1
|
Diana D, Pirone L, Russo L, D'Abrosca G, Madheswaran M, Benfante R, Di Lascio S, Caldinelli L, Fornasari D, Acconcia C, Corvino A, Ventserova N, Pollegioni L, Isernia C, Di Gaetano S, Malgieri G, Pedone EM, Fattorusso R. Structural characterization of PHOX2B and its DNA interaction shed light on the molecular basis of the +7Ala variant pathogenicity in CCHS. Chem Sci 2024; 15:8858-8872. [PMID: 38873078 PMCID: PMC11168103 DOI: 10.1039/d3sc06427a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/12/2024] [Indexed: 06/15/2024] Open
Abstract
An expansion of poly-alanine up to +13 residues in the C-terminus of the transcription factor PHOX2B underlies the onset of congenital central hypoventilation syndrome (CCHS). Recent studies demonstrated that the alanine tract expansion influences PHOX2B folding and activity. Therefore, structural information on PHOX2B is an important target for obtaining clues to elucidate the insurgence of the alanine expansion-related syndrome and also for defining a viable therapy. Here we report by NMR spectroscopy the structural characterization of the homeodomain (HD) of PHOX2B and HD + C-terminus PHOX2B protein, free and in the presence of the target DNA. The obtained structural data are then exploited to obtain a structural model of the PHOX2B-DNA interaction. In addition, the variant +7Ala, responsible for one of the most frequent forms of the syndrome, was analysed, showing different conformational proprieties in solution and a strong propensity to aggregation. Our data suggest that the elongated poly-alanine tract would be related to disease onset through a loss-of-function mechanism. Overall, this study paves the way for the future rational design of therapeutic drugs, suggesting as a possible therapeutic route the use of specific anti-aggregating molecules capable of preventing variant aggregation and possibly restoring the DNA-binding activity of PHOX2B.
Collapse
Affiliation(s)
- Donatella Diana
- CNR - Institute of Biostructures and Bioimaging Via Pietro Castellino 111 80131 Naples Italy
| | - Luciano Pirone
- CNR - Institute of Biostructures and Bioimaging Via Pietro Castellino 111 80131 Naples Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies - University of Campania "Luigi Vanvitelli" Via Vivaldi 43 81100 Caserta Italy
| | - Gianluca D'Abrosca
- Department of Clinical and Experimental Medicine - University of Foggia Viale Luigi Pinto 71122 Foggia Italy
| | - Manoj Madheswaran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies - University of Campania "Luigi Vanvitelli" Via Vivaldi 43 81100 Caserta Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano Milan Italy
- CNR - Institute of Neuroscience Vedano Al Lambro (MB) Italy
- NeuroMi - Milan Center for Neuroscience, University of Milano Bicocca Milan Italy
| | - Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano Milan Italy
| | - Laura Caldinelli
- Department of Biotechnology and Life Sciences, University of Insubria Via J.H. Dunant 3 21100 Varese Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano Milan Italy
| | - Clementina Acconcia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies - University of Campania "Luigi Vanvitelli" Via Vivaldi 43 81100 Caserta Italy
| | - Andrea Corvino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies - University of Campania "Luigi Vanvitelli" Via Vivaldi 43 81100 Caserta Italy
| | - Nataliia Ventserova
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies - University of Campania "Luigi Vanvitelli" Via Vivaldi 43 81100 Caserta Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria Via J.H. Dunant 3 21100 Varese Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies - University of Campania "Luigi Vanvitelli" Via Vivaldi 43 81100 Caserta Italy
| | - Sonia Di Gaetano
- CNR - Institute of Biostructures and Bioimaging Via Pietro Castellino 111 80131 Naples Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies - University of Campania "Luigi Vanvitelli" Via Vivaldi 43 81100 Caserta Italy
| | - Emilia M Pedone
- CNR - Institute of Biostructures and Bioimaging Via Pietro Castellino 111 80131 Naples Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies - University of Campania "Luigi Vanvitelli" Via Vivaldi 43 81100 Caserta Italy
| |
Collapse
|
2
|
Cardani S, Janes TA, Betzner W, Pagliardini S. Knockdown of PHOX2B in the retrotrapezoid nucleus reduces the central CO 2 chemoreflex in rats. eLife 2024; 13:RP94653. [PMID: 38727716 PMCID: PMC11087052 DOI: 10.7554/elife.94653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
PHOX2B is a transcription factor essential for the development of different classes of neurons in the central and peripheral nervous system. Heterozygous mutations in the PHOX2B coding region are responsible for the occurrence of Congenital Central Hypoventilation Syndrome (CCHS), a rare neurological disorder characterised by inadequate chemosensitivity and life-threatening sleep-related hypoventilation. Animal studies suggest that chemoreflex defects are caused in part by the improper development or function of PHOX2B expressing neurons in the retrotrapezoid nucleus (RTN), a central hub for CO2 chemosensitivity. Although the function of PHOX2B in rodents during development is well established, its role in the adult respiratory network remains unknown. In this study, we investigated whether reduction in PHOX2B expression in chemosensitive neuromedin-B (NMB) expressing neurons in the RTN altered respiratory function. Four weeks following local RTN injection of a lentiviral vector expressing the short hairpin RNA (shRNA) targeting Phox2b mRNA, a reduction of PHOX2B expression was observed in Nmb neurons compared to both naive rats and rats injected with the non-target shRNA. PHOX2B knockdown did not affect breathing in room air or under hypoxia, but ventilation was significantly impaired during hypercapnia. PHOX2B knockdown did not alter Nmb expression but it was associated with reduced expression of both Task2 and Gpr4, two CO2/pH sensors in the RTN. We conclude that PHOX2B in the adult brain has an important role in CO2 chemoreception and reduced PHOX2B expression in CCHS beyond the developmental period may contribute to the impaired central chemoreflex function.
Collapse
Affiliation(s)
- Silvia Cardani
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
| | - Tara A Janes
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
| | - William Betzner
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
| | - Silvia Pagliardini
- Department of Physiology, Faculty of Medicine and Dentistry, University of AlbertaEdmontonCanada
- Women and Children’s Health Research Institute, University of AlbertaEdmontonCanada
- Neuroscience and Mental Health Institute, University of AlbertaEdmontonCanada
| |
Collapse
|
3
|
Ueda A, Osawa M, Naito H, Ochiai E, Kakimoto Y. Non-polyalanine repeat mutation in PHOX2B is detected in autopsy cases of sudden unexpected infant death. PLoS One 2022; 17:e0267751. [PMID: 35486589 PMCID: PMC9053812 DOI: 10.1371/journal.pone.0267751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background Congenital central hypoventilation syndrome (CCHS), which is caused by PHOX2B with phenotypic variations, has a point of controversy: CCHS is putatively involved in autopsy cases of sudden unexpected infant death (SUID) including sudden infant death syndrome. Objective The relation of CCHS to SUID cases was investigated by extensive genotyping of PHOX2B. Methods We analyzed 93 DNA samples of less than one-year-old SUID cases that were autopsied in our department. Unrelated adult volunteers (n = 942) were used as the control. Results No polyalanine tract expansion was detected in the SUID cases. The allelic frequencies of repeat contractions and SNP (rs28647582) in intron 2 were not significantly different from that in those control group. Further extensive sequencing revealed a non-polyalanine repeat mutation (NPARM) of c.905A>C in a sudden death case of a one-month-old male infant. This missense mutation (p.Asn302Thr), registered as rs779068107, was annotated to ‘Affected status is unknown’, but it might be associated with the sudden death. Conclusion NPARM was more plausibly related to sudden unexpected death than expansions because of severe clinical complications. This finding indicates possible CCHS involvement in forensic autopsy cases without ante-mortem diagnosis.
Collapse
Affiliation(s)
- Atsushi Ueda
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Motoki Osawa
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- * E-mail:
| | - Haruaki Naito
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Eriko Ochiai
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Department of Legal Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
4
|
Etonogestrel Administration Reduces the Expression of PHOX2B and Its Target Genes in the Solitary Tract Nucleus. Int J Mol Sci 2022; 23:ijms23094816. [PMID: 35563209 PMCID: PMC9101578 DOI: 10.3390/ijms23094816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Heterozygous mutations of the transcription factor PHOX2B are responsible for Congenital Central Hypoventilation Syndrome, a neurological disorder characterized by inadequate respiratory response to hypercapnia and life-threatening hypoventilation during sleep. Although no cure is currently available, it was suggested that a potent progestin drug provides partial recovery of chemoreflex response. Previous in vitro data show a direct molecular link between progestins and PHOX2B expression. However, the mechanism through which these drugs ameliorate breathing in vivo remains unknown. Here, we investigated the effects of chronic administration of the potent progestin drug Etonogestrel (ETO) on respiratory function and transcriptional activity in adult female rats. We assessed respiratory function with whole-body plethysmography and measured genomic changes in brain regions important for respiratory control. Our results show that ETO reduced metabolic activity, leading to an enhanced chemoreflex response and concurrent increased breathing cycle variability at rest. Furthermore, ETO-treated brains showed reduced mRNA and protein expression of PHOX2B and its target genes selectively in the dorsal vagal complex, while other areas were unaffected. Histological analysis suggests that changes occurred in the solitary tract nucleus (NTS). Thus, we propose that the NTS, rich in both progesterone receptors and PHOX2B, is a good candidate for ETO-induced respiratory modulation.
Collapse
|
5
|
Ceccherini I, Kurek KC, Weese-Mayer DE. Developmental disorders affecting the respiratory system: CCHS and ROHHAD. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:53-91. [PMID: 36031316 DOI: 10.1016/b978-0-323-91532-8.00005-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) and Congenital Central Hypoventilation Syndrome (CCHS) are ultra-rare distinct clinical disorders with overlapping symptoms including altered respiratory control and autonomic regulation. Although both disorders have been considered for decades to be on the same spectrum with necessity of artificial ventilation as life-support, recent acquisition of specific knowledge concerning the genetic basis of CCHS coupled with an elusive etiology for ROHHAD have definitely established that the two disorders are different. CCHS is an autosomal dominant neurocristopathy characterized by alveolar hypoventilation resulting in hypoxemia/hypercarbia and features of autonomic nervous system dysregulation (ANSD), with presentation typically in the newborn period. It is caused by paired-like homeobox 2B (PHOX2B) variants, with known genotype-phenotype correlation but pathogenic mechanism(s) are yet unknown. ROHHAD is characterized by rapid weight gain, followed by hypothalamic dysfunction, then hypoventilation followed by ANSD, in seemingly normal children ages 1.5-7 years. Postmortem neuroanatomical studies, thorough clinical characterization, pathophysiological assessment, and extensive genetic inquiry have failed to identify a cause attributable to a traditional genetic basis, somatic mosaicism, epigenetic mechanism, environmental trigger, or other. To find the key to the ROHHAD pathogenesis and to improve its clinical management, in the present chapter, we have carefully compared CCHS and ROHHAD.
Collapse
Affiliation(s)
- Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Kyle C Kurek
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Debra E Weese-Mayer
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute; and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
6
|
Mitsuzawa S, Suzuki N, Akiyama T, Ishikawa M, Sone T, Kawada J, Funayama R, Shirota M, Mitsuhashi H, Morimoto S, Ikeda K, Shijo T, Ohno A, Nakamura N, Ono H, Ono R, Osana S, Nakagawa T, Nishiyama A, Izumi R, Kaneda S, Ikeuchi Y, Nakayama K, Fujii T, Warita H, Okano H, Aoki M. Reduced PHOX2B stability causes axonal growth impairment in motor neurons with TARDBP mutations. Stem Cell Reports 2021; 16:1527-1541. [PMID: 34048688 PMCID: PMC8190591 DOI: 10.1016/j.stemcr.2021.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset incurable motor neuron (MN) disease. The reasons for selective MN vulnerability in ALS are unknown. Axonal pathology is among the earliest signs of ALS. We searched for novel modulatory genes in human MN axon shortening affected by TARDBP mutations. In transcriptome analysis of RNA present in the axon compartment of human-derived induced pluripotent stem cell (iPSC)-derived MNs, PHOX2B (paired-like homeobox protein 2B) showed lower expression in TARDBP mutant axons, which was consistent with axon qPCR and in situ hybridization. PHOX2B mRNA stability was reduced in TARDBP mutant MNs. Furthermore, PHOX2B knockdown reduced neurite length in human MNs. Finally, phox2b knockdown in zebrafish induced short spinal axons and impaired escape response. PHOX2B is known to be highly express in other types of neurons maintained after ALS progression. Collectively, TARDBP mutations induced loss of axonal resilience, which is an important ALS-related phenotype mediated by PHOX2B downregulation. Human iPSCs were established from a familial ALS with the TARDBP p.G376D mutation PHOX2B mRNA was identified to be decreased in TARDBP mutant MNs by RNA sequencing PHOX2B mRNA bind to TDP-43 and its stability was reduced in TARDBP mutant MNs PHOX2B knockdown reduced neurite length and impaired motor functions in vivo/vitro
Collapse
Affiliation(s)
- Shio Mitsuzawa
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Tetsuya Akiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takefumi Sone
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jiro Kawada
- Jiksak Bioengineering Inc. 7-7 Shinkawasaki, Saiwai-ku, Kawasaki 212-0032, Japan; Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroaki Mitsuhashi
- Department of Applied Biochemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Tomomi Shijo
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Akiyuki Ohno
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Naoko Nakamura
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hiroya Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Risako Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Doori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shohei Kaneda
- Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; Department of Mechanical Systems Engineering, Faculty of Engineering, Kogakuin University, 1-24-2 Nishishinjuku, Shinjuku-ku, Tokyo, 163-8677, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan; Institute for AI and Beyond, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Teruo Fujii
- Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| |
Collapse
|
7
|
Zhou A, Rand CM, Hockney SM, Niewijk G, Reineke P, Speare V, Berry-Kravis EM, Zhou L, Jennings LJ, Yu M, Ceccherini I, Bachetti T, Pennock M, Yap KL, Weese-Mayer DE. Paired-like homeobox gene (PHOX2B) nonpolyalanine repeat expansion mutations (NPARMs): genotype-phenotype correlation in congenital central hypoventilation syndrome (CCHS). Genet Med 2021; 23:1656-1663. [PMID: 33958749 DOI: 10.1038/s41436-021-01178-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE CCHS is an extremely rare congenital disorder requiring artificial ventilation as life support. Typically caused by heterozygous polyalanine repeat expansion mutations (PARMs) in the PHOX2B gene, identification of a relationship between PARM length and phenotype severity has enabled anticipatory management. However, for patients with non-PARMs in PHOX2B (NPARMs, ~10% of CCHS patients), a genotype-phenotype correlation has not been established. This comprehensive report of PHOX2B NPARMs and associated phenotypes, aims at elucidating potential genotype-phenotype correlations that will guide anticipatory management. METHODS An international collaboration (clinical, commercial, and research laboratories) was established to collect/share information on novel and previously published PHOX2B NPARM cases. Variants were categorized by type and gene location. Categorical data were analyzed with chi-square and Fisher's exact test; further pairwise comparisons were made on significant results. RESULTS Three hundred two individuals with PHOX2B NPARMs were identified, including 139 previously unreported cases. Findings demonstrate significant associations between key phenotypic manifestations of CCHS and variant type, location, and predicted effect on protein function. CONCLUSION This study presents the largest cohort of PHOX2B NPARMs and associated phenotype data to date, enabling genotype-phenotype studies that will advance personalized, anticipatory management and help elucidate pathological mechanisms. Further characterization of PHOX2B NPARMs demands longitudinal clinical follow-up through international registries.
Collapse
Affiliation(s)
- Amy Zhou
- Department of Pediatrics, Division of Autonomic Medicine, Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA
| | - Casey M Rand
- Department of Pediatrics, Division of Autonomic Medicine, Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA
| | - Sara M Hockney
- Department of Pediatrics, Division of Autonomic Medicine, Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Grace Niewijk
- Department of Pediatrics, Division of Autonomic Medicine, Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA
| | | | | | - Elizabeth M Berry-Kravis
- Departments of Pediatrics, Neurology, and Biochemistry, Molecular Diagnostics Laboratory, Rush University Medical Center, Chicago, IL, USA
| | - Lili Zhou
- Departments of Pediatrics, Neurology, and Biochemistry, Molecular Diagnostics Laboratory, Rush University Medical Center, Chicago, IL, USA
| | - Lawrence J Jennings
- Department of Pathology, Molecular Diagnostics Laboratory, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Min Yu
- Department of Pathology, Molecular Diagnostics Laboratory, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | | | - Tiziana Bachetti
- IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Lab Neurobiologia dello Sviluppo, Dip. Scienze della Terra dell'Ambiente e della Vita (DISTAV), Università di Genova, Genova, Italy
| | | | - Kai Lee Yap
- Department of Pathology, Molecular Diagnostics Laboratory, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Debra E Weese-Mayer
- Department of Pediatrics, Division of Autonomic Medicine, Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA. .,Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Pediatrics, Pediatric Autonomic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
8
|
Di Lascio S, Benfante R, Cardani S, Fornasari D. Research Advances on Therapeutic Approaches to Congenital Central Hypoventilation Syndrome (CCHS). Front Neurosci 2021; 14:615666. [PMID: 33510615 PMCID: PMC7835644 DOI: 10.3389/fnins.2020.615666] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital central hypoventilation syndrome (CCHS) is a genetic disorder of neurodevelopment, with an autosomal dominant transmission, caused by heterozygous mutations in the PHOX2B gene. CCHS is a rare disorder characterized by hypoventilation due to the failure of autonomic control of breathing. Until now no curative treatment has been found. PHOX2B is a transcription factor that plays a crucial role in the development (and maintenance) of the autonomic nervous system, and in particular the neuronal structures involved in respiratory reflexes. The underlying pathogenetic mechanism is still unclear, although studies in vivo and in CCHS patients indicate that some neuronal structures may be damaged. Moreover, in vitro experimental data suggest that transcriptional dysregulation and protein misfolding may be key pathogenic mechanisms. This review summarizes latest researches that improved the comprehension of the molecular pathogenetic mechanisms responsible for CCHS and discusses the search for therapeutic intervention in light of the current knowledge about PHOX2B function.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy.,CNR-Institute of Neuroscience, Milan, Italy.,NeuroMi-Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy
| | - Silvia Cardani
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy.,CNR-Institute of Neuroscience, Milan, Italy
| |
Collapse
|
9
|
Pirone L, Caldinelli L, Di Lascio S, Di Girolamo R, Di Gaetano S, Fornasari D, Pollegioni L, Benfante R, Pedone E. Molecular insights into the role of the polyalanine region in mediating PHOX2B aggregation. FEBS J 2019; 286:2505-2521. [PMID: 30955232 DOI: 10.1111/febs.14841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/27/2019] [Accepted: 04/04/2019] [Indexed: 11/26/2022]
Abstract
About 90% of congenital central hypoventilation syndrome (CCHS) patients show polyalanine triplet expansions in the coding region of transcription factor PHOX2B, which renders this protein an intriguing target to understand the insurgence of this syndrome and for the design of a novel therapeutical approach. Consistently with the role of PHOX2B as a transcriptional regulator, it is reasonable that a general transcriptional dysregulation caused by the polyalanine expansion might represent an important mechanism underlying CCHS pathogenesis. Therefore, this study focused on the biochemical characterization of different PHOX2B variants, such as a variant containing the correct C-terminal (20 alanines) stretch, one of the most frequent polyalanine expansions (+7 alanines), and a variant lacking the complete alanine stretch (0 alanines). Comparison of the different variants by a multidisciplinary approach based on different methodologies (including circular dichroism, spectrofluorimetry, light scattering, and Atomic Force Microscopy studies) highlighted the propensity to aggregate for the PHOX2B variant containing the polyalanine expansion (+7-alanines), especially in the presence of DNA, while the 0-alanines variant resembled the protein with the correct polyalanine length. Moreover, and unexpectedly, the formation of fibrils was revealed only for the pathological variant, suggesting a plausible role of such fibrils in the insurgence of CCHS.
Collapse
Affiliation(s)
- Luciano Pirone
- Institute of Biostructure and Bioimaging, CNR, Napoli, Italy
| | - Laura Caldinelli
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Varese, Italy
| | - Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, Italy
| | | | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Varese, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
- CNR- Neuroscience Institute, Milan, Italy
| | - Emilia Pedone
- Institute of Biostructure and Bioimaging, CNR, Napoli, Italy
| |
Collapse
|
10
|
Ye G, Han D, Jiang Y, Wang Z, Zhou Y, Lin X, Chen W, Chen M, Xu J, Yang Y, Guo Q. A Novel c.676_677insG PHOX2B Mutation in Congenital Central Hypoventilation Syndrome. J Clin Sleep Med 2019; 15:509-513. [PMID: 30853048 DOI: 10.5664/jcsm.7688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/07/2019] [Indexed: 11/13/2022]
Abstract
ABSTRACT Paired-like homeobox (PHOX)2B is considered to be the causative gene of congenital central hypoventilation syndrome (CCHS), a dominant genetic disorder that results in abnormal central respiratory control with resulting hypoventilation during sleep. In this study, we report a novel c.676_677insG (p.Ala226fs) mutation in a patient with severe CCHS, and we evaluated the function of this mutation. The mutation reduced the translation of the mutant PHOX2B protein and impaired its ability to activate the PHOX2A promoter, due to a haploinsufficiency effect. The mutant PHOX2B was able to interact with wildtype PHOX2B, resulting in retention of PHOX2B on the nuclear membrane, which may impair the normal function of the nuclear membrane, and leading to cellular morbidity. Our study provides useful information for the functional studies of PHOX2B and understanding the pathogenesis of CCHS, and thus is beneficial for the prognosis of, genetic counseling for, and development of pharmaceuticals for PHOX2B-associated diseases.
Collapse
Affiliation(s)
- Guodong Ye
- United Diagnostic and Research Center for Clinical Genetics, School of Public Health of Xiamen University and Xiamen Maternal and Child Health Hospital, Xiamen, China.,Xiamen LifeInt Technology Co., Ltd, Xiamen, China.,School of Basic Medical Sciences, Jinan University, Guangzhou, China
| | - Daxiong Han
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yu Jiang
- United Diagnostic and Research Center for Clinical Genetics, School of Public Health of Xiamen University and Xiamen Maternal and Child Health Hospital, Xiamen, China
| | - Zengge Wang
- United Diagnostic and Research Center for Clinical Genetics, School of Public Health of Xiamen University and Xiamen Maternal and Child Health Hospital, Xiamen, China
| | - Yulin Zhou
- United Diagnostic and Research Center for Clinical Genetics, School of Public Health of Xiamen University and Xiamen Maternal and Child Health Hospital, Xiamen, China
| | - Xinzhu Lin
- Department of Neonatology, Xiamen Maternal and Child Health Hospital, Xiamen, China
| | - Weiwei Chen
- Xiamen LifeInt Technology Co., Ltd, Xiamen, China
| | - Maoli Chen
- Xiamen LifeInt Technology Co., Ltd, Xiamen, China
| | - Jianxiong Xu
- Xiamen LifeInt Technology Co., Ltd, Xiamen, China
| | - Yanyan Yang
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, China
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, School of Public Health of Xiamen University and Xiamen Maternal and Child Health Hospital, Xiamen, China
| |
Collapse
|
11
|
Di Lascio S, Benfante R, Cardani S, Fornasari D. Advances in the molecular biology and pathogenesis of congenital central hypoventilation syndrome—implications for new therapeutic targets. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1540978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
- CNR- Neuroscience Institute, Milan, Italy
| | - Silvia Cardani
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
- CNR- Neuroscience Institute, Milan, Italy
| |
Collapse
|
12
|
Alexandrescu S, Paulson V, Dubuc A, Ligon A, Lidov HG. PHOX2B is a reliable immunomarker in distinguishing peripheral neuroblastic tumours from CNS embryonal tumours. Histopathology 2018; 73:483-491. [DOI: 10.1111/his.13648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Sanda Alexandrescu
- Department of Pathology; Boston Children's Hospital; Harvard Medical School; Boston MA USA
| | - Vera Paulson
- Department of Pathology; Boston Children's Hospital; Harvard Medical School; Boston MA USA
| | - Adrian Dubuc
- Center for Advanced Molecular Diagnostics; Brigham and Women's Hospital; Harvard Medical School; Boston MA USA
| | - Azra Ligon
- Center for Advanced Molecular Diagnostics; Brigham and Women's Hospital; Harvard Medical School; Boston MA USA
| | - Hart G Lidov
- Department of Pathology; Boston Children's Hospital; Harvard Medical School; Boston MA USA
| |
Collapse
|
13
|
Byers HM, Chen M, Gelfand AS, Ong B, Jendras M, Glass IA. Expanding the phenotype of congenital central hypoventilation syndrome impacts management decisions. Am J Med Genet A 2018; 176:1398-1404. [PMID: 29696799 DOI: 10.1002/ajmg.a.38726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 04/01/2018] [Accepted: 04/04/2018] [Indexed: 11/10/2022]
Abstract
Congenital central hypoventilation syndrome (CCHS) is a neurocristopathy caused by pathogenic heterozygous variants in the gene paired-like homeobox 2b (PHOX2B). It is characterized by severe infantile alveolar hypoventilation. Individuals may also have diffuse autonomic nervous system dysfunction, Hirschsprung disease and neural crest tumors. We report three individuals with CCHS due to an 8-base pair duplication in PHOX2B; c.691_698dupGGCCCGGG (p.Gly234Alafs*78) with a predominant enteral and neural crest phenotype and a relatively mild respiratory phenotype. The attenuated respiratory phenotype reported here and elsewhere suggests an emergent genotype:phenotype correlation which challenges the current paradigm of invoking mechanical ventilation for all infants diagnosed with CCHS. Best treatment requires careful clinical judgment and ideally the assistance of a care team with expertise in CCHS.
Collapse
Affiliation(s)
- Heather M Byers
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, California
| | - Maida Chen
- Department of Pediatrics, University of Washington, Seattle, Washington.,Division of Pulmonary Medicine, Seattle Children's Hospital, Seattle, Washington
| | | | - Bruce Ong
- Division of Pediatric Pulmonology, Tripler Army Medical Center, Honolulu, Hawaii
| | | | - Ian A Glass
- Department of Pediatrics, University of Washington, Seattle, Washington.,Division of Medical Genetics, Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|
14
|
Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions. Molecules 2017; 22:molecules22122027. [PMID: 29186753 PMCID: PMC6149999 DOI: 10.3390/molecules22122027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins and proteins with intrinsically disordered regions have been shown to be highly prevalent in disease. Furthermore, disease-causing expansions of the regions containing tandem amino acid repeats often push repetitive proteins towards formation of irreversible aggregates. In fact, in disease-relevant proteins, the increased repeat length often positively correlates with the increased aggregation efficiency and the increased disease severity and penetrance, being negatively correlated with the age of disease onset. The major categories of repeat extensions involved in disease include poly-glutamine and poly-alanine homorepeats, which are often times located in the intrinsically disordered regions, as well as repeats in non-coding regions of genes typically encoding proteins with ordered structures. Repeats in such non-coding regions of genes can be expressed at the mRNA level. Although they can affect the expression levels of encoded proteins, they are not translated as parts of an affected protein and have no effect on its structure. However, in some cases, the repetitive mRNAs can be translated in a non-canonical manner, generating highly repetitive peptides of different length and amino acid composition. The repeat extension-caused aggregation of a repetitive protein may represent a pivotal step for its transformation into a proteotoxic entity that can lead to pathology. The goals of this article are to systematically analyze molecular mechanisms of the proteinopathies caused by the poly-glutamine and poly-alanine homorepeat expansion, as well as by the polypeptides generated as a result of the microsatellite expansions in non-coding gene regions and to examine the related proteins. We also present results of the analysis of the prevalence and functional roles of intrinsic disorder in proteins associated with pathological repeat expansions.
Collapse
|
15
|
Di Lascio S, Benfante R, Di Zanni E, Cardani S, Adamo A, Fornasari D, Ceccherini I, Bachetti T. Structural and functional differences in PHOX2B frameshift mutations underlie isolated or syndromic congenital central hypoventilation syndrome. Hum Mutat 2017; 39:219-236. [PMID: 29098737 PMCID: PMC5846889 DOI: 10.1002/humu.23365] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 12/13/2022]
Abstract
Heterozygous mutations in the PHOX2B gene are causative of congenital central hypoventilation syndrome (CCHS), a neurocristopathy characterized by defective autonomic control of breathing due to the impaired differentiation of neural crest cells. Among PHOX2B mutations, polyalanine (polyAla) expansions are almost exclusively associated with isolated CCHS, whereas frameshift variants, although less frequent, are often more severe than polyAla expansions and identified in syndromic CCHS. This article provides a complete review of all the frameshift mutations identified in cases of isolated and syndromic CCHS reported in the literature as well as those identified by us and not yet published. These were considered in terms of both their structure, whether the underlying indels induced frameshifts of either 1 or 2 steps ("frame 2" and "frame 3" mutations respectively), and clinical associations. Furthermore, we evaluated the structural and functional effects of one "frame 3" mutation identified in a patient with isolated CCHS, and one "frame 2" mutation identified in a patient with syndromic CCHS, also affected with Hirschsprung's disease and neuroblastoma. The data thus obtained confirm that the type of translational frame affects the severity of the transcriptional dysfunction and the predisposition to isolated or syndromic CCHS.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,CNR- Neuroscience Institute, Milan, Italy
| | | | - Silvia Cardani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Adamo
- UOC Genetica Medica, Istituto Giannina Gaslini, Genoa, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,CNR- Neuroscience Institute, Milan, Italy
| | | | | |
Collapse
|
16
|
Di Zanni E, Adamo A, Belligni E, Lerone M, Martucciello G, Mattioli G, Pini Prato A, Ravazzolo R, Silengo M, Bachetti T, Ceccherini I. Common PHOX2B poly-alanine contractions impair RET gene transcription, predisposing to Hirschsprung disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1770-1777. [PMID: 28433712 DOI: 10.1016/j.bbadis.2017.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 01/08/2023]
Abstract
HSCR is a congenital disorder of the enteric nervous system, characterized by the absence of neurons along a variable length of the gut resulting from loss-of-function RET mutations. Congenital Central Hypoventilation Syndrome (CCHS) is a rare neurocristopathy characterized by impaired response to hypercapnia and hypoxemia caused by heterozygous mutations of the PHOX2B gene, mostly polyalanine (polyA) expansions but also missense, nonsense, and frameshift mutations, while polyA contractions are common in the population and believed neutral. HSCR associated CCHS can present in patients carrying PHOX2B mutations. Indeed, RET expression is orchestrated by different transcriptional factors among which PHOX2B, thus suggesting its possible role in HSCR pathogenesis. Following the observation of HSCR patients carrying in frame trinucleotide deletions within the polyalanine stretch in exon 3 (polyA contractions), we have verified the hypothesis that these PHOX2B variants do reduce its transcriptional activity, likely resulting in a down-regulation of RET expression and, consequently, favouring the development of the HSCR phenotype. Using proper reporter constructs, we show here that the in vitro transactivation of the RET promoter by different HSCR-associated PHOX2B polyA variants has resulted significantly lower compared to the effect of PHOX2B wild type protein. In particular, polyA contractions do induce a reduced transactivation of the RET promoter, milder compared to the severe polyA expansions associated with CCHS+HSCR, and correlated with the length of the deleted trait, with a more pronounced effect when contractions are larger.
Collapse
Affiliation(s)
- Eleonora Di Zanni
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy
| | - Annalisa Adamo
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy
| | - Elga Belligni
- Dipartimento Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italy
| | - Margherita Lerone
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy
| | - Giuseppe Martucciello
- UOC Chirurgia, Istituto Giannina Gaslini, 16148 Genova, Italy; DiNOGMI, University of Genova, Genova, Italy
| | | | | | - Roberto Ravazzolo
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy; DiNOGMI, University of Genova, Genova, Italy
| | - Margherita Silengo
- Dipartimento Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italy
| | - Tiziana Bachetti
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy
| | | |
Collapse
|
17
|
Cain JT, Kim DI, Quast M, Shivega WG, Patrick RJ, Moser C, Reuter S, Perez M, Myers A, Weimer JM, Roux KJ, Landsverk M. Nonsense pathogenic variants in exon 1 of PHOX2B lead to translational reinitiation in congenital central hypoventilation syndrome. Am J Med Genet A 2017; 173:1200-1207. [PMID: 28371199 DOI: 10.1002/ajmg.a.38162] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/15/2016] [Accepted: 01/09/2017] [Indexed: 11/06/2022]
Abstract
Pathogenic variants in PHOX2B lead to congenital central hypoventilation syndrome (CCHS), a rare disorder of the nervous system characterized by autonomic dysregulation and hypoventilation typically presenting in the neonatal period, although a milder late-onset (LO) presentation has been reported. More than 90% of cases are caused by polyalanine repeat mutations (PARMs) in the C-terminus of the protein; however non-polyalanine repeat mutations (NPARMs) have been reported. Most NPARMs are located in exon 3 of PHOX2B and result in a more severe clinical presentation including Hirschsprung disease (HSCR) and/or peripheral neuroblastic tumors (PNTs). A previously reported nonsense pathogenic variant in exon 1 of a patient with LO-CCHS and no HSCR or PNTs leads to translational reinitiation at a downstream AUG codon producing an N-terminally truncated protein. Here we report additional individuals with nonsense pathogenic variants in exon 1 of PHOX2B. In vitro analyses were used to determine if these and other reported nonsense variants in PHOX2B exon 1 produced N-terminally truncated proteins. We found that all tested nonsense variants in PHOX2B exon 1 produced a truncated protein of the same size. This truncated protein localized to the nucleus and transactivated a target promoter. These data suggest that nonsense pathogenic variants in the first exon of PHOX2B likely escape nonsense mediated decay (NMD) and produce N-terminally truncated proteins functionally distinct from those produced by the more common PARMs.
Collapse
Affiliation(s)
- Jacob T Cain
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Dae I Kim
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Megan Quast
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Winnie G Shivega
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Ryan J Patrick
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Chuanpit Moser
- Section of Pediatric Pulmonology, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| | - Suzanne Reuter
- Section of Neonatal-Perinatal Medicine, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| | - Myrza Perez
- Department of Pediatric Pulmonology, Kaiser Permanente, Roseville, California
| | - Angela Myers
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| | - Jill M Weimer
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota.,Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| | - Kyle J Roux
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota.,Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| | - Megan Landsverk
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota.,Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| |
Collapse
|
18
|
Li L, Ng NKL, Koon AC, Chan HYE. Expanded polyalanine tracts function as nuclear export signals and promote protein mislocalization via eEF1A1 factor. J Biol Chem 2017; 292:5784-5800. [PMID: 28246169 DOI: 10.1074/jbc.m116.763599] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Polyalanine (poly(A)) diseases are caused by the expansion of translated GCN triplet nucleotide sequences encoding poly(A) tracts in proteins. To date, nine human disorders have been found to be associated with poly(A) tract expansions, including congenital central hypoventilation syndrome and oculopharyngeal muscular dystrophy. Previous studies have demonstrated that unexpanded wild-type poly(A)-containing proteins localize to the cell nucleus, whereas expanded poly(A)-containing proteins primarily localize to the cytoplasm. Because most of these poly(A) disease proteins are transcription factors, this mislocalization causes cellular transcriptional dysregulation leading to cellular dysfunction. Correcting this faulty localization could potentially point to strategies to treat the aforementioned disorders, so there is a pressing need to identify the mechanisms underlying the mislocalization of expanded poly(A) protein. Here, we performed a glutathione S-transferase pulldown assay followed by mass spectrometry and identified eukaryotic translation elongation factor 1 α1 (eEF1A1) as an interacting partner with expanded poly(A)-containing proteins. Strikingly, knockdown of eEF1A1 expression partially corrected the mislocalization of the expanded poly(A) proteins in the cytoplasm and restored their functions in the nucleus. We further demonstrated that the expanded poly(A) domain itself can serve as a nuclear export signal. Taken together, this study demonstrates that eEF1A1 regulates the subcellular location of expanded poly(A) proteins and is therefore a potential therapeutic target for combating the pathogenesis of poly(A) diseases.
Collapse
Affiliation(s)
- Li Li
- From the Laboratory of Drosophila Research.,Biochemistry Program
| | - Nelson Ka Lam Ng
- From the Laboratory of Drosophila Research.,Biochemistry Program
| | - Alex Chun Koon
- From the Laboratory of Drosophila Research.,Biochemistry Program
| | - Ho Yin Edwin Chan
- From the Laboratory of Drosophila Research, .,Biochemistry Program.,Cell and Molecular Biology Program, and.,Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, and.,the Gerald Choa Neuroscience Centre, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
19
|
Congenital central hypoventilation syndrome: a bedside-to-bench success story for advancing early diagnosis and treatment and improved survival and quality of life. Pediatr Res 2017; 81:192-201. [PMID: 27673423 DOI: 10.1038/pr.2016.196] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/15/2016] [Indexed: 01/13/2023]
Abstract
The "bedside-to-bench" Congenital Central Hypoventilation Syndrome (CCHS) research journey has led to increased phenotypic-genotypic knowledge regarding autonomic nervous system (ANS) regulation, and improved clinical outcomes. CCHS is a neurocristopathy characterized by hypoventilation and ANS dysregulation. Initially described in 1970, timely diagnosis and treatment remained problematic until the first large cohort report (1992), delineating clinical presentation and treatment options. A central role of ANS dysregulation (2001) emerged, precipitating evaluation of genes critical to ANS development, and subsequent 2003 identification of Paired-Like Homeobox 2B (PHOX2B) as the disease-defining gene for CCHS. This breakthrough engendered clinical genetic testing, making diagnosis exact and early tracheostomy/artificial ventilation feasible. PHOX2B genotype-CCHS phenotype relationships were elucidated, informing early recognition and timely treatment for phenotypic manifestations including Hirschsprung disease, prolonged sinus pauses, and neural crest tumors. Simultaneously, cellular models of CCHS-causing PHOX2B mutations were developed to delineate molecular mechanisms. In addition to new insights regarding genetics and neurobiology of autonomic control overall, new knowledge gained has enabled physicians to anticipate and delineate the full clinical CCHS phenotype and initiate timely effective management. In summary, from an initial guarantee of early mortality or severe neurologic morbidity in survivors, CCHS children can now be diagnosed early and managed effectively, achieving dramatically improved quality of life as adults.
Collapse
|