1
|
Raïch-Regué D, Resa-Infante P, Gallemí M, Laguia F, Muñiz-Trabudua X, Muñoz-Basagoiti J, Perez-Zsolt D, Chojnacki J, Benet S, Clotet B, Martinez-Picado J, Izquierdo-Useros N. Role of Siglecs in viral infections: A double-edged sword interaction. Mol Aspects Med 2023; 90:101113. [PMID: 35981912 PMCID: PMC9923124 DOI: 10.1016/j.mam.2022.101113] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023]
Abstract
Sialic-acid-binding immunoglobulin-like lectins are cell surface immune receptors known as Siglecs that play a paramount role as modulators of immunity. In recent years, research has underscored how the underlaying biology of this family of receptors influences the outcome of viral infections. While Siglecs are needed to promote effective antiviral immune responses, they can also pave the way to viral dissemination within tissues. Here, we review how recent preclinical findings focusing on the interplay between Siglecs and viruses may translate into promising broad-spectrum therapeutic interventions or key biomarkers to monitor the course of viral infections.
Collapse
Affiliation(s)
- Dàlia Raïch-Regué
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Patricia Resa-Infante
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain
| | - Marçal Gallemí
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Fernando Laguia
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Xabier Muñiz-Trabudua
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | | | - Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Jakub Chojnacki
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain
| | - Susana Benet
- Fundació lluita contra la SIDA, Infectious Diseases Department, Hospital Germans Trias i Pujol, 08916, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; Fundació lluita contra la SIDA, Infectious Diseases Department, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; University of Vic-Central University of Catalonia (UVic-UCC), 08500, Vic, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, 08916, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Pegg CL, Schulz BL, Neely BA, Albery GF, Carlson CJ. Glycosylation and the global virome. Mol Ecol 2023; 32:37-44. [PMID: 36217579 PMCID: PMC10947461 DOI: 10.1111/mec.16731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 12/29/2022]
Abstract
The sugars that coat the outsides of viruses and host cells are key to successful disease transmission, but they remain understudied compared to other molecular features. Understanding the comparative zoology of glycosylation - and harnessing it for predictive science - could help close the molecular gap in zoonotic risk assessment.
Collapse
Affiliation(s)
- Cassandra L. Pegg
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Benjamin L. Schulz
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Benjamin A. Neely
- National Institute of Standards and TechnologyCharlestonSouth CarolinaUSA
| | - Gregory F. Albery
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Colin J. Carlson
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
- Department of Microbiology and ImmunologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- Center for Global Health Science and SecurityGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
3
|
Feng F, Zhu Y, Ma Y, Wang Y, Yu Y, Sun X, Song Y, Shao Z, Huang X, Liao Y, Ma J, He Y, Wang M, Tang L, Huang Y, Zhao J, Ding Q, Xie Y, Cai Q, Xiao H, Li C, Yuan Z, Zhang R. A CRISPR activation screen identifies genes that enhance SARS-CoV-2 infection. Protein Cell 2022; 14:64-68. [PMID: 36726758 PMCID: PMC9871949 DOI: 10.1093/procel/pwac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Affiliation(s)
| | | | | | | | - Yin Yu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Xinran Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Shanghai Key Laboratory of Lung Inflammation and Injury, Fudan University, Shanghai 200032, China
| | - Zhugui Shao
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinxin Huang
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200032, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, CAAS, Shanghai 200241, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuping He
- Shanghai International Travel Healthcare Center, Shanghai 200335, China
| | | | | | - Yaowei Huang
- Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100086, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Qiliang Cai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Hui Xiao
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | |
Collapse
|
4
|
Nieto-Garai JA, Contreras FX, Arboleya A, Lorizate M. Role of Protein-Lipid Interactions in Viral Entry. Adv Biol (Weinh) 2022; 6:e2101264. [PMID: 35119227 DOI: 10.1002/adbi.202101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Indexed: 12/25/2022]
Abstract
The viral entry consists of several sequential events that ensure the attachment of the virus to the host cell and the introduction of its genetic material for the continuation of the replication cycle. Both cellular and viral lipids have gained a wider focus in recent years in the field of viral entry, as they are found to play key roles in different steps of the process. The specific role is summarized that lipids and lipid membrane nanostructures play in viral attachment, fusion, and immune evasion and how they can be targeted with antiviral therapies. Finally, some of the limitations of techniques commonly used for protein-lipid interactions studies are discussed, and new emerging tools are reviewed that can be applied to this field.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain
| | - Francesc-Xabier Contreras
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Aroa Arboleya
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, E-48940, Spain
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| |
Collapse
|
5
|
Engels R, Falk L, Albanese M, Keppler OT, Sewald X. LFA1 and ICAM1 are critical for fusion and spread of murine leukemia virus in vivo. Cell Rep 2022; 38:110279. [PMID: 35045303 DOI: 10.1016/j.celrep.2021.110279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/18/2021] [Accepted: 12/23/2021] [Indexed: 11/25/2022] Open
Abstract
Murine leukemia virus (MLV)-presenting cells form stable intercellular contacts with target cells during infection of lymphoid tissue, indicating a role of cell-cell contacts in retrovirus dissemination. Whether host cell adhesion proteins are required for retrovirus spread in vivo remains unknown. Here, we demonstrate that the lymphocyte-function-associated-antigen-1 (LFA1) and its ligand intercellular-adhesion-molecule-1 (ICAM1) are important for cell-contact-dependent transmission of MLV between leukocytes. Infection experiments in LFA1- and ICAM1-deficient mice demonstrate a defect in MLV spread within lymph nodes. Co-culture of primary leukocytes reveals a specific requirement for ICAM1 on donor cells and LFA1 on target cells for cell-contact-dependent spread through trans- and cis-infection. Importantly, adoptive transfer experiments combined with a newly established MLV-fusion assay confirm that the directed LFA1-ICAM1 interaction is important for retrovirus fusion and transmission in vivo. Taken together, our data provide insights on how retroviruses exploit host proteins and the biology of cell-cell interactions for dissemination.
Collapse
Affiliation(s)
- Rebecca Engels
- LMU München, Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Munich, Germany
| | - Lisa Falk
- LMU München, Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Munich, Germany
| | - Manuel Albanese
- LMU München, Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Munich, Germany
| | - Oliver T Keppler
- LMU München, Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Munich, Germany
| | - Xaver Sewald
- LMU München, Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Munich, Germany.
| |
Collapse
|
6
|
Perez-Zsolt D, Raïch-Regué D, Muñoz-Basagoiti J, Aguilar-Gurrieri C, Clotet B, Blanco J, Izquierdo-Useros N. HIV-1 trans-Infection Mediated by DCs: The Tip of the Iceberg of Cell-to-Cell Viral Transmission. Pathogens 2021; 11:39. [PMID: 35055987 PMCID: PMC8778849 DOI: 10.3390/pathogens11010039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
HIV-1 cell-to-cell transmission is key for an effective viral replication that evades immunity. This highly infectious mechanism is orchestrated by different cellular targets that utilize a wide variety of processes to efficiently transfer HIV-1 particles. Dendritic cells (DCs) are the most potent antigen presenting cells that initiate antiviral immune responses, but are also the cells with highest capacity to transfer HIV-1. This mechanism, known as trans-infection, relies on the capacity of DCs to capture HIV-1 particles via lectin receptors such as the sialic acid-binding I-type lectin Siglec-1/CD169. The discovery of the molecular interaction of Siglec-1 with sialylated lipids exposed on HIV-1 membranes has enlightened how this receptor can bind to several enveloped viruses. The outcome of these interactions can either mount effective immune responses, boost the productive infection of DCs and favour innate sensing, or fuel viral transmission via trans-infection. Here we review these scenarios focusing on HIV-1 and other enveloped viruses such as Ebola virus or SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Dàlia Raïch-Regué
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Jordana Muñoz-Basagoiti
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Carmen Aguilar-Gurrieri
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
- Infectious Diseases and Immunity Department, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
- Infectious Diseases and Immunity Department, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916 Badalona, Spain; (D.P.-Z.); (D.R.-R.); (J.M.-B.); (C.A.-G.); (B.C.); (J.B.)
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain
| |
Collapse
|
7
|
Tsurutani M, Horie H, Ogawa K. Cell Properties of Lung Tissue-Resident Macrophages Propagated by Co-Culture with Lung Fibroblastic Cells from C57BL/6 and BALB/c Mice. Biomedicines 2021; 9:1241. [PMID: 34572425 PMCID: PMC8468995 DOI: 10.3390/biomedicines9091241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
Tissue-resident macrophages (Mø) originating from foetal precursors are maintained by self-renewal under tissue/organ-specific microenvironments (niches). We recently developed a simple propagation method applicable to tissue-resident Mø by co-culturing. Here, we examined the properties of lung tissue-resident Mø propagated by co-culturing with lung interstitial cells. The intracardially and intratracheally perfused lung from BALB/c and C57BL/6 mice could minimise the contamination of alveolar Mø and lung monocytes. Lung tissue-resident Mø could be largely propagated under standard culture media along with the propagation of lung interstitial cells demonstrating a fibroblastic morphology. Propagated lung Mø showed characteristic expression properties for Mø/monocyte markers: high expressions of CD11b, CD64 and CD206; substantial expressions of Mertk; and negative expressions of Ly6C, MHC II and Siglec-F. These properties fit with those of lung interstitial Mø of a certain population that can undergo self-renewal. Propagated fibroblastic cells by co-culturing with lung Mø possessed niche properties such as Csf1 and Tgfb1 expression. Propagated lung Mø from both the mouse types were polarised to an M2 phenotype highly expressing arginase 1 without M2 inducer treatment, whereas the M1 inducers significantly increased the iNOS-positive cell percentages in C57BL/6 mice relative to those in BALB/c mice. This is the first study to demonstrate fundamental properties of lung tissue-resident Mø propagated by co-culturing. Propagated lung Mø showing features of lung interstitial Mø can serve as an indispensable tool for investigating SARS-CoV-2 diseases, although lung interstitial Mø have gained little attention in terms of their involvement in SARS-CoV-2 disease pathology, in contrast to alveolar and recruited Mø.
Collapse
Affiliation(s)
- Mayu Tsurutani
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan;
| | - Haruka Horie
- Laboratory of Veterinary Anatomy, College of Life, Environment and Advanced Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan;
| | - Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka 598-8531, Japan;
| |
Collapse
|
8
|
Hou X, Chen G, Zhao Y. Research progress on CD169-positive macrophages in tumors. Am J Transl Res 2021; 13:8589-8597. [PMID: 34539981 PMCID: PMC8430176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/25/2020] [Indexed: 06/13/2023]
Abstract
CD169/Siglec1/sialoadhesin, a sialic acid-binding immunoglobulin-like lectin, is mainly expressed in metallophilic macrophages in the marginal zone of the spleen and in macrophages in the subcapsular sinus and medulla of lymph nodes. In addition to participating in anti-infectious immunity, recent studies have demonstrated that CD169+ macrophages are involved in tumor immunity and are associated with a favorable prognosis. The roles of CD169+ macrophages in tumors and the mechanisms of CD169+ macrophages and CD169 molecules involved in the tumor microenvironment and tumor immunity are described in this review.
Collapse
Affiliation(s)
- Xianming Hou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing, China
| | - Ge Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College Beijing, China
| |
Collapse
|
9
|
Benet S, Gálvez C, Drobniewski F, Kontsevaya I, Arias L, Monguió-Tortajada M, Erkizia I, Urrea V, Ong RY, Luquin M, Dupont M, Chojnacki J, Dalmau J, Cardona P, Neyrolles O, Lugo-Villarino G, Vérollet C, Julián E, Furrer H, Günthard HF, Crocker PR, Tapia G, Borràs FE, Fellay J, McLaren PJ, Telenti A, Cardona PJ, Clotet B, Vilaplana C, Martinez-Picado J, Izquierdo-Useros N. Dissemination of Mycobacterium tuberculosis is associated to a SIGLEC1 null variant that limits antigen exchange via trafficking extracellular vesicles. J Extracell Vesicles 2021; 10:e12046. [PMID: 33489013 PMCID: PMC7807485 DOI: 10.1002/jev2.12046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/28/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
The identification of individuals with null alleles enables studying how the loss of gene function affects infection. We previously described a non-functional variant in SIGLEC1, which encodes the myeloid-cell receptor Siglec-1/CD169 implicated in HIV-1 cell-to-cell transmission. Here we report a significant association between the SIGLEC1 null variant and extrapulmonary dissemination of Mycobacterium tuberculosis (Mtb) in two clinical cohorts comprising 6,256 individuals. Local spread of bacteria within the lung is apparent in Mtb-infected Siglec-1 knockout mice which, despite having similar bacterial load, developed more extensive lesions compared to wild type mice. We find that Siglec-1 is necessary to induce antigen presentation through extracellular vesicle uptake. We postulate that lack of Siglec-1 delays the onset of protective immunity against Mtb by limiting antigen exchange via extracellular vesicles, allowing for an early local spread of mycobacteria that increases the risk for extrapulmonary dissemination.
Collapse
Affiliation(s)
- Susana Benet
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain.,Department of Retrovirology Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain
| | - Cristina Gálvez
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain.,Department of Retrovirology Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain
| | | | - Irina Kontsevaya
- Department of Retrovirology Imperial College London UK.,Department of Retrovirology Research Center Borstel, Borstel Germany.,Department of Retrovirology N.V. Postnikov Samara Region Clinical Tuberculosis Dispensary Samara Russia
| | - Lilibeth Arias
- Experimental Tuberculosis Unit (UTE) Germans Trias i Pujol Health Science Research Institute Can Ruti Campus Badalona Spain.,Departament de Genètica i de Microbiologia Facultat de Biociències Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES) Madrid Spain
| | - Marta Monguió-Tortajada
- REMAR-IVECAT Group Germans Trias i Pujol Health Science Research Institute Can Ruti Campus Badalona Spain.,ICREC Research Program Germans Trias i Pujol Health Science Research Institute Can Ruti Campus Badalona Spain.,Department of Cell Biology Physiology and Immunology Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain
| | - Itziar Erkizia
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain
| | - Victor Urrea
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain
| | - Ruo-Yan Ong
- Division of Cell Signalling and Immunology University of Dundee Dundee UK
| | - Marina Luquin
- Departament de Genètica i de Microbiologia Facultat de Biociències Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain
| | - Maeva Dupont
- Institut de Pharmacologie et Biologie Structurale IPBS CNRS UPS Université de Toulouse Toulouse France.,International associated laboratory (LIA) CNRS "IM-TB/HIV" (1167) France and Buenos Aires Toulouse Argentina
| | - Jakub Chojnacki
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain
| | - Judith Dalmau
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain
| | - Paula Cardona
- Experimental Tuberculosis Unit (UTE) Germans Trias i Pujol Health Science Research Institute Can Ruti Campus Badalona Spain.,Departament de Genètica i de Microbiologia Facultat de Biociències Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES) Madrid Spain
| | - Olivier Neyrolles
- Institut de Pharmacologie et Biologie Structurale IPBS CNRS UPS Université de Toulouse Toulouse France.,International associated laboratory (LIA) CNRS "IM-TB/HIV" (1167) France and Buenos Aires Toulouse Argentina
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et Biologie Structurale IPBS CNRS UPS Université de Toulouse Toulouse France.,International associated laboratory (LIA) CNRS "IM-TB/HIV" (1167) France and Buenos Aires Toulouse Argentina
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale IPBS CNRS UPS Université de Toulouse Toulouse France.,International associated laboratory (LIA) CNRS "IM-TB/HIV" (1167) France and Buenos Aires Toulouse Argentina
| | - Esther Julián
- Departament de Genètica i de Microbiologia Facultat de Biociències Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain
| | - Hansjakob Furrer
- Department of Infectious Diseases Bern University Hospital University of Bern Bern Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology University Hospital Zurich Zurich Switzerland.,Institute of Medical Virology University of Zurich Zurich Switzerland
| | - Paul R Crocker
- Division of Cell Signalling and Immunology University of Dundee Dundee UK
| | - Gustavo Tapia
- Department of Retrovirology Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain.,Pathology Department Hospital Universitario Germans Trias i Pujol Badalona Spain.,Germans Trias i Pujol Research Institute (IGTP) Can Ruti Campus Badalona Spain
| | - Francesc E Borràs
- REMAR-IVECAT Group Germans Trias i Pujol Health Science Research Institute Can Ruti Campus Badalona Spain.,Nephrology Department Germans Trias i Pujol University Hospital Badalona Spain
| | - Jacques Fellay
- School of Life Sciences École Polytechnique Fédérale de Lausanne Lausanne Switzerland.,Swiss Institute of Bioinformatics Lausanne Switzerland.,Precision Medicine Unit Lausanne University Hospital and University of Lausanne Lausanne Switzerland
| | - Paul J McLaren
- JC Wilt Infectious Diseases Research Centre Public Health Agency of Canada Winnipeg Manitoba Canada.,Department of Medical Microbiology and Infectious Diseases University of Manitoba Winnipeg Manitoba Canada
| | | | - Pere-Joan Cardona
- Experimental Tuberculosis Unit (UTE) Germans Trias i Pujol Health Science Research Institute Can Ruti Campus Badalona Spain.,Departament de Genètica i de Microbiologia Facultat de Biociències Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES) Madrid Spain
| | - Bonaventura Clotet
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain.,Germans Trias i Pujol Research Institute (IGTP) Can Ruti Campus Badalona Spain.,AIDS and Related Illnesses Centre for Health and Social Care Research (CESS) Faculty of Medicine University of Vic - Central University of Catalonia (UVic - UCC) Vic Spain
| | - Cristina Vilaplana
- Experimental Tuberculosis Unit (UTE) Germans Trias i Pujol Health Science Research Institute Can Ruti Campus Badalona Spain.,Departament de Genètica i de Microbiologia Facultat de Biociències Universitat Autònoma de Barcelona Cerdanyola del Vallès Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES) Madrid Spain
| | - Javier Martinez-Picado
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain.,Germans Trias i Pujol Research Institute (IGTP) Can Ruti Campus Badalona Spain.,AIDS and Related Illnesses Centre for Health and Social Care Research (CESS) Faculty of Medicine University of Vic - Central University of Catalonia (UVic - UCC) Vic Spain.,Catalan Institution for Research and Advanced Studies (ICREA) Barcelona Spain
| | - Nuria Izquierdo-Useros
- Department of Retrovirology IrsiCaixa AIDS Research Institute Badalona Spain.,Germans Trias i Pujol Research Institute (IGTP) Can Ruti Campus Badalona Spain
| |
Collapse
|
10
|
Affandi AJ, Grabowska J, Olesek K, Lopez Venegas M, Barbaria A, Rodríguez E, Mulder PPG, Pijffers HJ, Ambrosini M, Kalay H, O'Toole T, Zwart ES, Kazemier G, Nazmi K, Bikker FJ, Stöckl J, van den Eertwegh AJM, de Gruijl TD, Storm G, van Kooyk Y, den Haan JMM. Selective tumor antigen vaccine delivery to human CD169 + antigen-presenting cells using ganglioside-liposomes. Proc Natl Acad Sci U S A 2020; 117:27528-27539. [PMID: 33067394 PMCID: PMC7959579 DOI: 10.1073/pnas.2006186117] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Priming of CD8+ T cells by dendritic cells (DCs) is crucial for the generation of effective antitumor immune responses. Here, we describe a liposomal vaccine carrier that delivers tumor antigens to human CD169/Siglec-1+ antigen-presenting cells using gangliosides as targeting ligands. Ganglioside-liposomes specifically bound to CD169 and were internalized by in vitro-generated monocyte-derived DCs (moDCs) and macrophages and by ex vivo-isolated splenic macrophages in a CD169-dependent manner. In blood, high-dimensional reduction analysis revealed that ganglioside-liposomes specifically targeted CD14+ CD169+ monocytes and Axl+ CD169+ DCs. Liposomal codelivery of tumor antigen and Toll-like receptor ligand to CD169+ moDCs and Axl+ CD169+ DCs led to cytokine production and robust cross-presentation and activation of tumor antigen-specific CD8+ T cells. Finally, Axl+ CD169+ DCs were present in cancer patients and efficiently captured ganglioside-liposomes. Our findings demonstrate a nanovaccine platform targeting CD169+ DCs to drive antitumor T cell responses.
Collapse
Affiliation(s)
- Alsya J Affandi
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Katarzyna Olesek
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Miguel Lopez Venegas
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- DC4U, 3621 ZA Breukelen, The Netherlands
| | - Arnaud Barbaria
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Ernesto Rodríguez
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Patrick P G Mulder
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Helen J Pijffers
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Martino Ambrosini
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Tom O'Toole
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Eline S Zwart
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Geert Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Johannes Stöckl
- Institute of Immunology, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Alfons J M van den Eertwegh
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, The Netherlands
- Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- DC4U, 3621 ZA Breukelen, The Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
| |
Collapse
|
11
|
Abstract
Siglecs are sialic acid (Sia) recognizing immunoglobulin-like receptors expressed on the surface of all the major leukocyte lineages in mammals. Siglecs recognize ubiquitous Sia epitopes on various glycoconjugates in the cell glycocalyx and transduce signals to regulate immunological and inflammatory activities of these cells. The subset known as CD33-related Siglecs is principally inhibitory receptors that suppress leukocyte activation, and recent research has shown that a number of bacterial pathogens use Sia mimicry to engage these Siglecs as an immune evasion strategy. Conversely, Siglec-1 is a macrophage phagocytic receptor that engages GBS and other sialylated bacteria to promote effective phagocytosis and antigen presentation for the adaptive immune response, whereas certain viruses and parasites use Siglec-1 to gain entry to immune cells as a proximal step in the infectious process. Siglecs are positioned in crosstalk with other host innate immune sensing pathways to modulate the immune response to infection in complex ways. This chapter summarizes the current understanding of Siglecs at the host-pathogen interface, a field of study expanding in breadth and medical importance, and which provides potential targets for immune-based anti-infective strategies.
Collapse
Affiliation(s)
- Yung-Chi Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen-Ai Rd., Taipei, 10051, Taiwan.
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, and Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, 9500 Gilman Drive Mail Code 0760, La Jolla, CA, 92093, USA
| |
Collapse
|
12
|
Kim CH. Viral Protein Interaction with Host Cells GSLs. GLYCOSPHINGOLIPIDS SIGNALING 2020:53-92. [DOI: 10.1007/978-981-15-5807-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
|
13
|
van Dinther D, Veninga H, Iborra S, Borg EGF, Hoogterp L, Olesek K, Beijer MR, Schetters STT, Kalay H, Garcia-Vallejo JJ, Franken KL, Cham LB, Lang KS, van Kooyk Y, Sancho D, Crocker PR, den Haan JMM. Functional CD169 on Macrophages Mediates Interaction with Dendritic Cells for CD8 + T Cell Cross-Priming. Cell Rep 2019; 22:1484-1495. [PMID: 29425504 DOI: 10.1016/j.celrep.2018.01.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/12/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
Splenic CD169+ macrophages are located in the marginal zone to efficiently capture blood-borne pathogens. Here, we investigate the requirements for the induction of CD8+ T cell responses by antigens (Ags) bound by CD169+ macrophages. Upon Ag targeting to CD169+ macrophages, we show that BATF3-dependent CD8α+ dendritic cells (DCs) are crucial for DNGR-1-mediated cross-priming of CD8+ T cell responses. In addition, we demonstrate that CD169, a sialic acid binding lectin involved in cell-cell contact, preferentially binds to CD8α+ DCs and that Ag transfer to CD8α+ DCs and subsequent T cell activation is dependent on the sialic acid-binding capacity of CD169. Finally, functional CD169 mediates optimal CD8+ T cell responses to modified vaccinia Ankara virus infection. Together, these data indicate that the collaboration of CD169+ macrophages and CD8α+ DCs for the initiation of effective CD8+ T cell responses is facilitated by binding of CD169 to sialic acid containing ligands on CD8α+ DCs.
Collapse
Affiliation(s)
- Dieke van Dinther
- Cancer Center Amsterdam, Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Henrike Veninga
- Cancer Center Amsterdam, Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Salvador Iborra
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ellen G F Borg
- Cancer Center Amsterdam, Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Leoni Hoogterp
- Cancer Center Amsterdam, Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Katarzyna Olesek
- Cancer Center Amsterdam, Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Marieke R Beijer
- Cancer Center Amsterdam, Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Sjoerd T T Schetters
- Cancer Center Amsterdam, Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Hakan Kalay
- Cancer Center Amsterdam, Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Juan J Garcia-Vallejo
- Cancer Center Amsterdam, Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Kees L Franken
- Department of Immunohematology and Bloodtransfusion, LUMC, Leiden, the Netherlands
| | - Lamin B Cham
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University Duisburg-Essen, 45122 Essen, Germany
| | - Yvette van Kooyk
- Cancer Center Amsterdam, Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Paul R Crocker
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, UK
| | - Joke M M den Haan
- Cancer Center Amsterdam, Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Thompson AJ, de Vries RP, Paulson JC. Virus recognition of glycan receptors. Curr Opin Virol 2019; 34:117-129. [PMID: 30849709 PMCID: PMC6476673 DOI: 10.1016/j.coviro.2019.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/24/2019] [Indexed: 01/17/2023]
Abstract
Attachment of viruses to cell-surface receptors is the initial step in infection. Many mammalian viruses have evolved to recognize receptors that are glycans on cell-surface glycoproteins or glycolipids. Although glycans are a ubiquitous component of mammalian cells, the types of terminal structures expressed vary among different cell-types and tissues, and even between comparable cells and tissues from different species, frequently leading to specific tissue and species tropisms as a direct consequence of glycan receptor recognition. Covering the majority of known virus families, this review provides an overview of mammalian viruses that use glycans as receptors, and their roles in determining in host recognition and tropism.
Collapse
Affiliation(s)
- Andrew J Thompson
- Departments of Molecular Medicine, Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - James C Paulson
- Departments of Molecular Medicine, Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
Grabowska J, Lopez-Venegas MA, Affandi AJ, den Haan JMM. CD169 + Macrophages Capture and Dendritic Cells Instruct: The Interplay of the Gatekeeper and the General of the Immune System. Front Immunol 2018; 9:2472. [PMID: 30416504 PMCID: PMC6212557 DOI: 10.3389/fimmu.2018.02472] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Since the seminal discovery of dendritic cells (DCs) by Steinman and Cohn in 1973, there has been an ongoing debate to what extent macrophages and DCs are related and perform different functions. The current view is that macrophages and DCs originate from different lineages and that only DCs have the capacity to initiate adaptive immunity. Nevertheless, as we will discuss in this review, lymphoid tissue resident CD169+ macrophages have been shown to act in concert with DCs to promote or suppress adaptive immune responses for pathogens and self-antigens, respectively. Accordingly, we propose a functional alliance between CD169+ macrophages and DCs in which a division of tasks is established. CD169+ macrophages are responsible for the capture of pathogens and are frequently the first cell type infected and thereby provide a confined source of antigen. Subsequently, cross-presenting DCs interact with these antigen-containing CD169+ macrophages, pick up antigens and activate T cells. The cross-priming of T cells by DCs is enhanced by the localized production of type I interferons (IFN-I) derived from CD169+ macrophages and plasmacytoid DCs (pDCs) that induces DC maturation. The interaction between CD169+ macrophages and DCs appears not only to be essential for immune responses against pathogens, but also plays a role in the induction of self-tolerance and immune responses against cancer. In this review we will discuss the studies that demonstrate the collaboration between CD169+ macrophages and DCs in adaptive immunity.
Collapse
Affiliation(s)
- Joanna Grabowska
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Miguel A Lopez-Venegas
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alsya J Affandi
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
DDX41 Recognizes RNA/DNA Retroviral Reverse Transcripts and Is Critical for In Vivo Control of Murine Leukemia Virus Infection. mBio 2018; 9:mBio.00923-18. [PMID: 29871919 PMCID: PMC5989071 DOI: 10.1128/mbio.00923-18] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Host recognition of viral nucleic acids generated during infection leads to the activation of innate immune responses essential for early control of virus. Retrovirus reverse transcription creates numerous potential ligands for cytosolic host sensors that recognize foreign nucleic acids, including single-stranded RNA (ssRNA), RNA/DNA hybrids, and double-stranded DNA (dsDNA). We and others recently showed that the sensors cyclic GMP-AMP synthase (cGAS), DEAD-box helicase 41 (DDX41), and members of the Aim2-like receptor (ALR) family participate in the recognition of retroviral reverse transcripts. However, why multiple sensors might be required and their relative importance in in vivo control of retroviral infection are not known. Here, we show that DDX41 primarily senses the DNA/RNA hybrid generated at the first step of reverse transcription, while cGAS recognizes dsDNA generated at the next step. We also show that both DDX41 and cGAS are needed for the antiretroviral innate immune response to murine leukemia virus (MLV) and HIV in primary mouse macrophages and dendritic cells (DCs). Using mice with cell type-specific knockout of the Ddx41 gene, we show that DDX41 sensing in DCs but not macrophages was critical for controlling in vivo MLV infection. This suggests that DCs are essential in vivo targets for infection, as well as for initiating the antiviral response. Our work demonstrates that the innate immune response to retrovirus infection depends on multiple host nucleic acid sensors that recognize different reverse transcription intermediates. Viruses are detected by many different host sensors of nucleic acid, which in turn trigger innate immune responses, such as type I interferon (IFN) production, required to control infection. We show here that at least two sensors are needed to initiate a highly effective innate immune response to retroviruses—DDX41, which preferentially senses the RNA/DNA hybrid generated at the first step of retrovirus replication, and cGAS, which recognizes double-stranded DNA generated at the second step. Importantly, we demonstrate using mice lacking DDX41 or cGAS that both sensors are needed for the full antiviral response needed to control in vivo MLV infection. These findings underscore the need for multiple host factors to counteract retroviral infection.
Collapse
|
17
|
Ledeen RW, Kopitz J, Abad-Rodríguez J, Gabius HJ. Glycan Chains of Gangliosides: Functional Ligands for Tissue Lectins (Siglecs/Galectins). PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:289-324. [PMID: 29747818 DOI: 10.1016/bs.pmbts.2017.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular signals on the cell surface are responsible for adhesion and communication. Of relevance in this respect, their chemical properties endow carbohydrates with the capacity to store a maximum of information in a minimum of space. One way to present glycans on the cell surface is their covalent conjugation to a ceramide anchor. Among the resulting glycosphingolipids, gangliosides are special due to the presence of at least one sialic acid in the glycan chains. Their spatial accessibility and the dynamic regulation of their profile are factors that argue in favor of a role of glycans of gangliosides as ligands (counterreceptors) for carbohydrate-binding proteins (lectins). Indeed, as discovered first for a bacterial toxin, tissue lectins bind gangliosides and mediate contact formation (trans) and signaling (cis). While siglecs have a preference for higher sialylated glycans, certain galectins also target the monosialylated pentasaccharide of ganglioside GM1. Enzymatic interconversion of ganglioside glycans by sialidase action, relevant for neuroblastoma cell differentiation and growth control in vitro, for axonogenesis and axon regeneration, as well as for proper communication between effector and regulatory T cells, changes lectin-binding affinity profoundly. The GD1a-to-GM1 "editing" is recognized by such lectins, for example, myelin-associated glycoprotein (siglec-4) losing affinity and galectin-1 gaining reactivity, and then translated into postbinding signaling. Orchestrations of loss/gain of affinity, of ganglioside/lectin expression, and of lectin presence in a network offer ample opportunities for fine-tuning. Thus glycans of gangliosides such as GD1a and GM1 are functional counterreceptors by a pairing with tissue lectins, an emerging aspect of ganglioside and lectin functionality.
Collapse
Affiliation(s)
- Robert W Ledeen
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States.
| | - Jürgen Kopitz
- Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
18
|
Wratil PR, Horstkorte R. Metabolic Glycoengineering of Sialic Acid Using N-acyl-modified Mannosamines. J Vis Exp 2017. [PMID: 29286437 DOI: 10.3791/55746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sialic acid (Sia) is a highly important constituent of glycoconjugates, such as N- and O-glycans or glycolipids. Due to its position at the non-reducing termini of oligo- and polysaccharides, as well as its unique chemical characteristics, sialic acid is involved in a multitude of different receptor-ligand interactions. By modifying the expression of sialic acid on the cell surface, sialic acid-dependent interactions will consequently be influenced. This can be helpful to investigate sialic acid-dependent interactions and has the potential to influence certain diseases in a beneficial way. Via metabolic glycoengineering (MGE), the expression of sialic acid on the cell surface can be modulated. Herein, cells, tissues, or even entire animals are treated with C2-modified derivatives of N-acetylmannosamine (ManNAc). These amino sugars act as sialic acid precursor molecules and therefore are metabolized to the corresponding sialic acid species and expressed on glycoconjugates. Applying this method produces intriguing effects on various biological processes. For example, it can drastically reduce the expression of polysialic acid (polySia) in treated neuronal cells and thus affects neuronal growth and differentiation. Here, we show the chemical synthesis of two of the most common C2-modified N-acylmannosamine derivatives, N-propionylmannosamine (ManNProp) as well as N-butanoylmannosamine (ManNBut), and further show how these non-natural amino sugars can be applied in cell culture experiments. The expression of modified sialic acid species is quantified by high performance liquid chromatography (HPLC) and further analyzed via mass spectrometry. The effects on polysialic acid expression are elucidated via Western blot using a commercially available polysialic acid antibody.
Collapse
Affiliation(s)
- Paul R Wratil
- Max von Pettenkofer-Institut & Genzentrum, Virologie, Nationales Referenzzentrum für Retroviren, Medizinische Fakultät, LMU München; Institut für Laboratoriumsmedizin, klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg;
| |
Collapse
|
19
|
Martinez-Picado J, McLaren PJ, Telenti A, Izquierdo-Useros N. Retroviruses As Myeloid Cell Riders: What Natural Human Siglec-1 "Knockouts" Tell Us About Pathogenesis. Front Immunol 2017; 8:1593. [PMID: 29209326 PMCID: PMC5702442 DOI: 10.3389/fimmu.2017.01593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/06/2017] [Indexed: 01/08/2023] Open
Abstract
Myeloid cells initiate immune responses and are crucial to control infections. In the case of retroviruses, however, myeloid cells also promote pathogenesis by enabling viral dissemination; a process extensively studied in vitro using human immunodeficiency virus type 1 (HIV-1). This viral hijacking mechanism does not rely on productive myeloid cell infection but requires HIV-1 capture via Siglec-1/CD169, a receptor expressed on myeloid cells that facilitates the infection of bystander target cells. Murine retroviruses are also recognized by Siglec-1, and this interaction is required for robust retroviral infection in vivo. Yet, the relative contribution of Siglec-1-mediated viral dissemination to HIV-1 disease progression remains unclear. The identification of human null individuals lacking working copies of a particular gene enables studying how this loss affects disease progression. Moreover, it can reveal novel antiviral targets whose blockade might be therapeutically effective and safe, since finding null individuals in natura uncovers dispensable functions. We previously described a loss-of-function variant in SIGLEC-1. Analysis of a large cohort of HIV-1-infected individuals identified homozygous and heterozygous subjects, whose cells were functionally null or partially defective for Siglec-1 activity in HIV-1 capture and transmission ex vivo. Nonetheless, analysis of the effect of Siglec-1 truncation on progression to AIDS was not conclusive due to the limited cohort size, the lack of complete clinical records, and the restriction to study only off-therapy periods. Here, we review how the study of loss-of-function variants might serve to illuminate the role of myeloid cells in viral pathogenesis in vivo and the challenges ahead.
Collapse
Affiliation(s)
- Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Paul J McLaren
- National HIV and Retrovirology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Amalio Telenti
- Genomic Medicine, J. Craig Venter Institute, La Jolla, CA, United States
| | | |
Collapse
|
20
|
Abstract
Lectins recognize a diverse array of carbohydrate structures and perform numerous essential biological functions. Here we focus on only two families of lectins, the Siglecs and C-type lectins. Triggering of intracellular signaling cascades following ligand recognition by these receptors can have profound effects on the induction and modulation of immunity. In this chapter, we provide a brief overview of each family and then focus on selected examples that highlight how these lectins can influence myeloid cell functioning in health and disease. Receptors that are discussed include Sn (Siglec-1), CD33 (Siglec-3), and Siglec-5, -7, -8, -9, -10, -11, -14, -15, -E, -F, and -G as well as Dectin-1, MICL, Dectin-2, Mincle/MCL, and the macrophage mannose receptor.
Collapse
|
21
|
Noel M, Gilormini P, Cogez V, Yamakawa N, Vicogne D, Lion C, Biot C, Guérardel Y, Harduin‐Lepers A. Probing the CMP-Sialic Acid Donor Specificity of Two Human β-d-Galactoside Sialyltransferases (ST3Gal I and ST6Gal I) Selectively Acting on O- and N-Glycosylproteins. Chembiochem 2017; 18:1251-1259. [PMID: 28395125 PMCID: PMC5499661 DOI: 10.1002/cbic.201700024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Indexed: 12/29/2022]
Abstract
Sialylation of glycoproteins and glycolipids is catalyzed by sialyltransferases in the Golgi of mammalian cells, whereby sialic acid residues are added at the nonreducing ends of oligosaccharides. Because sialylated glycans play critical roles in a number of human physio-pathological processes, the past two decades have witnessed the development of modified sialic acid derivatives for a better understanding of sialic acid biology and for the development of new therapeutic targets. However, nothing is known about how individual mammalian sialyltransferases tolerate and behave towards these unnatural CMP-sialic acid donors. In this study, we devised several approaches to investigate the donor specificity of the human β-d-galactoside sialyltransferases ST6Gal I and ST3Gal I by using two CMP-sialic acids: CMP-Neu5Ac, and CMP-Neu5N-(4pentynoyl)neuraminic acid (CMP-SiaNAl), an unnatural CMP-sialic acid donor with an extended and functionalized N-acyl moiety.
Collapse
Affiliation(s)
- Maxence Noel
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Pierre‐André Gilormini
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Virginie Cogez
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Nao Yamakawa
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Dorothée Vicogne
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Cédric Lion
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Christophe Biot
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Yann Guérardel
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Anne Harduin‐Lepers
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| |
Collapse
|
22
|
Okerblom J, Varki A. Biochemical, Cellular, Physiological, and Pathological Consequences of Human Loss of N-Glycolylneuraminic Acid. Chembiochem 2017; 18:1155-1171. [PMID: 28423240 DOI: 10.1002/cbic.201700077] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Indexed: 12/15/2022]
Abstract
About 2-3 million years ago, Alu-mediated deletion of a critical exon in the CMAH gene became fixed in the hominin lineage ancestral to humans, possibly through a stepwise process of selection by pathogen targeting of the CMAH product (the sialic acid Neu5Gc), followed by reproductive isolation through female anti-Neu5Gc antibodies. Loss of CMAH has occurred independently in some other lineages, but is functionally intact in Old World primates, including our closest relatives, the chimpanzee. Although the biophysical and biochemical ramifications of losing tens of millions of Neu5Gc hydroxy groups at most cell surfaces remains poorly understood, we do know that there are multiscale effects functionally relevant to both sides of the host-pathogen interface. Hominin CMAH loss might also contribute to understanding human evolution, at the time when our ancestors were starting to use stone tools, increasing their consumption of meat, and possibly hunting. Comparisons with chimpanzees within ethical and practical limitations have revealed some consequences of human CMAH loss, but more has been learned by using a mouse model with a human-like Cmah inactivation. For example, such mice can develop antibodies against Neu5Gc that could affect inflammatory processes like cancer progression in the face of Neu5Gc metabolic incorporation from red meats, display a hyper-reactive immune system, a human-like tendency for delayed wound healing, late-onset hearing loss, insulin resistance, susceptibility to muscular dystrophy pathologies, and increased sensitivity to multiple human-adapted pathogens involving sialic acids. Further studies in such mice could provide a model for other human-specific processes and pathologies involving sialic acid biology that have yet to be explored.
Collapse
Affiliation(s)
- Jonathan Okerblom
- Biomedical Sciences Graduate Program, University of California in San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0687, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, GRTC) and, Center for Academic Research and Training in Anthropogeny, CARTA), Departments of Medicine and Cellular and Molecular Medicine, University of California in San Diego, La Jolla, CA, 92093-0687, USA
| |
Collapse
|
23
|
Hinderlich S, Neuenschwander M, Wratil PR, Oder A, Lisurek M, Nguyen LD, von Kries JP, Hackenberger CPR. Small Molecules Targeting Human N-Acetylmannosamine Kinase. Chembiochem 2017; 18:1279-1285. [PMID: 28346741 DOI: 10.1002/cbic.201700066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 12/19/2022]
Abstract
N-Acetylmannosamine kinase (MNK) plays a key role in the biosynthesis of sialic acids and glycosylation of proteins. Sialylated glycoconjugates affect a large number of biological processes, including immune modulation and cancer transformation. In search of effective inhibitors of MNK we applied high-throughput screening of drug-like small molecules. By applying different orthogonal assays for their validation we identified four potential MNK-specific inhibitors with IC50 values in the low-micromolar range. Molecular modelling of the inhibitors into the active site of MNK supports their binding to the sugar or the ATP-binding pocket of the enzyme or both. These compounds are promising for downregulation of the sialic acid content of glycoconjugates and for studying the functional contribution of sialic acids to disease development.
Collapse
Affiliation(s)
- Stephan Hinderlich
- Beuth Hochschule für Technik Berlin, Seestrasse 64, 13347, Berlin, Germany
| | - Martin Neuenschwander
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - Paul R Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimalee 22, 14195, Berlin, Germany
| | - Andreas Oder
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - Michael Lisurek
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - Long D Nguyen
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimalee 22, 14195, Berlin, Germany
| | - Jens P von Kries
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - Christian P R Hackenberger
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Strasse 10, 13125, Berlin, Germany.,Humboldt Universität zu Berlin, Department Chemie, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
24
|
Abstract
Many Siglecs function as inhibitory receptors on innate and adaptive immune cells and may contribute to the attenuation of immune responses to tumors. Siglec 9 on neutrophils and Siglec 7 on NK cells are prominent examples of inhibitory Siglecs that can potentially dampen anti-tumor immunity. CD169 is a Siglec that may function as an adhesion molecule and a facilitator of the recognition and internalization of sialic acid decorated apoptotic bodies and exosomes derived from tumors. It can potentially contribute to both the attenuation as well as the facilitation of anti-tumor immunity. Siglecs have been best studied in the tumor context in animal models of cancer. Modulators of Siglec function are likely to be developed and investigated clinically in a cancer context over the next few years.
Collapse
Affiliation(s)
- Isabella Fraschilla
- Ragon Institute of MGH, MIT and Harvard, Harvard Medical School, Cambridge, MA, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
25
|
Hammonds JE, Beeman N, Ding L, Takushi S, Francis AC, Wang JJ, Melikyan GB, Spearman P. Siglec-1 initiates formation of the virus-containing compartment and enhances macrophage-to-T cell transmission of HIV-1. PLoS Pathog 2017; 13:e1006181. [PMID: 28129379 PMCID: PMC5298340 DOI: 10.1371/journal.ppat.1006181] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/08/2017] [Accepted: 01/12/2017] [Indexed: 11/22/2022] Open
Abstract
HIV-1 particles assemble and bud from the plasma membrane of infected T lymphocytes. Infected macrophages, in contrast, accumulate particles within an apparent intracellular compartment known as the virus-containing compartment or VCC. Many aspects of the formation and function of the VCC remain unclear. Here we demonstrate that VCC formation does not actually require infection of the macrophage, but can be reproduced through the exogenous addition of non-infectious virus-like particles or infectious virions to macrophage cultures. Particles were captured by Siglec-1, a prominent cell surface lectin that attaches to gangliosides on the lipid envelope of the virus. VCCs formed within infected macrophages were readily targeted by the addition of ganglioside-containing virus-like particles to the extracellular media. Depletion of Siglec-1 from the macrophage or depletion of gangliosides from viral particles prevented particle uptake into the VCC and resulted in substantial reductions of VCC volume. Furthermore, Siglec-1-mediated virion capture and subsequent VCC formation was required for efficient trans-infection of autologous T cells. Our results help to define the nature of this intracellular compartment, arguing that it is a compartment formed by particle uptake from the periphery, and that this compartment can readily transmit virus to target T lymphocytes. Inhibiting or eliminating the VCC may be an important component of strategies to reduce HIV transmission and to eradicate HIV reservoirs. T lymphocytes and macrophages are the two major cell types involved in HIV replication and transmission events. When a T cell is infected, virus particles assemble and bud from the plasma membrane of the cell. In contrast, infected macrophages develop an intracellular collection of viruses termed the virus-containing compartment or VCC. Many aspects of the formation and function of the VCC remain unclear. Here we show that VCC formation does not actually require infection of the macrophage, but can be reproduced through the addition of virus-like particles or infectious virions to macrophages. HIV-1 particles were captured by the cell surface carbohydrate-binding protein Siglec-1, followed by co-migration of Siglec-1 and captured viral particles to the VCC. Depletion of Siglec-1 from the macrophage prevented VCC formation, and inhibited the ability of infected macrophages to transmit HIV to T cells. Our results help to define the origin of this intracellular compartment, arguing that it is a compartment formed by particle uptake from the periphery. Inhibiting or eliminating the VCC may be an important component of strategies to reduce HIV transmission and to eradicate HIV reservoirs.
Collapse
Affiliation(s)
- Jason E. Hammonds
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Neal Beeman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lingmei Ding
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sarah Takushi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ashwanth C. Francis
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jaang-Jiun Wang
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Gregory B. Melikyan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Paul Spearman
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
26
|
Aretz J, Wratil PR, Wamhoff EC, Nguyen HG, Reutter W, Rademacher C. Fragment screening of N-acetylmannosamine kinase reveals noncarbohydrate inhibitors. CAN J CHEM 2016. [DOI: 10.1139/cjc-2015-0603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many biological processes from infection to tumor immune evasion are controlled by cell surface sialylation. To gather further insight into these processes, methods to alter cell surface sialylation are required. One way to achieve this is inhibiting the key enzyme of sialic acid de novo biosynthesis, the intracellular bifunctional UDP-N-acetylglucosamine epimerase/N-acetylmannosamine kinase (GNE/MNK). Here, we present low molecular weight inhibitors of MNK activity based on picolinic acid derivatives. They were identified in a fragment screening using 19F NMR and validated in a biochemical inhibition assay followed by a structure–activity relationship analysis and docking. The optimized compound 6-carbamoylpicolinic acid inhibits MNK with a double-digit micromolar affinity. Its low molecular weight (166 Da) renders this picolinic acid derivative an exquisite starting point for the development of high-affinity MNK inhibitors, which may serve as molecular probes or lead candidates in future.
Collapse
Affiliation(s)
- Jonas Aretz
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14424, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Paul Robin Wratil
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité — Universitätsmedizin Berlin, Germany
| | - Eike-Christian Wamhoff
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14424, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Hoang Giang Nguyen
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité — Universitätsmedizin Berlin, Germany
| | - Werner Reutter
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité — Universitätsmedizin Berlin, Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14424, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
27
|
Wratil PR, Horstkorte R, Reutter W. Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines. Angew Chem Int Ed Engl 2016; 55:9482-512. [PMID: 27435524 DOI: 10.1002/anie.201601123] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 12/14/2022]
Abstract
In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N-acyl-modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman-Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N-acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE).
Collapse
Affiliation(s)
- Paul R Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany.
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystrasse 1, 06114, Halle, Germany.
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
28
|
Wratil PR, Horstkorte R, Reutter W. Metabolisches Glykoengineering mitN-Acyl-Seiten- ketten-modifizierten Mannosaminen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Paul R. Wratil
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie; Martin-Luther-Universität Halle-Wittenberg; Hollystraße 1 06114 Halle Deutschland
| | - Werner Reutter
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie; Charité - Universitätsmedizin Berlin; Arnimallee 22 14195 Berlin Deutschland
| |
Collapse
|
29
|
Viruses exploit the tissue physiology of the host to spread in vivo. Curr Opin Cell Biol 2016; 41:81-90. [PMID: 27149407 DOI: 10.1016/j.ceb.2016.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 04/20/2016] [Indexed: 02/07/2023]
Abstract
Viruses are pathogens that strictly depend on their host for propagation. Over years of co-evolution viruses have become experts in exploiting the host cell biology and physiology to ensure efficient replication and spread. Here, we will first summarize the concepts that have emerged from in vitro cell culture studies to understand virus spread. We will then review the results from studies in living animals that reveal how viruses exploit the natural flow of body fluids, specific tissue architecture, and patterns of cell circulation and migration to spread within the host. Understanding tissue physiology will be critical for the design of antiviral strategies that prevent virus dissemination.
Collapse
|
30
|
Nischan N, Kohler JJ. Advances in cell surface glycoengineering reveal biological function. Glycobiology 2016; 26:789-96. [PMID: 27066802 DOI: 10.1093/glycob/cww045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/04/2016] [Indexed: 12/31/2022] Open
Abstract
Cell surface glycans are critical mediators of cell-cell, cell-ligand, and cell-pathogen interactions. By controlling the set of glycans displayed on the surface of a cell, it is possible to gain insight into the biological functions of glycans. Moreover, control of glycan expression can be used to direct cellular behavior. While genetic approaches to manipulate glycosyltransferase gene expression are available, their utility in glycan engineering has limitations due to the combinatorial nature of glycan biosynthesis and the functional redundancy of glycosyltransferase genes. Biochemical and chemical strategies offer valuable complements to these genetic approaches, notably by enabling introduction of unnatural functionalities, such as fluorophores, into cell surface glycans. Here, we describe some of the most recent developments in glycoengineering of cell surfaces, with an emphasis on strategies that employ novel chemical reagents. We highlight key examples of how these advances in cell surface glycan engineering enable study of cell surface glycans and their function. Exciting new technologies include synthetic lipid-glycans, new chemical reporters for metabolic oligosaccharide engineering to allow tandem and in vivo labeling of glycans, improved chemical and enzymatic methods for glycoproteomics, and metabolic glycosyltransferase inhibitors. Many chemical and biochemical reagents for glycan engineering are commercially available, facilitating their adoption by the biological community.
Collapse
Affiliation(s)
- Nicole Nischan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
31
|
Brenner TA, Rice TA, Anderson ED, Percopo CM, Rosenberg HF. Immortalized MH-S cells lack defining features of primary alveolar macrophages and do not support mouse pneumovirus replication. Immunol Lett 2016; 172:106-12. [PMID: 26916143 DOI: 10.1016/j.imlet.2016.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 12/15/2022]
Abstract
The SV-40-transformed MH-S cell line maintains some, but not all, features of primary alveolar macrophages (AMs) from BALB/c mice. We show here that MH-S cells produce inflammatory cytokines IL-6 and CXCL10 in response to challenge with Gram-positive Lactobacillus reuteri, and to TLR2 and NOD2 ligands Pam3CSK4 and MDP, respectively. In contrast, although wild-type AMs are infected in vivo by pneumonia virus of mice (PVM), no virus replication was detected in MH-S cells. Interestingly, the surface immunophenotype of MH-S cells (CD11c(+)Siglec F(-)) differs from that of wild-type AMs (CD11c(+) Siglec F(+)) and is similar to that of immature AMs isolated from granulocyte macrophage-colony stimulating factor (GM-CSF) gene-deleted mice; AMs from GM-CSF(-/-) mice also support PVM replication. However, MH-S cells do not express the GM-CSF receptor alpha chain (CD116) and do not respond to GM-CSF. Due to these unusual features, MH-S cells should be used with caution as experimental models of AMs.
Collapse
Affiliation(s)
- Todd A Brenner
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tyler A Rice
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Erik D Anderson
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Caroline M Percopo
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
32
|
Srivastava S, Makarava N, Katorcha E, Savtchenko R, Brossmer R, Baskakov IV. Post-conversion sialylation of prions in lymphoid tissues. Proc Natl Acad Sci U S A 2015; 112:E6654-62. [PMID: 26627256 PMCID: PMC4672809 DOI: 10.1073/pnas.1517993112] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sialylated glycans on the surface of mammalian cells act as part of a "self-associated molecular pattern," helping the immune system to recognize "self" from "altered self" or "nonself." To escape the host immune system, some bacterial pathogens have evolved biosynthetic pathways for host-like sialic acids, whereas others recruited host sialic acids for decorating their surfaces. Prions lack nucleic acids and are not conventional pathogens. Nevertheless, prions might use a similar strategy for invading and colonizing the lymphoreticular system. Here we show that the sialylation status of the infectious, disease-associated state of the prion protein (PrP(Sc)) changes with colonization of secondary lymphoid organs (SLOs). As a result, spleen-derived PrP(Sc) is more sialylated than brain-derived PrP(Sc). Enhanced sialylation of PrP(Sc) is recapitulated in vitro by incubating brain-derived PrP(Sc) with primary splenocytes or cultured macrophage RAW 264.7 cells. General inhibitors of sialyltranserases (STs), the enzymes that transfer sialic acid residues onto terminal positions of glycans, suppressed extrasialylation of PrP(Sc). A fluorescently labeled precursor of sialic acid revealed ST activity associated with RAW macrophages. This study illustrates that, upon colonization of SLOs, the sialylation status of prions changes by host STs. We propose that this mechanism is responsible for camouflaging prions in SLOs and has broad implications.
Collapse
Affiliation(s)
- Saurabh Srivastava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Elizaveta Katorcha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Regina Savtchenko
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Reinhard Brossmer
- Biochemistry Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201;
| |
Collapse
|