1
|
Huening KA, Groves JT, Wildenthal JA, Tabita FR, North JA. Escherichia coli possessing the dihydroxyacetone phosphate shunt utilize 5'-deoxynucleosides for growth. Microbiol Spectr 2024; 12:e0308623. [PMID: 38441472 PMCID: PMC10986504 DOI: 10.1128/spectrum.03086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/17/2024] [Indexed: 03/08/2024] Open
Abstract
All organisms utilize S-adenosyl-l-methionine (SAM) as a key co-substrate for the methylation of biological molecules, the synthesis of polyamines, and radical SAM reactions. When these processes occur, 5'-deoxy-nucleosides are formed as byproducts such as S-adenosyl-l-homocysteine, 5'-methylthioadenosine (MTA), and 5'-deoxyadenosine (5dAdo). A prevalent pathway found in bacteria for the metabolism of MTA and 5dAdo is the dihydroxyacetone phosphate (DHAP) shunt, which converts these compounds into dihydroxyacetone phosphate and 2-methylthioacetaldehyde or acetaldehyde, respectively. Previous work in other organisms has shown that the DHAP shunt can enable methionine synthesis from MTA or serve as an MTA and 5dAdo detoxification pathway. Rather, the DHAP shunt in Escherichia coli ATCC 25922, when introduced into E. coli K-12, enables the use of 5dAdo and MTA as a carbon source for growth. When MTA is the substrate, the sulfur component is not significantly recycled back to methionine but rather accumulates as 2-methylthioethanol, which is slowly oxidized non-enzymatically under aerobic conditions. The DHAP shunt in ATCC 25922 is active under oxic and anoxic conditions. Growth using 5-deoxy-d-ribose was observed during aerobic respiration and anaerobic respiration with Trimethylamine N-oxide (TMAO), but not during fermentation or respiration with nitrate. This suggests the DHAP shunt may only be relevant for extraintestinal pathogenic E. coli lineages with the DHAP shunt that inhabit oxic or TMAO-rich extraintestinal environments. This reveals a heretofore overlooked role of the DHAP shunt in carbon and energy metabolism from ubiquitous SAM utilization byproducts and suggests a similar role may occur in other pathogenic and non-pathogenic bacteria with the DHAP shunt. IMPORTANCE The acquisition and utilization of organic compounds that serve as growth substrates are essential for Escherichia coli to grow and multiply. Ubiquitous enzymatic reactions involving S-adenosyl-l-methionine as a co-substrate by all organisms result in the formation of the 5'-deoxy-nucleoside byproducts, 5'-methylthioadenosine and 5'-deoxyadenosine. All E. coli possess a conserved nucleosidase that cleaves these 5'-deoxy-nucleosides into 5-deoxy-pentose sugars for adenine salvage. The DHAP shunt pathway is found in some extraintestinal pathogenic E. coli, but its function in E. coli possessing it has remained unknown. This study reveals that the DHAP shunt enables the utilization of 5'-deoxy-nucleosides and 5-deoxy-pentose sugars as growth substrates in E. coli strains with the pathway during aerobic respiration and anaerobic respiration with TMAO, but not fermentative growth. This provides an insight into the diversity of sugar compounds accessible by E. coli with the DHAP shunt and suggests that the DHAP shunt is primarily relevant in oxic or TMAO-rich extraintestinal environments.
Collapse
Affiliation(s)
| | - Joshua T. Groves
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - John A. Wildenthal
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - F. Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Justin A. North
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Rahman SU, Han JC, Ahmad M, Gao S, Khan KA, Li B, Zhou Y, Zhao X, Huang Y. Toxic effects of lead (Pb), cadmium (Cd) and tetracycline (TC) on the growth and development of Triticum aestivum: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166677. [PMID: 37659524 DOI: 10.1016/j.scitotenv.2023.166677] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
The environmental issue of lead (Pb), cadmium (Cd), and tetracycline (TC) contamination in cereal crops has become a growing concern worldwide. An in-depth understanding of this issue would be of importance to promote effective management strategies for heavy metals and antibiotics worldwide. The present study was conducted to assess the toxic effects of heavy metals (Cd, Pb) and antibiotics (TC) on Triticum aestivum (T. aestivum, common wheat) based on studies conducted in the past 22 years. Data pertaining to the growth and development of T. aestivum were extracted and analyzed from 89 publications spanning from 2000 to 2022. Our results showed that Pb, Cd and TC significantly reduced growth and development by 11 %, 9 %, and 5 %, respectively. Additionally, significant accumulation of Cd (42 %) and Pb (17 %) was observed in T. aestivum samples, although there was little change in TC accumulation, which showed limited absorption, accumulation, and translocation of TC in wheat plants. Pb had the greatest impact on the yield of T. aestivum, followed by Cd, while TC had no apparent effect. Furthermore, exposure to Cd, Pb and TC reduced the photosynthetic rate due to chlorophyll reduction, with Cd having the most pronounced effect (58 %), followed by Pb (37 %) and TC (8 %). Cd exposure also significantly enhanced gaseous exchange (37 %) compared to TC and Pb, which reduced gaseous exchange by 4 % and 10 %, respectively. However, the treatments with TC (>50-100 mgL-1), Pb (>1000-2000 mg L-1) and Cd (>500-1000 mg L-1) increased the defense system of T. aestivum samples by 38 %, 15 %, and 11 %, respectively. The obtained findings have significant implications for risk assessment, pollution prevention, and remediation strategies to address soil contamination from Pb, Cd and TC in farmland.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Shuai Gao
- Department of Water Resources and Harbor Engineering, College of Civil Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia.
| | - Bing Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Xu Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yuefei Huang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
| |
Collapse
|
3
|
Huening KA, Groves JT, Wildenthal JA, Tabita FR, North JA. Utilization of 5'-deoxy-nucleosides as Growth Substrates by Extraintestinal Pathogenic E. coli via the Dihydroxyacetone Phosphate Shunt. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552779. [PMID: 37609188 PMCID: PMC10441430 DOI: 10.1101/2023.08.10.552779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
All organisms utilize S-adenosyl-l-methionine (SAM) as a key co-substrate for methylation of biological molecules, synthesis of polyamines, and radical SAM reactions. When these processes occur, 5'-deoxy-nucleosides are formed as byproducts such as S-adenosyl-l-homocysteine (SAH), 5'-methylthioadenosine (MTA), and 5'-deoxyadenosine (5dAdo). One of the most prevalent pathways found in bacteria for the metabolism of MTA and 5dAdo is the DHAP shunt, which converts these compounds into dihydroxyacetone phosphate (DHAP) and 2-methylthioacetaldehyde or acetaldehyde, respectively. Previous work has shown that the DHAP shunt can enable methionine synthesis from MTA or serve as an MTA and 5dAdo detoxification pathway. Here we show that in Extraintestinal Pathogenic E. coil (ExPEC), the DHAP shunt serves none of these roles in any significant capacity, but rather physiologically functions as an assimilation pathway for use of MTA and 5dAdo as growth substrates. This is further supported by the observation that when MTA is the substrate for the ExPEC DHAP shunt, the sulfur components is not significantly recycled back to methionine, but rather accumulates as 2-methylthioethanol, which is slowly oxidized non-enzymatically under aerobic conditions. While the pathway is active both aerobically and anaerobically, it only supports aerobic ExPEC growth, suggesting that it primarily functions in oxygenic extraintestinal environments like blood and urine versus the predominantly anoxic gut. This reveals a heretofore overlooked role of the DHAP shunt in carbon assimilation and energy metabolism from ubiquitous SAM utilization byproducts and suggests a similar role may occur in other pathogenic and non-pathogenic bacteria with the DHAP shunt.
Collapse
Affiliation(s)
| | - Joshua T. Groves
- The Ohio State University Department of Microbiology, Columbus, OH, 43210
| | - John A. Wildenthal
- The Ohio State University Department of Microbiology, Columbus, OH, 43210
| | - F. Robert Tabita
- The Ohio State University Department of Microbiology, Columbus, OH, 43210
| | - Justin A. North
- The Ohio State University Department of Microbiology, Columbus, OH, 43210
| |
Collapse
|
4
|
Allen MM, Pike OA, Kenealey JD, Dunn ML. Metabolomics of acid whey derived from Greek yogurt. J Dairy Sci 2021; 104:11401-11412. [PMID: 34454763 DOI: 10.3168/jds.2021-20442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/16/2021] [Indexed: 11/19/2022]
Abstract
Acid whey, a byproduct of Greek yogurt production, has little commercial value due to its low protein content and is also environmentally harmful when disposed of as waste. However, as a product of microbial fermentation, acid whey could be a rich source of beneficial metabolites associated with fermented foods. This study increases understanding of acid whey composition by providing a complete metabolomic profile of acid whey. Commercial and laboratory-made Greek yogurts, prepared with 3 different bacterial culture combinations, were evaluated. Samples of uncultured milk and cultured whey from each batch were analyzed. Ultra-high-performance liquid chromatography-tandem mass spectrometry metabolomics were used to separate and identify 477 metabolites. Compared with uncultured controls, acid whey from fermented yogurt showed decreases in some metabolites and increases in others, presumably due to the effects of microbial metabolism. Additional metabolites appeared in yogurt whey but not in the uncultured control. Therefore, the effect of microbial fermentation is complex, leading to increases or decreases in potentially bioactive bovine metabolites while generating new microbial compounds that may be beneficial. Metabolite production was significantly affected by combinations of culturing organisms and production location. Differences between laboratory-made and commercial samples could be caused by different starting ingredients, environmental factors, or both.
Collapse
Affiliation(s)
- Muriel M Allen
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602
| | - Oscar A Pike
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602
| | - Jason D Kenealey
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602
| | - Michael L Dunn
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602.
| |
Collapse
|
5
|
Petushkova E, Mayorova E, Tsygankov A. TCA Cycle Replenishing Pathways in Photosynthetic Purple Non-Sulfur Bacteria Growing with Acetate. Life (Basel) 2021; 11:711. [PMID: 34357087 PMCID: PMC8307300 DOI: 10.3390/life11070711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
Purple non-sulfur bacteria (PNSB) are anoxygenic photosynthetic bacteria harnessing simple organic acids as electron donors. PNSB produce a-aminolevulinic acid, polyhydroxyalcanoates, bacteriochlorophylls a and b, ubiquinones, and other valuable compounds. They are highly promising producers of molecular hydrogen. PNSB can be cultivated in organic waste waters, such as wastes after fermentation. In most cases, wastes mainly contain acetic acid. Therefore, understanding the anaplerotic pathways in PNSB is crucial for their potential application as producers of biofuels. The present review addresses the recent data on presence and diversity of anaplerotic pathways in PNSB and describes different classifications of these pathways.
Collapse
Affiliation(s)
- Ekaterina Petushkova
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
| | - Ekaterina Mayorova
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
- Pushchino State Institute of Natural Science, The Federal State Budget Educational Institution of Higher Education, 3, Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anatoly Tsygankov
- Pushchino Scientific Center for Biological Research, Institute of Basic Biological Problems Russian Academy of Sciences, 2, Institutskaya Str, 142290 Pushchino, Moscow Region, Russia; (E.P.); (E.M.)
| |
Collapse
|
6
|
Asplund-Samuelsson J, Hudson EP. Wide range of metabolic adaptations to the acquisition of the Calvin cycle revealed by comparison of microbial genomes. PLoS Comput Biol 2021; 17:e1008742. [PMID: 33556078 PMCID: PMC7895386 DOI: 10.1371/journal.pcbi.1008742] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/19/2021] [Accepted: 01/25/2021] [Indexed: 11/21/2022] Open
Abstract
Knowledge of the genetic basis for autotrophic metabolism is valuable since it relates to both the emergence of life and to the metabolic engineering challenge of incorporating CO2 as a potential substrate for biorefining. The most common CO2 fixation pathway is the Calvin cycle, which utilizes Rubisco and phosphoribulokinase enzymes. We searched thousands of microbial genomes and found that 6.0% contained the Calvin cycle. We then contrasted the genomes of Calvin cycle-positive, non-cyanobacterial microbes and their closest relatives by enrichment analysis, ancestral character estimation, and random forest machine learning, to explore genetic adaptations associated with acquisition of the Calvin cycle. The Calvin cycle overlaps with the pentose phosphate pathway and glycolysis, and we could confirm positive associations with fructose-1,6-bisphosphatase, aldolase, and transketolase, constituting a conserved operon, as well as ribulose-phosphate 3-epimerase, ribose-5-phosphate isomerase, and phosphoglycerate kinase. Additionally, carbohydrate storage enzymes, carboxysome proteins (that raise CO2 concentration around Rubisco), and Rubisco activases CbbQ and CbbX accompanied the Calvin cycle. Photorespiration did not appear to be adapted specifically for the Calvin cycle in the non-cyanobacterial microbes under study. Our results suggest that chemoautotrophy in Calvin cycle-positive organisms was commonly enabled by hydrogenase, and less commonly ammonia monooxygenase (nitrification). The enrichment of specific DNA-binding domains indicated Calvin-cycle associated genetic regulation. Metabolic regulatory adaptations were illustrated by negative correlation to AraC and the enzyme arabinose-5-phosphate isomerase, which suggests a downregulation of the metabolite arabinose-5-phosphate, which may interfere with the Calvin cycle through enzyme inhibition and substrate competition. Certain domains of unknown function that were found to be important in the analysis may indicate yet unknown regulatory mechanisms in Calvin cycle-utilizing microbes. Our gene ranking provides targets for experiments seeking to improve CO2 fixation, or engineer novel CO2-fixing organisms.
Collapse
Affiliation(s)
- Johannes Asplund-Samuelsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Elton P. Hudson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
7
|
North JA, Narrowe AB, Xiong W, Byerly KM, Zhao G, Young SJ, Murali S, Wildenthal JA, Cannon WR, Wrighton KC, Hettich RL, Tabita FR. A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis. Science 2020; 369:1094-1098. [PMID: 32855335 DOI: 10.1126/science.abb6310] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022]
Abstract
Bacterial production of gaseous hydrocarbons such as ethylene and methane affects soil environments and atmospheric climate. We demonstrate that biogenic methane and ethylene from terrestrial and freshwater bacteria are directly produced by a previously unknown methionine biosynthesis pathway. This pathway, present in numerous species, uses a nitrogenase-like reductase that is distinct from known nitrogenases and nitrogenase-like reductases and specifically functions in C-S bond breakage to reduce ubiquitous and appreciable volatile organic sulfur compounds such as dimethyl sulfide and (2-methylthio)ethanol. Liberated methanethiol serves as the immediate precursor to methionine, while ethylene or methane is released into the environment. Anaerobic ethylene production by this pathway apparently explains the long-standing observation of ethylene accumulation in oxygen-depleted soils. Methane production reveals an additional bacterial pathway distinct from archaeal methanogenesis.
Collapse
Affiliation(s)
- Justin A North
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Adrienne B Narrowe
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Weili Xiong
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Kathryn M Byerly
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Guanqi Zhao
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Sarah J Young
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Srividya Murali
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - John A Wildenthal
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - William R Cannon
- Pacific Northwest National Laboratory, Richland, WA 99352, USA.,Department of Mathematics, University of California, Riverside, Riverside, CA 92507, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Sokolov VA. On a Possible Way to Increase the Efficiency of Photosynthesis. DOKL BIOCHEM BIOPHYS 2020; 491:98-100. [DOI: 10.1134/s1607672920020131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022]
|
9
|
North JA, Wildenthal JA, Erb TJ, Evans BS, Byerly KM, Gerlt JA, Tabita FR. A bifunctional salvage pathway for two distinct S-adenosylmethionine by-products that is widespread in bacteria, including pathogenic Escherichia coli. Mol Microbiol 2020; 113:923-937. [PMID: 31950558 DOI: 10.1111/mmi.14459] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 01/19/2023]
Abstract
S-adenosyl-l-methionine (SAM) is a necessary cosubstrate for numerous essential enzymatic reactions including protein and nucleotide methylations, secondary metabolite synthesis and radical-mediated processes. Radical SAM enzymes produce 5'-deoxyadenosine, and SAM-dependent enzymes for polyamine, neurotransmitter and quorum sensing compound synthesis produce 5'-methylthioadenosine as by-products. Both are inhibitory and must be addressed by all cells. This work establishes a bifunctional oxygen-independent salvage pathway for 5'-deoxyadenosine and 5'-methylthioadenosine in both Rhodospirillum rubrum and Extraintestinal Pathogenic Escherichia coli. Homologous genes for this pathway are widespread in bacteria, notably pathogenic strains within several families. A phosphorylase (Rhodospirillum rubrum) or separate nucleoside and kinase (Escherichia coli) followed by an isomerase and aldolase sequentially function to salvage these two wasteful and inhibitory compounds into adenine, dihydroxyacetone phosphate and acetaldehyde or (2-methylthio)acetaldehyde during both aerobic and anaerobic growth. Both SAM by-products are metabolized with equal affinity during aerobic and anaerobic growth conditions, suggesting that the dual-purpose salvage pathway plays a central role in numerous environments, notably the human body during infection. Our newly discovered bifunctional oxygen-independent pathway, widespread in bacteria, salvages at least two by-products of SAM-dependent enzymes for carbon and sulfur salvage, contributing to cell growth.
Collapse
Affiliation(s)
- Justin A North
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - John A Wildenthal
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Bradley S Evans
- The Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Kathryn M Byerly
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - John A Gerlt
- Department of Biochemistry, The Institute for Genomic Biology, Champaign, IL, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Fred R Tabita
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
10
|
Satagopan S, North JA, Arbing MA, Varaljay VA, Haines SN, Wildenthal JA, Byerly KM, Shin A, Tabita FR. Structural Perturbations of Rhodopseudomonas palustris Form II RuBisCO Mutant Enzymes That Affect CO2 Fixation. Biochemistry 2019; 58:3880-3892. [DOI: 10.1021/acs.biochem.9b00617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sriram Satagopan
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Justin A. North
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark A. Arbing
- UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Vanessa A. Varaljay
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sidney N. Haines
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - John A. Wildenthal
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kathryn M. Byerly
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Annie Shin
- UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - F. Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
11
|
Rickaby REM, Eason Hubbard MR. Upper ocean oxygenation, evolution of RuBisCO and the Phanerozoic succession of phytoplankton. Free Radic Biol Med 2019; 140:295-304. [PMID: 31075497 PMCID: PMC6856715 DOI: 10.1016/j.freeradbiomed.2019.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/10/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Evidence is compiled to demonstrate a redox scale within Earth's photosynthesisers that correlates the specificity of their RuBisCO with organismal metabolic tolerance to anoxia, and ecological selection by dissolved O2/CO2 and nutrients. The Form 1B RuBisCO found in the chlorophyte green algae, has a poor selectivity between the two dissolved substrates, O2 and CO2, at the active site. This enzyme appears adapted to lower O2/CO2 ratios, or more "anoxic" conditions and therefore requires additional energetic or nutrient investment in a carbon concentrating mechanism (CCM) to boost the intracellular CO2/O2 ratio and maintain competitive carboxylation rates under increasingly high O2/CO2 conditions in the environment. By contrast the coccolithophores and diatoms evolved containing the more selective Rhodophyte Form 1D RuBisCO, better adapted to a higher O2/CO2 ratio, or more oxic conditions. This Form 1D RuBisCO requires lesser energetic or nutrient investment in a CCM to attain high carboxylation rates under environmentally high O2/CO2 ratios. Such a physiological relationship may underpin the succession of phytoplankton in the Phanerozoic oceans: the coccolithophores and diatoms took over the oceanic realm from the incumbent cyanobacteria and green algae when the upper ocean became persistently oxygenated, alkaline and more oligotrophic. The facultatively anaerobic green algae, able to tolerate the anoxic conditions of the water column and a periodically inundated soil, were better poised to adapt to the fluctuating anoxia associated with periods of submergence and emergence and transition onto the land. The induction of a CCM may exert a natural limit to the improvement of RuBisCO efficiency over Earth history. Rubisco specificity appears to adapt on the timescale of ∼100 Myrs. So persistent elevation of CO2/O2 ratios in the intracellular environment around the enzyme, may induce a relaxation in RuBisCO selectivity for CO2 relative to O2. The most efficient RuBisCO for net carboxylation is likely to be found in CCM-lacking algae that have been exposed to hyperoxic conditions for at least 100 Myrs, such as intertidal brown seaweeds.
Collapse
Affiliation(s)
- Rosalind E M Rickaby
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK.
| | - M R Eason Hubbard
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| |
Collapse
|
12
|
Selection of Cyanobacterial ( Synechococcus sp. Strain PCC 6301) RubisCO Variants with Improved Functional Properties That Confer Enhanced CO 2-Dependent Growth of Rhodobacter capsulatus, a Photosynthetic Bacterium. mBio 2019; 10:mBio.01537-19. [PMID: 31337726 PMCID: PMC6650557 DOI: 10.1128/mbio.01537-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RubisCO catalysis has a significant impact on mitigating greenhouse gas accumulation and CO2 conversion to food, fuel, and other organic compounds required to sustain life. Because RubisCO-dependent CO2 fixation is severely compromised by oxygen inhibition and other physiological constraints, improving RubisCO’s kinetic properties to enhance growth in the presence of atmospheric O2 levels has been a longstanding goal. In this study, RubisCO variants with superior structure-functional properties were selected which resulted in enhanced growth of an autotrophic host organism (R. capsulatus), indicating that RubisCO function was indeed growth limiting. It is evident from these results that genetically engineered RubisCO with kinetically enhanced properties can positively impact growth rates in primary producers. Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a ubiquitous enzyme that catalyzes the conversion of atmospheric CO2 into organic carbon in primary producers. All naturally occurring RubisCOs have low catalytic turnover rates and are inhibited by oxygen. Evolutionary adaptations of the enzyme and its host organisms to changing atmospheric oxygen concentrations provide an impetus to artificially evolve RubisCO variants under unnatural selective conditions. A RubisCO deletion strain of the nonsulfur purple photosynthetic bacterium Rhodobacter capsulatus was previously used as a heterologous host for directed evolution and suppressor selection studies that led to the identification of a conserved hydrophobic region near the active site where amino acid substitutions selectively impacted the enzyme’s sensitivity to O2. In this study, structural alignments, mutagenesis, suppressor selection, and growth complementation with R. capsulatus under anoxic or oxygenic conditions were used to analyze the importance of semiconserved residues in this region of Synechococcus RubisCO. RubisCO mutant substitutions were identified that provided superior CO2-dependent growth capabilities relative to the wild-type enzyme. Kinetic analyses of the mutant enzymes indicated that enhanced growth performance was traceable to differential interactions of the enzymes with CO2 and O2. Effective residue substitutions also appeared to be localized to two other conserved hydrophobic regions of the holoenzyme. Structural comparisons and similarities indicated that regions identified in this study may be targeted for improvement in RubisCOs from other sources, including crop plants.
Collapse
|
13
|
Sekowska A, Ashida H, Danchin A. Revisiting the methionine salvage pathway and its paralogues. Microb Biotechnol 2019; 12:77-97. [PMID: 30306718 PMCID: PMC6302742 DOI: 10.1111/1751-7915.13324] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/24/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022] Open
Abstract
Methionine is essential for life. Its chemistry makes it fragile in the presence of oxygen. Aerobic living organisms have selected a salvage pathway (the MSP) that uses dioxygen to regenerate methionine, associated to a ratchet-like step that prevents methionine back degradation. Here, we describe the variation on this theme, developed across the tree of life. Oxygen appeared long after life had developed on Earth. The canonical MSP evolved from ancestors that used both predecessors of ribulose bisphosphate carboxylase oxygenase (RuBisCO) and methanethiol in intermediate steps. We document how these likely promiscuous pathways were also used to metabolize the omnipresent by-products of S-adenosylmethionine radical enzymes as well as the aromatic and isoprene skeleton of quinone electron acceptors.
Collapse
Affiliation(s)
- Agnieszka Sekowska
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐SalpêtrièreParisFrance
| | - Hiroki Ashida
- Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐SalpêtrièreParisFrance
- Institute of Synthetic BiologyShenzhen Institutes of Advanced StudiesShenzhenChina
| |
Collapse
|
14
|
Miller DV, Rauch BJ, Harich K, Xu H, Perona JJ, White RH. Promiscuity of methionine salvage pathway enzymes in Methanocaldococcus jannaschii. MICROBIOLOGY-SGM 2018; 164:969-981. [PMID: 29877790 DOI: 10.1099/mic.0.000670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The methionine salvage pathway (MSP) is critical for regeneration of S-adenosyl-l-methionine (SAM), a widely used cofactor involved in many essential metabolic reactions. The MSP has been completely elucidated in aerobic organisms, and found to rely on molecular oxygen. Since anaerobic organisms do not use O2, an alternative pathway(s) must be operating. We sought to evaluate whether the functions of two annotated MSP enzymes from Methanocaldococcus jannaschii, a methylthioinosine phosphorylase (MTIP) and a methylthioribose 1-phosphate isomerase (MTRI), are consistent with functioning in a modified anaerobic MSP (AnMSP). We show here that recombinant MTIP is active with six different purine nucleosides, consistent with its function as a general purine nucleoside phosphorylase for both AnMSP and purine salvage. Recombinant MTRI is active with both 5-methylthioribose 1-phosphate and 5-deoxyribose 1-phosphate as substrates, which are generated from phosphororolysis of 5'-methylthioinosine and 5'-deoxyinosine by MTIP, respectively. Together, these data suggest that MTIP and MTRI may function in a novel pathway for recycling the 5'-deoxyadenosine moiety of SAM in M. jannaschii. These enzymes may also enable biosynthesis of 6-deoxy-5-ketofructose 1-phosphate (DKFP), an essential intermediate in aromatic amino acid biosynthesis. Finally, we utilized a homocysteine auxotrophic strain of Methanosarcina acetivorans Δma1821-22Δoahs (HcyAux) to identify potential AnMSP intermediates in vivo. Growth recovery experiments of the M. acetivorans HcyAux were performed with known and proposed intermediates for the AnMSP. Only one metabolite, 2-keto-(4-methylthio)butyric acid, rescued growth of M. acetivorans HcyAux in the absence of homocysteine. This observation may indicate that AnMSP pathways substantially differ among methanogens from phylogenetically divergent genera.
Collapse
Affiliation(s)
- Danielle V Miller
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Present address: Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Benjamin J Rauch
- Department of Chemistry, Portland State University, Portland, OR, USA.,Present address: Zymergen, Inc., 1650 65th Street, Emeryville, CA 94608, USA
| | - Kim Harich
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Huimin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - John J Perona
- Department of Chemistry, Portland State University, Portland, OR, USA.,Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR, USA
| | - Robert H White
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
15
|
Two Distinct Aerobic Methionine Salvage Pathways Generate Volatile Methanethiol in Rhodopseudomonas palustris. mBio 2018; 9:mBio.00407-18. [PMID: 29636438 PMCID: PMC5893883 DOI: 10.1128/mbio.00407-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
5'-Methyl-thioadenosine (MTA) is a dead-end, sulfur-containing metabolite and cellular inhibitor that arises from S-adenosyl-l-methionine-dependent reactions. Recent studies have indicated that there are diverse bacterial methionine salvage pathways (MSPs) for MTA detoxification and sulfur salvage. Here, via a combination of gene deletions and directed metabolite detection studies, we report that under aerobic conditions the facultatively anaerobic bacterium Rhodopseudomonas palustris employs both an MTA-isoprenoid shunt identical to that previously described in Rhodospirillum rubrum and a second novel MSP, both of which generate a methanethiol intermediate. The additional R. palustris aerobic MSP, a dihydroxyacetone phosphate (DHAP)-methanethiol shunt, initially converts MTA to 2-(methylthio)ethanol and DHAP. This is identical to the initial steps of the recently reported anaerobic ethylene-forming MSP, the DHAP-ethylene shunt. The aerobic DHAP-methanethiol shunt then further metabolizes 2-(methylthio)ethanol to methanethiol, which can be directly utilized by O-acetyl-l-homoserine sulfhydrylase to regenerate methionine. This is in contrast to the anaerobic DHAP-ethylene shunt, which metabolizes 2-(methylthio)ethanol to ethylene and an unknown organo-sulfur intermediate, revealing functional diversity in MSPs utilizing a 2-(methylthio)ethanol intermediate. When MTA was fed to aerobically growing cells, the rate of volatile methanethiol release was constant irrespective of the presence of sulfate, suggesting a general housekeeping function for these MSPs up through the methanethiol production step. Methanethiol and dimethyl sulfide (DMS), two of the most important compounds of the global sulfur cycle, appear to arise not only from marine ecosystems but from terrestrial ones as well. These results reveal a possible route by which methanethiol might be biologically produced in soil and freshwater environments.IMPORTANCE Biologically available sulfur is often limiting in the environment. Therefore, many organisms have developed methionine salvage pathways (MSPs) to recycle sulfur-containing by-products back into the amino acid methionine. The metabolically versatile bacterium Rhodopseudomonas palustris is unusual in that it possesses two RuBisCOs and two RuBisCO-like proteins. While RuBisCO primarily serves as the carbon fixation enzyme of the Calvin cycle, RuBisCOs and certain RuBisCO-like proteins have also been shown to function in methionine salvage. This work establishes that only one of the R. palustris RuBisCO-like proteins functions as part of an MSP. Moreover, in the presence of oxygen, to salvage sulfur, R. palustris employs two pathways, both of which result in production of volatile methanethiol, a key compound of the global sulfur cycle. When total available sulfur was plentiful, methanethiol was readily released into the environment. However, when sulfur became limiting, methanethiol release decreased, presumably due to methanethiol utilization to regenerate needed methionine.
Collapse
|
16
|
Bathellier C, Tcherkez G, Lorimer GH, Farquhar GD. Rubisco is not really so bad. PLANT, CELL & ENVIRONMENT 2018; 41:705-716. [PMID: 29359811 DOI: 10.1111/pce.13149] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 05/19/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the most widespread carboxylating enzyme in autotrophic organisms. Its kinetic and structural properties have been intensively studied for more than half a century. Yet important aspects of the catalytic mechanism remain poorly understood, especially the oxygenase reaction. Because of its relatively modest turnover rate (a few catalytic events per second) and the competitive inhibition by oxygen, Rubisco is often viewed as an inefficient catalyst for CO2 fixation. Considerable efforts have been devoted to improving its catalytic efficiency, so far without success. In this review, we re-examine Rubisco's catalytic performance by comparison with other chemically related enzymes. We find that Rubisco is not especially slow. Furthermore, considering both the nature and the complexity of the chemical reaction, its kinetic properties are unremarkable. Although not unique to Rubisco, oxygenation is not systematically observed in enolate and enamine forming enzymes and cannot be considered as an inevitable consequence of the mechanism. It is more likely the result of a compromise between chemical and metabolic imperatives. We argue that a better description of Rubisco mechanism is still required to better understand the link between CO2 and O2 reactivity and the rationale of Rubisco diversification and evolution.
Collapse
Affiliation(s)
- Camille Bathellier
- Research School of Biology, College of Science, Australian National University, Canberra, 2601, ACT, Australia
| | - Guillaume Tcherkez
- Research School of Biology, College of Science, Australian National University, Canberra, 2601, ACT, Australia
| | - George H Lorimer
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 27042, USA
| | - Graham D Farquhar
- Research School of Biology, College of Science, Australian National University, Canberra, 2601, ACT, Australia
| |
Collapse
|
17
|
Liu D, Ramya RCS, Mueller-Cajar O. Surveying the expanding prokaryotic Rubisco multiverse. FEMS Microbiol Lett 2018; 364:3983162. [PMID: 28854711 DOI: 10.1093/femsle/fnx156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/19/2017] [Indexed: 11/12/2022] Open
Abstract
The universal, but catalytically modest, CO2-fixing enzyme Rubisco is currently experiencing intense interest by researchers aiming to enhance crop photosynthesis. These efforts are mostly focused on the highly conserved hexadecameric enzyme found in land plants. In comparison, prokaryotic organisms harbor a far greater diversity in Rubisco forms. Recent work towards improving our appreciation of microbial Rubisco properties and harnessing their potential is surveyed. New structural models are providing informative glimpses into catalytic subtleties and diverse oligomeric states. Ongoing characterization is informing us about the conservation of constraints, such as sugar phosphate inhibition and the associated dependence on Rubisco activase helper proteins. Prokaryotic Rubiscos operate under a far wider range of metabolic contexts than the photosynthetic function of higher plant enzymes. Relaxed selection pressures may have resulted in the exploration of a larger volume of sequence space than permitted in organisms performing oxygenic photosynthesis. To tap into the potential of microbial Rubiscos, in vivo selection systems are being used to discover functional metagenomic Rubiscos. Various directed evolution systems to optimize their function have been developed. It is anticipated that this approach will provide access to biotechnologically valuable enzymes that cannot be encountered in the higher plant Rubisco space.
Collapse
Affiliation(s)
- Di Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
18
|
North JA, Miller AR, Wildenthal JA, Young SJ, Tabita FR. Microbial pathway for anaerobic 5'-methylthioadenosine metabolism coupled to ethylene formation. Proc Natl Acad Sci U S A 2017; 114:E10455-E10464. [PMID: 29133429 PMCID: PMC5715764 DOI: 10.1073/pnas.1711625114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Numerous cellular processes involving S-adenosyl-l-methionine result in the formation of the toxic by-product, 5'-methylthioadenosine (MTA). To prevent inhibitory MTA accumulation and retain biologically available sulfur, most organisms possess the "universal" methionine salvage pathway (MSP). However, the universal MSP is inherently aerobic due to a requirement of molecular oxygen for one of the key enzymes. Here, we report the presence of an exclusively anaerobic MSP that couples MTA metabolism to ethylene formation in the phototrophic bacteria Rhodospirillum rubrum and Rhodopseudomonas palustris In vivo metabolite analysis of gene deletion strains demonstrated that this anaerobic MSP functions via sequential action of MTA phosphorylase (MtnP), 5-(methylthio)ribose-1-phosphate isomerase (MtnA), and an annotated class II aldolase-like protein (Ald2) to form 2-(methylthio)acetaldehyde as an intermediate. 2-(Methylthio)acetaldehyde is reduced to 2-(methylthio)ethanol, which is further metabolized as a usable organic sulfur source, generating stoichiometric amounts of ethylene in the process. Ethylene induction experiments using 2-(methylthio)ethanol versus sulfate as sulfur sources further indicate anaerobic ethylene production from 2-(methylthio)ethanol requires protein synthesis and that this process is regulated. Finally, phylogenetic analysis reveals that the genes corresponding to these enzymes, and presumably the pathway, are widespread among anaerobic and facultatively anaerobic bacteria from soil and freshwater environments. These results not only establish the existence of a functional, exclusively anaerobic MSP, but they also suggest a possible route by which ethylene is produced by microbes in anoxic environments.
Collapse
Affiliation(s)
- Justin A North
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Anthony R Miller
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - John A Wildenthal
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - Sarah J Young
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
19
|
Buchanan BB, Sirevåg R, Fuchs G, Ivanovsky RN, Igarashi Y, Ishii M, Tabita FR, Berg IA. The Arnon-Buchanan cycle: a retrospective, 1966-2016. PHOTOSYNTHESIS RESEARCH 2017; 134:117-131. [PMID: 29019085 DOI: 10.1007/s11120-017-0429-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
For the first decade following its description in 1954, the Calvin-Benson cycle was considered the sole pathway of autotrophic CO2 assimilation. In the early 1960s, experiments with fermentative bacteria uncovered reactions that challenged this concept. Ferredoxin was found to donate electrons directly for the reductive fixation of CO2 into alpha-keto acids via reactions considered irreversible. Thus, pyruvate and alpha-ketoglutarate could be synthesized from CO2, reduced ferredoxin and acetyl-CoA or succinyl-CoA, respectively. This work opened the door to the discovery that reduced ferredoxin could drive the Krebs citric acid cycle in reverse, converting the pathway from its historical role in carbohydrate breakdown to one fixing CO2. Originally uncovered in photosynthetic green sulfur bacteria, the Arnon-Buchanan cycle has since been divorced from light and shown to function in a variety of anaerobic chemoautotrophs. In this retrospective, colleagues who worked on the cycle at its inception in 1966 and those presently working in the field trace its development from a controversial reception to its present-day inclusion in textbooks. This pathway is now well established in major groups of chemoautotrophic bacteria, instead of the Calvin-Benson cycle, and is increasingly referred to as the Arnon-Buchanan cycle. In this retrospective, separate sections have been written by the authors indicated. Bob Buchanan wrote the abstract and the concluding comments.
Collapse
Affiliation(s)
- Bob B Buchanan
- Department of Plant & Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA.
| | - Reidun Sirevåg
- Department of Biosciences, University of Oslo, Blindern, Box 1066, 0316, Oslo, Norway
| | - Georg Fuchs
- Mikrobiologie, Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Ruslan N Ivanovsky
- Department of Microbiology, M.V. Lomonosov Moscow State University, 1/12 Lenin's Hills, Moscow, Russia, 119991
| | - Yasuo Igarashi
- Southwest University, Chongqing, 2 Tiansheng Rd, Beibei Qu, Chongqing Shi, 400700, China
| | - Masaharu Ishii
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ivan A Berg
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149, Münster, Germany
| |
Collapse
|
20
|
Metabolic Regulation as a Consequence of Anaerobic 5-Methylthioadenosine Recycling in Rhodospirillum rubrum. mBio 2016; 7:mBio.00855-16. [PMID: 27406564 PMCID: PMC4958253 DOI: 10.1128/mbio.00855-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rhodospirillum rubrum possesses a novel oxygen-independent, aerobic methionine salvage pathway (MSP) for recycling methionine from 5-methylthioadenosine (MTA), the MTA-isoprenoid shunt. This organism can also metabolize MTA as a sulfur source under anaerobic conditions, suggesting that the MTA-isoprenoid shunt may also function anaerobically as well. In this study, deep proteomics profiling, directed metabolite analysis, and reverse transcriptase quantitative PCR (RT-qPCR) revealed metabolic changes in response to anaerobic growth on MTA versus sulfate as sole sulfur source. The abundance of protein levels associated with methionine transport, cell motility, and chemotaxis increased in the presence of MTA over that in the presence of sulfate. Purine salvage from MTA resulted primarily in hypoxanthine accumulation and a decrease in protein levels involved in GMP-to-AMP conversion to balance purine pools. Acyl coenzyme A (acyl-CoA) metabolic protein levels for lipid metabolism were lower in abundance, whereas poly-β-hydroxybutyrate synthesis and storage were increased nearly 10-fold. The known R. rubrum aerobic MSP was also shown to be upregulated, to function anaerobically, and to recycle MTA. This suggested that other organisms with gene homologues for the MTA-isoprenoid shunt may also possess a functioning anaerobic MSP. In support of our previous findings that ribulose-1,5-carboxylase/oxygenase (RubisCO) is required for an apparently purely anaerobic MSP, RubisCO transcript and protein levels both increased in abundance by over 10-fold in cells grown anaerobically on MTA over those in cells grown on sulfate, resulting in increased intracellular RubisCO activity. These results reveal for the first time global metabolic responses as a consequence of anaerobic MTA metabolism compared to using sulfate as the sulfur source. In nearly all organisms, sulfur-containing byproducts result from many metabolic reactions. Unless these compounds are further metabolized, valuable organic sulfur is lost and can become limiting. To regenerate the sulfur-containing amino acid methionine, organisms typically employ one of several variations of a “universal” methionine salvage pathway (MSP). A common aspect of the universal MSP is a final oxygenation step. This work establishes that the metabolically versatile bacterium Rhodospirillum rubrum employs a novel MSP that does not require oxygen under either aerobic or anaerobic conditions. There is also a separate, dedicated anaerobic MTA metabolic route in R. rubrum. This work reveals global changes in cellular metabolism in response to anaerobic MTA metabolism compared to using sulfate as a sulfur source. We found that cell mobility and transport were enhanced, along with lipid, nucleotide, and carbohydrate metabolism, when cells were grown in the presence of MTA.
Collapse
|
21
|
Záhonová K, Füssy Z, Oborník M, Eliáš M, Yurchenko V. RuBisCO in Non-Photosynthetic Alga Euglena longa: Divergent Features, Transcriptomic Analysis and Regulation of Complex Formation. PLoS One 2016; 11:e0158790. [PMID: 27391690 PMCID: PMC4938576 DOI: 10.1371/journal.pone.0158790] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023] Open
Abstract
Euglena longa, a close relative of the photosynthetic model alga Euglena gracilis, possesses an enigmatic non-photosynthetic plastid. Its genome has retained a gene for the large subunit of the enzyme RuBisCO (rbcL). Here we provide new data illuminating the putative role of RuBisCO in E. longa. We demonstrated that the E. longa RBCL protein sequence is extremely divergent compared to its homologs from the photosynthetic relatives, suggesting a possible functional shift upon the loss of photosynthesis. Similarly to E. gracilis, E. longa harbors a nuclear gene encoding the small subunit of RuBisCO (RBCS) as a precursor polyprotein comprising multiple RBCS repeats, but one of them is highly divergent. Both RBCL and the RBCS proteins are synthesized in E. longa, but their abundance is very low compared to E. gracilis. No RBCS monomers could be detected in E. longa, suggesting that processing of the precursor polyprotein is inefficient in this species. The abundance of RBCS is regulated post-transcriptionally. Indeed, blocking the cytoplasmic translation by cycloheximide has no immediate effect on the RBCS stability in photosynthetically grown E. gracilis, but in E. longa, the protein is rapidly degraded. Altogether, our results revealed signatures of evolutionary degradation (becoming defunct) of RuBisCO in E. longa and suggest that its biological role in this species may be rather unorthodox, if any.
Collapse
Affiliation(s)
- Kristína Záhonová
- Life Science Research Centre, Department of Biology and Ecology and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 701 00 Ostrava, Czech Republic
| | - Zoltán Füssy
- Institute of Parasitology, Biology Centre ASCR, 370 05 České Budějovice, Czech Republic
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre ASCR, 370 05 České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, 370 05 České Budějovice, Czech Republic
- Institute of Microbiology ASCR, Centrum Agaltech, 379 01 Třeboň, Czech Republic
| | - Marek Eliáš
- Life Science Research Centre, Department of Biology and Ecology and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 701 00 Ostrava, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Department of Biology and Ecology and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 701 00 Ostrava, Czech Republic
- Institute of Parasitology, Biology Centre ASCR, 370 05 České Budějovice, Czech Republic
- * E-mail:
| |
Collapse
|