstrate that Bort, a compound structurally unrelated to tubulin poisons, affects the tubulin cytoskeleton in sensory neurons in vitro, in vivo, and in human tissue, indicating that the pathogenic mechanisms of seemingly unrelated CIPN drugs may converge on tubulin damage. The results reveal a previously unrecognized pathogenic role for D2 in BIPN that may occur through altered regulation of mitochondria motility.
Collapse
|
5
|
Ohi R, Strothman C, Zanic M. Impact of the 'tubulin economy' on the formation and function of the microtubule cytoskeleton. Curr Opin Cell Biol 2021; 68:81-89. [PMID: 33160109 PMCID: PMC7925340 DOI: 10.1016/j.ceb.2020.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
The microtubule cytoskeleton is assembled from a finite pool of α,β-tubulin, the size of which is controlled by an autoregulation mechanism. Cells also tightly regulate the architecture and dynamic behavior of microtubule arrays. Here, we discuss progress in our understanding of how tubulin autoregulation is achieved and highlight work showing that tubulin, in its unassembled state, is relevant for regulating the formation and organization of microtubules. Emerging evidence suggests that tubulin regulates microtubule-associated proteins and kinesin motors that are critical for microtubule nucleation, dynamics, and function. These relationships create feedback loops that connect the tubulin assembly cycle to the organization and dynamics of microtubule networks. We term this concept the 'tubulin economy', which emphasizes the idea that tubulin is a resource that can be deployed for the immediate purpose of creating polymers, or alternatively as a signaling molecule that has more far-reaching consequences for the organization of microtubule arrays.
Collapse
Affiliation(s)
- Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, USA.
| | - Claire Strothman
- Department of Cell and Developmental Biology, Vanderbilt University, USA
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, USA; Department of Biomolecular and Chemical Engineering, Department of Biochemistry, Vanderbilt University, USA.
| |
Collapse
|
6
|
Ramos SV, Hughes MC, Delfinis LJ, Bellissimo CA, Perry CGR. Mitochondrial bioenergetic dysfunction in the D2.mdx model of Duchenne muscular dystrophy is associated with microtubule disorganization in skeletal muscle. PLoS One 2020; 15:e0237138. [PMID: 33002037 PMCID: PMC7529311 DOI: 10.1371/journal.pone.0237138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/21/2020] [Indexed: 11/25/2022] Open
Abstract
In Duchenne muscular dystrophy, a lack of dystrophin leads to extensive muscle weakness and atrophy that is linked to cellular metabolic dysfunction and oxidative stress. This dystrophinopathy results in a loss of tethering between microtubules and the sarcolemma. Microtubules are also believed to regulate mitochondrial bioenergetics potentially by binding the outer mitochondrial membrane voltage dependent anion channel (VDAC) and influencing permeability to ADP/ATP cycling. The objective of this investigation was to determine if a lack of dystrophin causes microtubule disorganization concurrent with mitochondrial dysfunction in skeletal muscle, and whether this relationship is linked to altered binding of tubulin to VDAC. In extensor digitorum longus (EDL) muscle from 4-week old D2.mdx mice, microtubule disorganization was observed when probing for α-tubulin. This cytoskeletal disorder was associated with a reduced ability of ADP to stimulate respiration and attenuate H2O2 emission relative to wildtype controls. However, this was not associated with altered α-tubulin-VDAC2 interactions. These findings reveal that microtubule disorganization in dystrophin-deficient EDL is associated with impaired ADP control of mitochondrial bioenergetics, and suggests that mechanisms alternative to α-tubulin’s regulation of VDAC2 should be examined to understand how cytoskeletal disruption in the absence of dystrophin may cause metabolic dysfunctions in skeletal muscle.
Collapse
Affiliation(s)
- Sofhia V. Ramos
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Meghan C. Hughes
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Luca J. Delfinis
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Catherine A. Bellissimo
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Christopher G. R. Perry
- School of Kinesiology and Health Sciences, Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
7
|
Ong MS, Deng S, Halim CE, Cai W, Tan TZ, Huang RYJ, Sethi G, Hooi SC, Kumar AP, Yap CT. Cytoskeletal Proteins in Cancer and Intracellular Stress: A Therapeutic Perspective. Cancers (Basel) 2020; 12:cancers12010238. [PMID: 31963677 PMCID: PMC7017214 DOI: 10.3390/cancers12010238] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Cytoskeletal proteins, which consist of different sub-families of proteins including microtubules, actin and intermediate filaments, are essential for survival and cellular processes in both normal as well as cancer cells. However, in cancer cells, these mechanisms can be altered to promote tumour development and progression, whereby the functions of cytoskeletal proteins are co-opted to facilitate increased migrative and invasive capabilities, proliferation, as well as resistance to cellular and environmental stresses. Herein, we discuss the cytoskeletal responses to important intracellular stresses (such as mitochondrial, endoplasmic reticulum and oxidative stresses), and delineate the consequences of these responses, including effects on oncogenic signalling. In addition, we elaborate how the cytoskeleton and its associated molecules present themselves as therapeutic targets. The potential and limitations of targeting new classes of cytoskeletal proteins are also explored, in the context of developing novel strategies that impact cancer progression.
Collapse
Affiliation(s)
- Mei Shan Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Clarissa Esmeralda Halim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
| | - Wanpei Cai
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- School of Medicine, College of Medicine, National Taiwan University, No. 1 Ren Ai Road Sec. 1, Taipei City 10617, Taiwan
- Department of Obstetrics and Gynaecology, National University Hospital, National University Health System, Singapore 119074, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore (T.Z.T.); (R.Y.-J.H.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.O.); (S.D.); (C.E.H.)
- Medical Science Cluster, Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
- Correspondence: (S.C.H.); (A.P.K.); (C.T.Y.); Tel.: +65-6516-3294 (S.C.H. & C.T.Y.); +65-6873-5456 (A.P.K.); Fax: +65-6778-8161 (S.C.H. & C.T.Y.); +65-6873-9664 (A.P.K.)
| |
Collapse
|
8
|
Redox Signaling from Mitochondria: Signal Propagation and Its Targets. Biomolecules 2020; 10:biom10010093. [PMID: 31935965 PMCID: PMC7023504 DOI: 10.3390/biom10010093] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Progress in mass spectroscopy of posttranslational oxidative modifications has enabled researchers to experimentally verify the concept of redox signaling. We focus here on redox signaling originating from mitochondria under physiological situations, discussing mechanisms of transient redox burst in mitochondria, as well as the possible ways to transfer such redox signals to specific extramitochondrial targets. A role of peroxiredoxins is described which enables redox relay to other targets. Examples of mitochondrial redox signaling are discussed: initiation of hypoxia-inducible factor (HIF) responses; retrograde redox signaling to PGC1α during exercise in skeletal muscle; redox signaling in innate immune cells; redox stimulation of insulin secretion, and other physiological situations.
Collapse
|
9
|
Müller WE, Schröder HC, Wang X. Inorganic Polyphosphates As Storage for and Generator of Metabolic Energy in the Extracellular Matrix. Chem Rev 2019; 119:12337-12374. [PMID: 31738523 PMCID: PMC6935868 DOI: 10.1021/acs.chemrev.9b00460] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 12/14/2022]
Abstract
Inorganic polyphosphates (polyP) consist of linear chains of orthophosphate residues, linked by high-energy phosphoanhydride bonds. They are evolutionarily old biopolymers that are present from bacteria to man. No other molecule concentrates as much (bio)chemically usable energy as polyP. However, the function and metabolism of this long-neglected polymer are scarcely known, especially in higher eukaryotes. In recent years, interest in polyP experienced a renaissance, beginning with the discovery of polyP as phosphate source in bone mineralization. Later, two discoveries placed polyP into the focus of regenerative medicine applications. First, polyP shows morphogenetic activity, i.e., induces cell differentiation via gene induction, and, second, acts as an energy storage and donor in the extracellular space. Studies on acidocalcisomes and mitochondria provided first insights into the enzymatic basis of eukaryotic polyP formation. In addition, a concerted action of alkaline phosphatase and adenylate kinase proved crucial for ADP/ATP generation from polyP. PolyP added extracellularly to mammalian cells resulted in a 3-fold increase of ATP. The importance and mechanism of this phosphotransfer reaction for energy-consuming processes in the extracellular matrix are discussed. This review aims to give a critical overview about the formation and function of this unique polymer that is capable of storing (bio)chemically useful energy.
Collapse
Affiliation(s)
- Werner E.G. Müller
- ERC Advanced Investigator
Grant Research
Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator
Grant Research
Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator
Grant Research
Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
10
|
Caporizzo MA, Chen CY, Prosser BL. Cardiac microtubules in health and heart disease. Exp Biol Med (Maywood) 2019; 244:1255-1272. [PMID: 31398994 DOI: 10.1177/1535370219868960] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cardiomyocytes are large (∼40,000 µm3), rod-shaped muscle cells that provide the working force behind each heartbeat. These highly structured cells are packed with dense cytoskeletal networks that can be divided into two groups—the contractile (i.e. sarcomeric) cytoskeleton that consists of filamentous actin-myosin arrays organized into myofibrils, and the non-sarcomeric cytoskeleton, which is composed of β- and γ-actin, microtubules, and intermediate filaments. Together, microtubules and intermediate filaments form a cross-linked scaffold, and these networks are responsible for the delivery of intracellular cargo, the transmission of mechanical signals, the shaping of membrane systems, and the organization of myofibrils and organelles. Microtubules are extensively altered as part of both adaptive and pathological cardiac remodeling, which has diverse ramifications for the structure and function of the cardiomyocyte. In heart failure, the proliferation and post-translational modification of the microtubule network is linked to a number of maladaptive processes, including the mechanical impediment of cardiomyocyte contraction and relaxation. This raises the possibility that reversing microtubule alterations could improve cardiac performance, yet therapeutic efforts will strongly benefit from a deeper understanding of basic microtubule biology in the heart. The aim of this review is to summarize the known physiological roles of the cardiomyocyte microtubule network, the consequences of its pathological remodeling, and to highlight the open and intriguing questions regarding cardiac microtubules. Impact statement Advancements in cell biological and biophysical approaches and super-resolution imaging have greatly broadened our view of tubulin biology over the last decade. In the heart, microtubules and microtubule-based transport help to organize and maintain key structures within the cardiomyocyte, including the sarcomere, intercalated disc, protein clearance machinery and transverse-tubule and sarcoplasmic reticulum membranes. It has become increasingly clear that post translational regulation of microtubules is a key determinant of their sub-cellular functionality. Alterations in microtubule network density, stability, and post-translational modifications are hallmarks of pathological cardiac remodeling, and modified microtubules can directly impede cardiomyocyte contractile function in various forms of heart disease. This review summarizes the functional roles and multi-leveled regulation of the cardiac microtubule cytoskeleton and highlights how refined experimental techniques are shedding mechanistic clarity on the regionally specified roles of microtubules in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Matthew A Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christina Yingxian Chen
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.,Penn Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Fox JC, Evans AT, Blomfield MP, Livingstone SK, Tenney SR, Webster JB, Perry K, Hill JT, Bikman BT, Hansen MD. Resistance mechanisms and cross-resistance for a pyridine-pyrimidine amide inhibitor of microtubule polymerization. Bioorg Med Chem Lett 2019; 29:1647-1653. [DOI: 10.1016/j.bmcl.2019.04.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/11/2019] [Accepted: 04/24/2019] [Indexed: 12/01/2022]
|
12
|
Gasic I, Boswell SA, Mitchison TJ. Tubulin mRNA stability is sensitive to change in microtubule dynamics caused by multiple physiological and toxic cues. PLoS Biol 2019; 17:e3000225. [PMID: 30964857 PMCID: PMC6474637 DOI: 10.1371/journal.pbio.3000225] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/19/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022] Open
Abstract
The localization, mass, and dynamics of microtubules are important in many processes. Cells may actively monitor the state of their microtubules and respond to perturbation, but how this occurs outside mitosis is poorly understood. We used gene-expression analysis in quiescent cells to analyze responses to subtle and strong perturbation of microtubules. Genes encoding α-, β, and γ-tubulins (TUBAs, TUBBs, and TUBGs), but not δ- or ε-tubulins (TUBDs or TUBEs), exhibited the strongest differential expression response to microtubule-stabilizing versus destabilizing drugs. Quantitative PCR of exon versus intron sequences confirmed that these changes were caused by regulation of tubulin mRNA stability and not transcription. Using tubulin mRNA stability as a signature to query the Gene Expression Omnibus (GEO) database, we find that tubulin genes respond to toxins known to damage microtubules. Importantly, we find many other experimental perturbations, including multiple signaling and metabolic inputs that trigger tubulin differential expression, suggesting their novel, to our knowledge, role in the regulation of the microtubule cytoskeleton. Mechanistic follow-up confirms that one important physiological signal, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activity, indeed regulates tubulin mRNA stability via changes in microtubule dynamics. We propose that tubulin gene expression is regulated as part of many coordinated biological responses, with wide implications in physiology and toxicology. Furthermore, we present a new way to discover microtubule regulation using transcriptomics.
Collapse
Affiliation(s)
- Ivana Gasic
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sarah A. Boswell
- Department of Systems Biology, Program in Therapeutic Sciences, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Timothy J. Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Puurand M, Tepp K, Timohhina N, Aid J, Shevchuk I, Chekulayev V, Kaambre T. Tubulin βII and βIII Isoforms as the Regulators of VDAC Channel Permeability in Health and Disease. Cells 2019; 8:cells8030239. [PMID: 30871176 PMCID: PMC6468622 DOI: 10.3390/cells8030239] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/14/2022] Open
Abstract
In recent decades, there have been several models describing the relationships between the cytoskeleton and the bioenergetic function of the cell. The main player in these models is the voltage-dependent anion channel (VDAC), located in the mitochondrial outer membrane. Most metabolites including respiratory substrates, ADP, and Pi enter mitochondria only through VDAC. At the same time, high-energy phosphates are channeled out and directed to cellular energy transfer networks. Regulation of these energy fluxes is controlled by β-tubulin, bound to VDAC. It is also thought that β-tubulin‒VDAC interaction modulates cellular energy metabolism in cancer, e.g., switching from oxidative phosphorylation to glycolysis. In this review we focus on the described roles of unpolymerized αβ-tubulin heterodimers in regulating VDAC permeability for adenine nucleotides and cellular bioenergetics. We introduce the Mitochondrial Interactosome model and the function of the βII-tubulin subunit in this model in muscle cells and brain synaptosomes, and also consider the role of βIII-tubulin in cancer cells.
Collapse
Affiliation(s)
- Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Natalja Timohhina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Jekaterina Aid
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| |
Collapse
|
14
|
Maimouni S, Lee MH, Sung YM, Hall M, Roy A, Ouaari C, Hwang YS, Spivak J, Glasgow E, Swift M, Patel J, Cheema A, Kumar D, Byers S. Tumor suppressor RARRES1 links tubulin deglutamylation to mitochondrial metabolism and cell survival. Oncotarget 2019; 10:1606-1624. [PMID: 30899431 PMCID: PMC6422194 DOI: 10.18632/oncotarget.26600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
RARRES1, a retinoic acid regulated carboxypeptidase inhibitor associated with fatty acid metabolism, stem cell differentiation and tumorigenesis is among the most commonly methylated loci in multiple cancers but has no known mechanism of action. Here we show that RARRES1 interaction with cytoplasmic carboxypeptidase 2 (CCP2) inhibits tubulin deglutamylation, which in turn regulates the mitochondrial voltage dependent anion channel (VDAC1), mitochondrial membrane potential, AMPK activation, energy balance and metabolically reprograms cells and zebrafish to a more energetic and anabolic phenotype. Depletion of RARRES1 also increases expression of stem cell markers, promotes anoikis, anchorage independent growth and insensitivity to multiple apoptotic stimuli. As depletion of CCP2 or inhibition of VDAC1 reverses the effects of RARRES1 depletion on energy balance and cell survival we conclude that RARRES1 modulation of CCP2-modulated tubulin-mitochondrial VDAC1 interactions is a fundamental regulator of cancer and stem cell metabolism and survival.
Collapse
Affiliation(s)
- Sara Maimouni
- Department of Biochemical, Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Mi-Hye Lee
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - You-Me Sung
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Michael Hall
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Arpita Roy
- University of the District of Columbia, Washington, DC, USA
| | - Chokri Ouaari
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.,University of the District of Columbia, Washington, DC, USA
| | - Yoo-Seok Hwang
- Cancer & Developmental Biology Laboratory, National Cancer Institute-Frederick, Frederick, MD, USA
| | - Justin Spivak
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Eric Glasgow
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Matthew Swift
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Jay Patel
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Amrita Cheema
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Deepak Kumar
- University of the District of Columbia, Washington, DC, USA
| | - Stephen Byers
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.,Department of Biochemical, Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
15
|
Gasic I, Mitchison TJ. Autoregulation and repair in microtubule homeostasis. Curr Opin Cell Biol 2018; 56:80-87. [PMID: 30415186 DOI: 10.1016/j.ceb.2018.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/24/2018] [Accepted: 10/21/2018] [Indexed: 10/27/2022]
Abstract
Even in the face of damaging insults, most cells maintain stability over time through multiple homeostatic pathways, including maintenance of the microtubule cytoskeleton that is fundamental to numerous cellular processes. The dynamic instability-perpetual growth and shrinkage-is the best-known microtubule regulatory pathway, which allows rapid rebuilding of the microtubule cytoskeleton in response to internal or external cues. Much less investigated is homeostatic regulation through availability of α-β tubulin heterodimers-microtubules' main building blocks-which influences total mass and dynamic behavior of microtubules. Finally, the most recently discovered is microtubule homeostasis through self-repair, where new GTP-bound tubulin heterodimers replace the lost ones in the microtubule lattice. In this review we try to integrate our current knowledge on how dynamic instability, regulation of tubulin mass, and self-repair work together to achieve microtubule homeostasis.
Collapse
Affiliation(s)
- Ivana Gasic
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
16
|
Bieberich E. Sphingolipids and lipid rafts: Novel concepts and methods of analysis. Chem Phys Lipids 2018; 216:114-131. [PMID: 30194926 PMCID: PMC6196108 DOI: 10.1016/j.chemphyslip.2018.08.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
About twenty years ago, the functional lipid raft model of the plasma membrane was published. It took into account decades of research showing that cellular membranes are not just homogenous mixtures of lipids and proteins. Lateral anisotropy leads to assembly of membrane domains with specific lipid and protein composition regulating vesicular traffic, cell polarity, and cell signaling pathways in a plethora of biological processes. However, what appeared to be a clearly defined entity of clustered raft lipids and proteins became increasingly fluid over the years, and many of the fundamental questions about biogenesis and structure of lipid rafts remained unanswered. Experimental obstacles in visualizing lipids and their interactions hampered progress in understanding just how big rafts are, where and when they are formed, and with which proteins raft lipids interact. In recent years, we have begun to answer some of these questions and sphingolipids may take center stage in re-defining the meaning and functional significance of lipid rafts. In addition to the archetypical cholesterol-sphingomyelin raft with liquid ordered (Lo) phase and the liquid-disordered (Ld) non-raft regions of cellular membranes, a third type of microdomains termed ceramide-rich platforms (CRPs) with gel-like structure has been identified. CRPs are "ceramide rafts" that may offer some fresh view on the membrane mesostructure and answer several critical questions for our understanding of lipid rafts.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology at the University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
17
|
Saletti R, Reina S, Pittalà MG, Magrì A, Cunsolo V, Foti S, De Pinto V. Post-translational modifications of VDAC1 and VDAC2 cysteines from rat liver mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:806-816. [DOI: 10.1016/j.bbabio.2018.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022]
|
18
|
Rostovtseva TK, Gurnev PA, Hoogerheide DP, Rovini A, Sirajuddin M, Bezrukov SM. Sequence diversity of tubulin isotypes in regulation of the mitochondrial voltage-dependent anion channel. J Biol Chem 2018; 293:10949-10962. [PMID: 29777059 PMCID: PMC6052224 DOI: 10.1074/jbc.ra117.001569] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/16/2018] [Indexed: 12/31/2022] Open
Abstract
The microtubule protein tubulin is a heterodimer comprising α/β subunits, in which each subunit features multiple isotypes in vertebrates. For example, seven α-tubulin and eight β-tubulin isotypes in the human tubulin gene family vary mostly in the length and primary sequence of the disordered anionic carboxyl-terminal tails (CTTs). The biological reason for such sequence diversity remains a topic of vigorous enquiry. Here, we demonstrate that it may be a key feature of tubulin's role in regulation of the permeability of the mitochondrial outer membrane voltage-dependent anion channel (VDAC). Using recombinant yeast α/β-tubulin constructs with α-CTTs, β-CTTs, or both from various human tubulin isotypes, we probed their interactions with VDAC reconstituted into planar lipid bilayers. A comparative study of the blockage kinetics revealed that either α-CTTs or β-CTTs block the VDAC pore and that the efficiency of blockage by individual CTTs spans 2 orders of magnitude, depending on the CTT isotype. β-Tubulin constructs, notably β3, blocked VDAC most effectively. We quantitatively described these experimental results using a physical model that accounted only for the number and distribution of charges in the CTT, and not for the interactions between specific residues on the CTT and VDAC pore. Based on these results, we speculate that the effectiveness of VDAC regulation by tubulin depends on the predominant tubulin isotype in a cell. Consequently, the fluxes of ATP/ADP through the channel could vary significantly, depending on the isotype, thus suggesting an intriguing link between VDAC regulation and the diversity of tubulin isotypes present in vertebrates.
Collapse
Affiliation(s)
- Tatiana K Rostovtseva
- From the Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-0924,
| | - Philip A Gurnev
- From the Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-0924
| | - David P Hoogerheide
- the Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, and
| | - Amandine Rovini
- From the Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-0924
| | | | - Sergey M Bezrukov
- From the Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-0924
| |
Collapse
|
19
|
Stykel MG, Humphries K, Kirby MP, Czaniecki C, Wang T, Ryan T, Bamm V, Ryan SD. Nitration of microtubules blocks axonal mitochondrial transport in a human pluripotent stem cell model of Parkinson's disease. FASEB J 2018; 32:5350-5364. [PMID: 29688812 DOI: 10.1096/fj.201700759rr] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuronal loss in Parkinson's disease (PD) is associated with aberrant mitochondrial function in dopaminergic (DA) neurons of the substantia nigra pars compacta. An association has been reported between PD onset and exposure to mitochondrial toxins, including the agrochemicals paraquat (PQ), maneb (MB), and rotenone (Rot). Here, with the use of a patient-derived stem cell model of PD, allowing comparison of DA neurons harboring a mutation in the α-synuclein (α-syn) gene ( SNCA-A53T) against isogenic, mutation-corrected controls, we describe a novel mechanism whereby NO, generated from SNCA-A53T mutant neurons exposed to Rot or PQ/MB, inhibits anterograde mitochondrial transport through nitration of α-tubulin (α-Tub). Nitration of α-Tub inhibited the association of both α-syn and the mitochondrial motor protein kinesin 5B with the microtubules, arresting anterograde transport. This was, in part, a result of nitration of α-Tub in the C-terminal domain. These effects were rescued by inhibiting NO synthesis with the NOS inhibitor Nω-nitro-L-arginine methyl ester. Collectively, our results are the first to demonstrate a gene by environment interaction in PD, whereby agrochemical exposure selectively triggers a deficit in mitochondrial transport by nitrating the microtubules in neurons harboring the SNCA-A53T mutation.-Stykel, M. G., Humphries, K., Kirby, M. P., Czaniecki, C., Wang, T., Ryan, T., Bamm, V., Ryan, S. D. Nitration of microtubules blocks axonal mitochondrial transport in a human pluripotent stem cell model of Parkinson's disease.
Collapse
Affiliation(s)
- Morgan G Stykel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kayla Humphries
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Mathew P Kirby
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Chris Czaniecki
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Tinya Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Tammy Ryan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Vladimir Bamm
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Neurodegenerative Disease Center, Scintillon Institute, San Diego, California, USA
| |
Collapse
|
20
|
Qian J, Gao Q. Sonodynamic Therapy Mediated by Emodin Induces the Oxidation of Microtubules to Facilitate the Sonodynamic Effect. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:853-860. [PMID: 29398130 DOI: 10.1016/j.ultrasmedbio.2017.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
In previous studies, sonodynamic therapy mediated by emodin (emodin-SDT) induced cytoskeletal filament disruption and apoptosis of THP-1-derived macrophages. In this research, we investigated the underlying mechanism. THP-1-derived macrophages were incubated with emodin and exposed to ultrasound irradiation. After emodin-SDT, we measured the production of reactive oxygen species (ROS) and analyzed the level of amino acid oxidation in microtubules, the cleavage of microtubules and the mitochondrial membrane potential (MMP). We found that intracellular emodin accumulated mainly on microtubules. After emodin-SDT, generation of ROS was evident. Analysis of the carbonyl content of proteins suggested oxidation of microtubules. Microtubules were disrupted after emodin-SDT, and the antioxidant N-acetyl-L-cysteine prevented this disruption. MMP decreased after emodin-SDT, and this effect could be prevented by N-acetyl-L-cysteine. We conclude that emodin-SDT induces the generation of ROS. The oxidation of microtubules leads to its cleavage and the subsequent decline in MMP.
Collapse
Affiliation(s)
- Jili Qian
- Unit of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qianping Gao
- Unit of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
21
|
Berezhkovskii AM, Dagdug L, Bezrukov SM. A new insight into diffusional escape from a biased cylindrical trap. J Chem Phys 2017; 147:104103. [PMID: 28915752 DOI: 10.1063/1.5002127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent experiments with single biological nanopores, as well as single-molecule fluorescence spectroscopy and pulling studies of protein and nucleic acid folding raised a number of questions that stimulated theoretical and computational investigations of barrier crossing dynamics. The present paper addresses a closely related problem focusing on trajectories of Brownian particles that escape from a cylindrical trap in the presence of a force F parallel to the cylinder axis. To gain new insights into the escape dynamics, we analyze the "fine structure" of these trajectories. Specifically, we divide trajectories into two segments: a looping segment, when a particle unsuccessfully tries to escape returning to the trap bottom again and again, and a direct-transit segment, when it finally escapes moving without touching the bottom. Analytical expressions are derived for the Laplace transforms of the probability densities of the durations of the two segments. These expressions are used to find the mean looping and direct-transit times as functions of the biasing force F. It turns out that the force-dependences of the two mean times are qualitatively different. The mean looping time monotonically increases as F decreases, approaching exponential F-dependence at large negative forces pushing the particle towards the trap bottom. In contrast to this intuitively appealing behavior, the mean direct-transit time shows rather counterintuitive behavior: it decreases as the force magnitude, |F|, increases independently of whether the force pushes the particles to the trap bottom or to the exit from the trap, having a maximum at F = 0.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Leonardo Dagdug
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
22
|
Parker AL, Teo WS, McCarroll JA, Kavallaris M. An Emerging Role for Tubulin Isotypes in Modulating Cancer Biology and Chemotherapy Resistance. Int J Mol Sci 2017; 18:ijms18071434. [PMID: 28677634 PMCID: PMC5535925 DOI: 10.3390/ijms18071434] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022] Open
Abstract
Tubulin proteins, as components of the microtubule cytoskeleton perform critical cellular functions throughout all phases of the cell cycle. Altered tubulin isotype composition of microtubules is emerging as a feature of aggressive and treatment refractory cancers. Emerging evidence highlighting a role for tubulin isotypes in differentially influencing microtubule behaviour and broader functional networks within cells is illuminating a complex role for tubulin isotypes regulating cancer biology and chemotherapy resistance. This review focuses on the role of different tubulin isotypes in microtubule dynamics as well as in oncogenic changes that provide a survival or proliferative advantage to cancer cells within the tumour microenvironment and during metastatic processes. Consideration of the role of tubulin isotypes beyond their structural function will be essential to improving the current clinical use of tubulin-targeted chemotherapy agents and informing the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Amelia L Parker
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Wee Siang Teo
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Joshua A McCarroll
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Maria Kavallaris
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
23
|
Hoogerheide DP, Noskov SY, Jacobs D, Bergdoll L, Silin V, Worcester DL, Abramson J, Nanda H, Rostovtseva TK, Bezrukov SM. Structural features and lipid binding domain of tubulin on biomimetic mitochondrial membranes. Proc Natl Acad Sci U S A 2017; 114:E3622-E3631. [PMID: 28420794 PMCID: PMC5422764 DOI: 10.1073/pnas.1619806114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dimeric tubulin, an abundant water-soluble cytosolic protein known primarily for its role in the cytoskeleton, is routinely found to be associated with mitochondrial outer membranes, although the structure and physiological role of mitochondria-bound tubulin are still unknown. There is also no consensus on whether tubulin is a peripheral membrane protein or is integrated into the outer mitochondrial membrane. Here the results of five independent techniques-surface plasmon resonance, electrochemical impedance spectroscopy, bilayer overtone analysis, neutron reflectometry, and molecular dynamics simulations-suggest that α-tubulin's amphipathic helix H10 is responsible for peripheral binding of dimeric tubulin to biomimetic "mitochondrial" membranes in a manner that differentiates between the two primary lipid headgroups found in mitochondrial membranes, phosphatidylethanolamine and phosphatidylcholine. The identification of the tubulin dimer orientation and membrane-binding domain represents an essential step toward our understanding of the complex mechanisms by which tubulin interacts with integral proteins of the mitochondrial outer membrane and is important for the structure-inspired design of tubulin-targeting agents.
Collapse
Affiliation(s)
- David P Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899;
| | - Sergei Y Noskov
- Center for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4;
| | - Daniel Jacobs
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Lucie Bergdoll
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Vitalii Silin
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - David L Worcester
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Jeff Abramson
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - Hirsh Nanda
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
24
|
Karachitos A, Grobys D, Kulczyńska K, Sobusiak A, Kmita H. The Association of VDAC with Cell Viability of PC12 Model of Huntington's Disease. Front Oncol 2016; 6:238. [PMID: 27891320 PMCID: PMC5104952 DOI: 10.3389/fonc.2016.00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/26/2016] [Indexed: 12/18/2022] Open
Abstract
It is becoming increasingly apparent that mitochondria dysfunction plays an important role in the pathogenesis of Huntington’s disease (HD), but the underlying mechanism is still elusive. Thus, there is a still need for further studies concerning the upstream events in the mitochondria dysfunction that could contribute to cell death observed in HD. Taking into account the fundamental role of the voltage-dependent anion-selective channel (VDAC) in mitochondria functioning, it is reasonable to consider the channel as a crucial element in HD etiology. Therefore, we applied inducible PC12 cell model of HD to determine the relationship between the effect of expression of wild type and mutant huntingtin (Htt and mHtt, respectively) on cell survival and mitochondria functioning in intact cells under conditions of undergoing cell divisions. Because after 48 h of Htt and mHtt expression differences in mitochondria functioning co-occurred with differences in the cell viability, we decided to estimate the effect of Htt and mHtt expression lasted for 48 h on VDAC functioning. Therefore, we isolated VDAC from the cells and tested the preparations by black lipid membrane system. We observed that the expression of mHtt, but not Htt, resulted in changes of the open state conductance and voltage-dependence when compared to control cells cultured in the absence of the expression. Importantly, for all the VDAC preparations, we observed a dominant quantitative content of VDAC1, and the quantitative relationships between VDAC isoforms were not changed by Htt and mHtt expression. Thus, Htt and mHtt-mediated functional changes of VDAC, being predominantly VDAC1, which occur shortly after these protein appearances in cells, may result in differences concerning mitochondria functioning and viability of cells expressing Htt and mHtt. The assumption is important for better understanding of cytotoxicity as well as cytoprotection mechanisms of potential clinical application.
Collapse
Affiliation(s)
- Andonis Karachitos
- Laboratory of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań , Poznań , Poland
| | - Daria Grobys
- Laboratory of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań , Poznań , Poland
| | - Klaudia Kulczyńska
- Laboratory of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań , Poznań , Poland
| | - Adrian Sobusiak
- Laboratory of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań , Poznań , Poland
| | - Hanna Kmita
- Laboratory of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań , Poznań , Poland
| |
Collapse
|
25
|
Bailey ME, Sackett DL, Ross JL. Katanin Severing and Binding Microtubules Are Inhibited by Tubulin Carboxy Tails. Biophys J 2016; 109:2546-2561. [PMID: 26682813 DOI: 10.1016/j.bpj.2015.11.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 10/22/2022] Open
Abstract
Microtubule dynamics in cells are regulated by associated proteins that can be either stabilizers or destabilizers. A class of destabilizers that is important in a large number of cellular activities is the microtubule-severing enzymes, yet little is known about how they function. Katanin p60 was the first ATPase associated with microtubule severing. Here, we investigate the activity of katanin severing using a GFP-labeled human version. We quantify the effect of katanin concentration on katanin binding and severing activity. We find that free tubulin can inhibit severing activity by interfering with katanin binding to microtubules. The inhibition is mediated by the sequence of the tubulin and specifically depends on the carboxy-terminal tails. We directly investigate the inhibition effect of tubulin carboxy-terminal tails using peptide sequences of α-, β-, or detyrosinated α-tubulin tails that have been covalently linked to bovine serum albumin. Our results show that β-tubulin tails are the most effective at inhibiting severing, and that detyrosinated α-tubulin tails are the least effective. These results are distinct from those for other severing enzymes and suggest a scheme for regulation of katanin activity in cells dependent on free tubulin concentration and the modification state of the tubulin.
Collapse
Affiliation(s)
- Megan E Bailey
- Molecular and Cellular Biology Graduate Program, University of Massachusetts-Amherst, Amherst, Massachusetts; Department of Physics, University of Massachusetts-Amherst, Amherst, Massachusetts
| | - Dan L Sackett
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Jennifer L Ross
- Department of Physics, University of Massachusetts-Amherst, Amherst, Massachusetts.
| |
Collapse
|