1
|
Trus M, Atlas D. Non-ionotropic voltage-gated calcium channel signaling. Channels (Austin) 2024; 18:2341077. [PMID: 38601983 PMCID: PMC11017947 DOI: 10.1080/19336950.2024.2341077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Voltage-gated calcium channels (VGCCs) are the major conduits for calcium ions (Ca2+) within excitable cells. Recent studies have highlighted the non-ionotropic functionality of VGCCs, revealing their capacity to activate intracellular pathways independently of ion flow. This non-ionotropic signaling mode plays a pivotal role in excitation-coupling processes, including gene transcription through excitation-transcription (ET), synaptic transmission via excitation-secretion (ES), and cardiac contraction through excitation-contraction (EC). However, it is noteworthy that these excitation-coupling processes require extracellular calcium (Ca2+) and Ca2+ occupancy of the channel ion pore. Analogous to the "non-canonical" characterization of the non-ionotropic signaling exhibited by the N-methyl-D-aspartate receptor (NMDA), which requires extracellular Ca2+ without the influx of ions, VGCC activation requires depolarization-triggered conformational change(s) concomitant with Ca2+ binding to the open channel. Here, we discuss the contributions of VGCCs to ES, ET, and EC coupling as Ca2+ binding macromolecules that transduces external stimuli to intracellular input prior to elevating intracellular Ca2+. We emphasize the recognition of calcium ion occupancy within the open ion-pore and its contribution to the excitation coupling processes that precede the influx of calcium. The non-ionotropic activation of VGCCs, triggered by the upstroke of an action potential, provides a conceptual framework to elucidate the mechanistic aspects underlying the microseconds nature of synaptic transmission, cardiac contractility, and the rapid induction of first-wave genes.
Collapse
Affiliation(s)
- Michael Trus
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Lugano DI, Barrett LN, Chaput D, Park MA, Westerheide SD. CCAR-1 works together with the U2AF large subunit UAF-1 to regulate alternative splicing. RNA Biol 2024; 21:1-11. [PMID: 38126797 PMCID: PMC10761121 DOI: 10.1080/15476286.2023.2289707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
The Cell Division Cycle and Apoptosis Regulator (CCAR) protein family members have recently emerged as regulators of alternative splicing and transcription, as well as having other key physiological functions. For example, mammalian CCAR2/DBC1 forms a complex with the zinc factor protein ZNF326 to integrate alternative splicing with RNA polymerase II transcriptional elongation in AT-rich regions of the DNA. Additionally, Caenorhabditis elegans CCAR-1, a homolog to mammalian CCAR2, facilitates the alternative splicing of the perlecan unc-52 gene. However, much about the CCAR family's role in alternative splicing is unknown. Here, we have examined the role of CCAR-1 in genome-wide alternative splicing in Caenorhabditis elegans and have identified new alternative splicing targets of CCAR-1 using RNA sequencing. Also, we found that CCAR-1 interacts with the spliceosome factors UAF-1 and UAF-2 using mass spectrometry, and that knockdown of ccar-1 affects alternative splicing patterns, motility, and proteostasis of UAF-1 mutant worms. Collectively, we demonstrate the role of CCAR-1 in regulating global alternative splicing in C. elegans and in conjunction with UAF-1.
Collapse
Affiliation(s)
- Doreen I. Lugano
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Lindsey N. Barrett
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Dale Chaput
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Margaret A. Park
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Sandy D. Westerheide
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
3
|
Tian S, Zhong X, Wang H, Wei J, Guo W, Wang R, Paul Estillore J, Napolitano C, Duff HH, Ilhan E, Knight LM, Lloyd MS, Roberts JD, Priori SG, Chen SRW. RyR2 C-terminal truncating variants identified in patients with arrhythmic phenotypes exert a dominant negative effect through formation of wildtype-truncation heteromers. Biochem J 2023; 480:1379-1395. [PMID: 37492947 DOI: 10.1042/bcj20230254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
Gain-of-function missense variants in the cardiac ryanodine receptor (RyR2) are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT), whereas RyR2 loss-of-function missense variants cause Ca2+ release deficiency syndrome (CRDS). Recently, truncating variants in RyR2 have also been associated with ventricular arrhythmias (VAs) and sudden cardiac death. However, there are limited insights into the potential clinical relevance and in vitro functional impact of RyR2 truncating variants. We performed genetic screening of patients presenting with syncope, VAs, or unexplained sudden death and in vitro characterization of the expression and function of RyR2 truncating variants in HEK293 cells. We identified two previously unknown RyR2 truncating variants (Y4591Ter and R4663Ter) and one splice site variant predicted to result in a frameshift and premature termination (N4717 + 15Ter). These 3 new RyR2 truncating variants and a recently reported RyR2 truncating variant, R4790Ter, were generated and functionally characterized in vitro. Immunoprecipitation and immunoblotting analyses showed that all 4 RyR2 truncating variants formed heteromers with the RyR2-wildtype (WT) protein. Each of these C-terminal RyR2 truncations was non-functional and suppressed [3H]ryanodine binding to RyR2-WT and RyR2-WT mediated store overload induced spontaneous Ca2+ release activity in HEK293 cells. The expression of these RyR2 truncating variants in HEK293 cells was markedly reduced compared with that of the full-length RyR2 WT protein. Our data indicate that C-terminal RyR2 truncating variants are non-functional and can exert a dominant negative impact on the function of the RyR2 WT protein through formation of heteromeric WT/truncation complex.
Collapse
Affiliation(s)
- Shanshan Tian
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xiaowei Zhong
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Hui Wang
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jinhong Wei
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- School of Medicine, Northwest University, Xi'an 710069, China
| | - Wenting Guo
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - John Paul Estillore
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Carlo Napolitano
- European Reference Network 'ERN GUARD-Heart', Amsterdam, Netherlands
- Division of Cardiology and Molecular Cardiology, IRCCS Maugeri Foundation-University of Pavia, 27100 Pavia, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Henry H Duff
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Erkan Ilhan
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Linda M Knight
- Children's Healthcare of Atlanta Cardiology, Atlanta, Georgia, U.S.A
| | - Michael S Lloyd
- Emory University School of Medicine, Atlanta, Georgia, U.S.A
| | - Jason D Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Silvia G Priori
- European Reference Network 'ERN GUARD-Heart', Amsterdam, Netherlands
- Division of Cardiology and Molecular Cardiology, IRCCS Maugeri Foundation-University of Pavia, 27100 Pavia, Italy
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Molecular Cardiology Laboratory, Centro de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - S R Wayne Chen
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
4
|
Arige V, Terry LE, Wagner LE, Malik S, Baker MR, Fan G, Joseph SK, Serysheva II, Yule DI. Functional determination of calcium-binding sites required for the activation of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci U S A 2022; 119:e2209267119. [PMID: 36122240 PMCID: PMC9522344 DOI: 10.1073/pnas.2209267119] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/23/2022] [Indexed: 01/25/2023] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) initiate a diverse array of physiological responses by carefully orchestrating intracellular calcium (Ca2+) signals in response to various external cues. Notably, IP3R channel activity is determined by several obligatory factors, including IP3, Ca2+, and ATP. The critical basic amino acid residues in the N-terminal IP3-binding core (IBC) region that facilitate IP3 binding are well characterized. In contrast, the residues conferring regulation by Ca2+ have yet to be ascertained. Using comparative structural analysis of Ca2+-binding sites identified in two main families of intracellular Ca2+-release channels, ryanodine receptors (RyRs) and IP3Rs, we identified putative acidic residues coordinating Ca2+ in the cytosolic calcium sensor region in IP3Rs. We determined the consequences of substituting putative Ca2+ binding, acidic residues in IP3R family members. We show that the agonist-induced Ca2+ release, single-channel open probability (P0), and Ca2+ sensitivities are markedly altered when the negative charge on the conserved acidic side chain residues is neutralized. Remarkably, neutralizing the negatively charged side chain on two of the residues individually in the putative Ca2+-binding pocket shifted the Ca2+ required to activate IP3R to higher concentrations, indicating that these residues likely are a component of the Ca2+ activation site in IP3R. Taken together, our findings indicate that Ca2+ binding to a well-conserved activation site is a common underlying mechanism resulting in increased channel activity shared by IP3Rs and RyRs.
Collapse
Affiliation(s)
- Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Lara E. Terry
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Larry E. Wagner
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Mariah R. Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Suresh K. Joseph
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Irina I. Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| |
Collapse
|
5
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors. Biomolecules 2021; 11:biom11071031. [PMID: 34356655 PMCID: PMC8301844 DOI: 10.3390/biom11071031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 02/03/2023] Open
Abstract
Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, and expression patterns, which explains their functional distinction. Nevertheless, both have great potential as target sites in pest control, with RyRs currently being targeted by commercial insecticide, the diamides.
Collapse
|
7
|
Guo W, Wei J, Estillore JP, Zhang L, Wang R, Sun B, Chen SRW. RyR2 disease mutations at the C-terminal domain intersubunit interface alter closed-state stability and channel activation. J Biol Chem 2021; 297:100808. [PMID: 34022226 PMCID: PMC8214192 DOI: 10.1016/j.jbc.2021.100808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/19/2022] Open
Abstract
Ryanodine receptors (RyRs) are ion channels that mediate the release of Ca2+ from the sarcoplasmic reticulum/endoplasmic reticulum, mutations of which are implicated in a number of human diseases. The adjacent C-terminal domains (CTDs) of cardiac RyR (RyR2) interact with each other to form a ring-like tetrameric structure with the intersubunit interface undergoing dynamic changes during channel gating. This mobile CTD intersubunit interface harbors many disease-associated mutations. However, the mechanisms of action of these mutations and the role of CTD in channel function are not well understood. Here, we assessed the impact of CTD disease-associated mutations P4902S, P4902L, E4950K, and G4955E on Ca2+− and caffeine-mediated activation of RyR2. The G4955E mutation dramatically increased both the Ca2+-independent basal activity and Ca2+-dependent activation of [3H]ryanodine binding to RyR2. The P4902S and E4950K mutations also increased Ca2+ activation but had no effect on the basal activity of RyR2. All four disease mutations increased caffeine-mediated activation of RyR2 and reduced the threshold for activation and termination of spontaneous Ca2+ release. G4955D dramatically increased the basal activity of RyR2, whereas G4955K mutation markedly suppressed channel activity. Similarly, substitution of P4902 with a negatively charged residue (P4902D), but not a positively charged residue (P4902K), also dramatically increased the basal activity of RyR2. These data suggest that electrostatic interactions are involved in stabilizing the CTD intersubunit interface and that the G4955E disease mutation disrupts this interface, and thus the stability of the closed state. Our studies shed new insights into the mechanisms of action of RyR2 CTD disease mutations.
Collapse
Affiliation(s)
- Wenting Guo
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jinhong Wei
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - John Paul Estillore
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Lin Zhang
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Bo Sun
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; Medical School, Kunming University of Science and Technology, Kunming, China.
| | - S R Wayne Chen
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
8
|
Identification of loss-of-function RyR2 mutations associated with idiopathic ventricular fibrillation and sudden death. Biosci Rep 2021; 41:228220. [PMID: 33825858 PMCID: PMC8062958 DOI: 10.1042/bsr20210209] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
Mutations in cardiac ryanodine receptor (RyR2) are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). Most CPVT RyR2 mutations characterized are gain-of-function (GOF), indicating enhanced RyR2 function as a major cause of CPVT. Loss-of-function (LOF) RyR2 mutations have also been identified and are linked to a distinct entity of cardiac arrhythmia termed RyR2 Ca2+ release deficiency syndrome (CRDS). Exercise stress testing (EST) is routinely used to diagnose CPVT, but it is ineffective for CRDS. There is currently no effective diagnostic tool for CRDS in humans. An alternative strategy to assess the risk for CRDS is to directly determine the functional impact of the associated RyR2 mutations. To this end, we have functionally screened 18 RyR2 mutations that are associated with idiopathic ventricular fibrillation (IVF) or sudden death. We found two additional RyR2 LOF mutations E4146K and G4935R. The E4146K mutation markedly suppressed caffeine activation of RyR2 and abolished store overload induced Ca2+ release (SOICR) in human embryonic kidney 293 (HEK293) cells. E4146K also severely reduced cytosolic Ca2+ activation and abolished luminal Ca2+ activation of single RyR2 channels. The G4935R mutation completely abolished caffeine activation of and [3H]ryanodine binding to RyR2. Co-expression studies showed that the G4935R mutation exerted dominant negative impact on the RyR2 wildtype (WT) channel. Interestingly, the RyR2-G4935R mutant carrier had a negative EST, and the E4146K carrier had a family history of sudden death during sleep, which are different from phenotypes of typical CPVT. Thus, our data further support the link between RyR2 LOF and a new entity of cardiac arrhythmias distinct from CPVT.
Collapse
|
9
|
Vien TN, Ng LCT, Smith JM, Dong K, Krappitz M, Gainullin VG, Fedeles S, Harris PC, Somlo S, DeCaen PG. Disrupting polycystin-2 EF hand Ca 2+ affinity does not alter channel function or contribute to polycystic kidney disease. J Cell Sci 2020; 133:jcs255562. [PMID: 33199522 PMCID: PMC7774883 DOI: 10.1242/jcs.255562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/27/2020] [Indexed: 11/20/2022] Open
Abstract
Approximately 15% of autosomal dominant polycystic kidney disease (ADPKD) is caused by variants in PKD2PKD2 encodes polycystin-2, which forms an ion channel in primary cilia and endoplasmic reticulum (ER) membranes of renal collecting duct cells. Elevated internal Ca2+ modulates polycystin-2 voltage-dependent gating and subsequent desensitization - two biophysical regulatory mechanisms that control its function at physiological membrane potentials. Here, we refute the hypothesis that Ca2+ occupancy of the polycystin-2 intracellular EF hand is responsible for these forms of channel regulation, and, if disrupted, results in ADPKD. We identify and introduce mutations that attenuate Ca2+-EF hand affinity but find channel function is unaltered in the primary cilia and ER membranes. We generated two new mouse strains that harbor distinct mutations that abolish Ca2+-EF hand association but do not result in a PKD phenotype. Our findings suggest that additional Ca2+-binding sites within polycystin-2 or Ca2+-dependent modifiers are responsible for regulating channel activity.
Collapse
Affiliation(s)
- Thuy N Vien
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Leo C T Ng
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jessica M Smith
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Ke Dong
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Matteus Krappitz
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Sorin Fedeles
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Stefan Somlo
- Departments of Internal Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
10
|
Gong D, Yan N, Ledford HA. Structural Basis for the Modulation of Ryanodine Receptors. Trends Biochem Sci 2020; 46:489-501. [PMID: 33353849 DOI: 10.1016/j.tibs.2020.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
Historically, ryanodine receptors (RyRs) have presented unique challenges for high-resolution structural determination despite long-standing interest in their role in excitation-contraction coupling. Owing to their large size (nearly 2.2 MDa), high-resolution structures remained elusive until the advent of cryogenic electron microscopy (cryo-EM) techniques. In recent years, structures for both RyR1 and RyR2 have been solved at near-atomic resolution. Furthermore, recent reports have delved into their more complex structural associations with key modulators - proteins such as the dihydropyridine receptor (DHPR), FKBP12/12.6, and calmodulin (CaM), as well as ions and small molecules including Ca2+, ATP, caffeine, and PCB95. This review addresses the modulation of RyR1 and RyR2, in addition to the impact of such discoveries on intracellular Ca2+ dynamics and biophysical properties.
Collapse
Affiliation(s)
- Deshun Gong
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province/Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China.
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Hannah A Ledford
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
11
|
Dashti A, Mashayekhi G, Shekhar M, Ben Hail D, Salah S, Schwander P, des Georges A, Singharoy A, Frank J, Ourmazd A. Retrieving functional pathways of biomolecules from single-particle snapshots. Nat Commun 2020; 11:4734. [PMID: 32948759 PMCID: PMC7501871 DOI: 10.1038/s41467-020-18403-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
A primary reason for the intense interest in structural biology is the fact that knowledge of structure can elucidate macromolecular functions in living organisms. Sustained effort has resulted in an impressive arsenal of tools for determining the static structures. But under physiological conditions, macromolecules undergo continuous conformational changes, a subset of which are functionally important. Techniques for capturing the continuous conformational changes underlying function are essential for further progress. Here, we present chemically-detailed conformational movies of biological function, extracted data-analytically from experimental single-particle cryo-electron microscopy (cryo-EM) snapshots of ryanodine receptor type 1 (RyR1), a calcium-activated calcium channel engaged in the binding of ligands. The functional motions differ substantially from those inferred from static structures in the nature of conformationally active structural domains, the sequence and extent of conformational motions, and the way allosteric signals are transduced within and between domains. Our approach highlights the importance of combining experiment, advanced data analysis, and molecular simulations.
Collapse
Affiliation(s)
- Ali Dashti
- Department of Physics, University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA
| | - Ghoncheh Mashayekhi
- Department of Physics, University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA
| | - Mrinal Shekhar
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign 405 N. Mathews Ave., Urbana, IL, 61801, USA
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA
| | - Danya Ben Hail
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Salah Salah
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
- Department of Chemistry & Biochemistry, City College of New York, New York, NY, 10031, USA
- Ph.D. Programs in Physics, Chemistry & Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Peter Schwander
- Department of Physics, University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.
- Department of Chemistry & Biochemistry, City College of New York, New York, NY, 10031, USA.
- Ph.D. Programs in Physics, Chemistry & Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Abhishek Singharoy
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA.
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, 2-221 Black Building, 650 West 168th Street, New York, NY, 10032, USA.
- Department of Biological Sciences, Columbia University, 600 Fairchild Center, New York, NY, 10027, USA.
| | - Abbas Ourmazd
- Department of Physics, University of Wisconsin Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA.
| |
Collapse
|
12
|
Guo W, Sun B, Estillore JP, Wang R, Chen SRW. The central domain of cardiac ryanodine receptor governs channel activation, regulation, and stability. J Biol Chem 2020; 295:15622-15635. [PMID: 32878990 DOI: 10.1074/jbc.ra120.013512] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/25/2020] [Indexed: 11/06/2022] Open
Abstract
Structural analyses identified the central domain of ryanodine receptor (RyR) as a transducer converting conformational changes in the cytoplasmic platform to the RyR gate. The central domain is also a regulatory hub encompassing the Ca2+-, ATP-, and caffeine-binding sites. However, the role of the central domain in RyR activation and regulation has yet to be defined. Here, we mutated five residues that form the Ca2+ activation site and 10 residues with negatively charged or oxygen-containing side chains near the Ca2+ activation site. We also generated eight disease-associated mutations within the central domain of RyR2. We determined the effect of these mutations on Ca2+, ATP, and caffeine activation and Mg2+ inhibition of RyR2. Mutating the Ca2+ activation site markedly reduced the sensitivity of RyR2 to Ca2+ and caffeine activation. Unexpectedly, Ca2+ activation site mutation E3848A substantially enhanced the Ca2+-independent basal activity of RyR2, suggesting that E3848A may also affect the stability of the closed state of RyR2. Mutations in the Ca2+ activation site also abolished the effect of ATP/caffeine on the Ca2+-independent basal activity, suggesting that the Ca2+ activation site is also a critical determinant of ATP/caffeine action. Mutating residues with negatively charged or oxygen-containing side chains near the Ca2+ activation site significantly altered Ca2+ and caffeine activation and reduced Mg2+ inhibition. Furthermore, disease-associated RyR2 mutations within the central domain significantly enhanced Ca2+ and caffeine activation and reduced Mg2+ inhibition. Our data demonstrate that the central domain plays an important role in channel activation, channel regulation, and closed state stability.
Collapse
Affiliation(s)
- Wenting Guo
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Bo Sun
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Medical School, Kunming University of Science and Technology, Kunming, China
| | - John Paul Estillore
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - S R Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
13
|
Zheng W, Wen H. Investigating dual Ca 2+ modulation of the ryanodine receptor 1 by molecular dynamics simulation. Proteins 2020; 88:1528-1539. [PMID: 32557910 DOI: 10.1002/prot.25971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/26/2020] [Accepted: 06/14/2020] [Indexed: 11/09/2022]
Abstract
The ryanodine receptors (RyR) are essential to calcium signaling in striated muscles. A deep understanding of the complex Ca2+ -activation/inhibition mechanism of RyRs requires detailed structural and dynamic information for RyRs in different functional states (eg, with Ca2+ bound to activating or inhibitory sites). Recently, high-resolution structures of the RyR isoform 1 (RyR1) were solved by cryo-electron microscopy, revealing the location of a Ca2+ binding site for activation. Toward elucidating the Ca2+ -modulation mechanism of RyR1, we performed extensive molecular dynamics simulation of the core RyR1 structure in the presence and absence of activating and solvent Ca2+ (total simulation time is >5 μs). In the presence of solvent Ca2+ , Ca2+ binding to the activating site enhanced dynamics of RyR1 with higher inter-subunit flexibility, asymmetric inter-subunit motions, outward domain motions and partial pore dilation, which may prime RyR1 for subsequent channel opening. In contrast, the solvent Ca2+ alone reduced dynamics of RyR1 and led to inward domain motions and pore contraction, which may cause inhibition. Combining our simulation with the map of disease mutation sites in RyR1, we constructed a wiring diagram of key domains coupled via specific hydrogen bonds involving the mutation sites, some of which were modulated by Ca2+ binding. The structural and dynamic information gained from this study will inform future mutational and functional studies of RyR1 activation and inhibition by Ca2+ .
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, University at Buffalo, Buffalo, New York, USA
| | - Han Wen
- Department of Physics, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
14
|
Gaburjakova J, Almassy J, Gaburjakova M. Luminal addition of non-permeant Eu 3+ interferes with luminal Ca 2+ regulation of the cardiac ryanodine receptor. Bioelectrochemistry 2020; 132:107449. [PMID: 31918058 DOI: 10.1016/j.bioelechem.2019.107449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
Dysregulation of the cardiac ryanodine receptor (RYR2) by luminal Ca2+ has been implicated in a life-threatening, stress-induced arrhythmogenic disease. The mechanism of luminal Ca2+-mediated RYR2 regulation is under debate, and it has been attributed to Ca2+ binding on the cytosolic face (the Ca2+ feedthrough mechanism) and/or the luminal face of the RYR2 channel (the true luminal mechanism). The molecular nature and location of the luminal Ca2+ site is unclear. At the single-channel level, we directly probed the RYR2 luminal face by Eu3+, considering the non-permeant nature of trivalent cations and their high binding affinities for Ca2+ sites. Without affecting essential determinants of the Ca2+ feedthrough mechanism, we found that luminal Eu3+ competitively antagonized the activation effect of luminal Ca2+ on RYR2 responsiveness to cytosolic caffeine, and no appreciable effect was observed for luminal Ba2+ (mimicking the absence of luminal Ca2+). Importantly, luminal Eu3+ caused no changes in RYR2 gating. Our results indicate that two distinct Ca2+ sites (available for luminal Ca2+ even when the channel is closed) are likely involved in the true luminal mechanism. One site facing the lumen regulates channel responsiveness to caffeine, while the other site, presumably positioned in the channel pore, governs the gating behavior.
Collapse
Affiliation(s)
- Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovak Republic.
| | - Janos Almassy
- Department of Physiology, Faculty of Medicine, University of Debrecen, PO Box 400, Debrecen 4002, Hungary.
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska Cesta 9, 840 05 Bratislava, Slovak Republic.
| |
Collapse
|
15
|
Søndergaard MT, Liu Y, Guo W, Wei J, Wang R, Brohus M, Overgaard MT, Chen SRW. Role of cardiac ryanodine receptor calmodulin-binding domains in mediating the action of arrhythmogenic calmodulin N-domain mutation N54I. FEBS J 2019; 287:2256-2280. [PMID: 31763755 DOI: 10.1111/febs.15147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/12/2019] [Accepted: 11/19/2019] [Indexed: 11/27/2022]
Abstract
The Ca2+ -sensing protein calmodulin (CaM) inhibits cardiac ryanodine receptor (RyR2)-mediated Ca2+ release. CaM mutations associated with arrhythmias and sudden cardiac death have been shown to diminish CaM-dependent inhibition of RyR2, but the underlying mechanisms are not well understood. Nearly all arrhythmogenic CaM mutations identified are located in the C-domain of CaM and exert marked effects on Ca2+ binding to CaM and on the CaM C-domain interaction with the CaM-binding domain 2 (CaMBD2) in RyR2. Interestingly, the arrhythmogenic N-domain mutation CaM-N54I has little or no effect on Ca2+ binding to CaM or the CaM C-domain-RyR2 CaMBD2 interaction, unlike all CaM C-domain mutations. This suggests that CaM-N54I may diminish CaM-dependent RyR2 inhibition by affecting CaM N-domain interactions with RyR2 CaMBDs other than CaMBD2. To explore this possibility, we assessed the effects of deleting each of the four known CaMBDs in RyR2 (CaMBD1a, -1b, -2, or -3) on the CaM-dependent inhibition of RyR2-mediated Ca2+ release in HEK293 cells. We found that removing CaMBD1a, CaMBD1b, or CaMBD3 did not alter the effects of CaM-N54I or CaM-WT on RyR2 inhibition. On the other hand, deleting RyR2-CaMBD2 abolished the effects of both CaM-N54I and CaM-WT. Our results support that CaM-N54I causes aberrant RyR2 regulation via an uncharacterized CaMBD or less likely CaMBD2, and that RyR2 CaMBD2 is required for the actions of both N- and C-domain CaM mutations. Moreover, our results show that CaMBD1a is central to RyR2 regulation, but CaMBD1a, CaMBD1b, and CaMBD3 are not required for CaM-dependent inhibition of RyR2 in HEK293 cells.
Collapse
Affiliation(s)
- Mads T Søndergaard
- Department of Chemistry and Bioscience, Aalborg University, Denmark.,Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Yingjie Liu
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Wenting Guo
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Jinhong Wei
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Denmark
| | | | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| |
Collapse
|
16
|
Yamaguchi N. Molecular Insights into Calcium Dependent Regulation of Ryanodine Receptor Calcium Release Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1131:321-336. [DOI: 10.1007/978-3-030-12457-1_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Prole DL, Taylor CW. Structure and Function of IP 3 Receptors. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035063. [PMID: 30745293 DOI: 10.1101/cshperspect.a035063] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs), by releasing Ca2+ from the endoplasmic reticulum (ER) of animal cells, allow Ca2+ to be redistributed from the ER to the cytosol or other organelles, and they initiate store-operated Ca2+ entry (SOCE). For all three IP3R subtypes, binding of IP3 primes them to bind Ca2+, which then triggers channel opening. We are now close to understanding the structural basis of IP3R activation. Ca2+-induced Ca2+ release regulated by IP3 allows IP3Rs to regeneratively propagate Ca2+ signals. The smallest of these regenerative events is a Ca2+ puff, which arises from the nearly simultaneous opening of a small cluster of IP3Rs. Ca2+ puffs are the basic building blocks for all IP3-evoked Ca2+ signals, but only some IP3 clusters, namely those parked alongside the ER-plasma membrane junctions where SOCE occurs, are licensed to respond. The location of these licensed IP3Rs may allow them to selectively regulate SOCE.
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| |
Collapse
|
18
|
Badone B, Ronchi C, Kotta MC, Sala L, Ghidoni A, Crotti L, Zaza A. Calmodulinopathy: Functional Effects of CALM Mutations and Their Relationship With Clinical Phenotypes. Front Cardiovasc Med 2018; 5:176. [PMID: 30619883 PMCID: PMC6297375 DOI: 10.3389/fcvm.2018.00176] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
In spite of the widespread role of calmodulin (CaM) in cellular signaling, CaM mutations lead specifically to cardiac manifestations, characterized by remarkable electrical instability and a high incidence of sudden death at young age. Penetrance of the mutations is surprisingly high, thus postulating a high degree of functional dominance. According to the clinical patterns, arrhythmogenesis in CaM mutations can be attributed, in the majority of cases, to either prolonged repolarization (as in long-QT syndrome, LQTS phenotype), or to instability of the intracellular Ca2+ store (as in catecholamine-induced tachycardias, CPVT phenotype). This review discusses how mutations affect CaM signaling function and how this may relate to the distinct arrhythmia phenotypes/mechanisms observed in patients; this involves mechanistic interpretation of negative dominance and mutation-specific CaM-target interactions. Knowledge of the mechanisms involved may allow critical approach to clinical manifestations and aid in the development of therapeutic strategies for "calmodulinopathies," a recently identified nosological entity.
Collapse
Affiliation(s)
- Beatrice Badone
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Carlotta Ronchi
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Maria-Christina Kotta
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Luca Sala
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Alice Ghidoni
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Antonio Zaza
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
19
|
Santulli G, Lewis D, des Georges A, Marks AR, Frank J. Ryanodine Receptor Structure and Function in Health and Disease. Subcell Biochem 2018; 87:329-352. [PMID: 29464565 PMCID: PMC5936639 DOI: 10.1007/978-981-10-7757-9_11] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ryanodine receptors (RyRs) are ubiquitous intracellular calcium (Ca2+) release channels required for the function of many organs including heart and skeletal muscle, synaptic transmission in the brain, pancreatic beta cell function, and vascular tone. In disease, defective function of RyRs due either to stress (hyperadrenergic and/or oxidative overload) or genetic mutations can render the channels leaky to Ca2+ and promote defective disease-causing signals as observed in heat failure, muscular dystrophy, diabetes mellitus, and neurodegerative disease. RyRs are massive structures comprising the largest known ion channel-bearing macromolecular complex and exceeding 3 million Daltons in molecular weight. RyRs mediate the rapid release of Ca2+ from the endoplasmic/sarcoplasmic reticulum (ER/SR) to stimulate cellular functions through Ca2+-dependent processes. Recent advances in single-particle cryogenic electron microscopy (cryo-EM) have enabled the determination of atomic-level structures for RyR for the first time. These structures have illuminated the mechanisms by which these critical ion channels function and interact with regulatory ligands. In the present chapter we discuss the structure, functional elements, gating and activation mechanisms of RyRs in normal and disease states.
Collapse
Affiliation(s)
- Gaetano Santulli
- The Wu Center for Molecular Cardiology, Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
- The Wilf Family Cardiovascular Research Institute and the Einstein-Mount Sinai Diabetes Research Center, Department of Medicine, Albert Einstein College of Medicine - Montefiore University Hospital, New York, NY, USA
| | - Daniel Lewis
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Amedee des Georges
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY, USA
- Department of Chemistry & Biochemistry, City College of New York, New York, NY, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Meissner G. The structural basis of ryanodine receptor ion channel function. J Gen Physiol 2017; 149:1065-1089. [PMID: 29122978 PMCID: PMC5715910 DOI: 10.1085/jgp.201711878] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/12/2017] [Indexed: 01/25/2023] Open
Abstract
Large-conductance Ca2+ release channels known as ryanodine receptors (RyRs) mediate the release of Ca2+ from an intracellular membrane compartment, the endo/sarcoplasmic reticulum. There are three mammalian RyR isoforms: RyR1 is present in skeletal muscle; RyR2 is in heart muscle; and RyR3 is expressed at low levels in many tissues including brain, smooth muscle, and slow-twitch skeletal muscle. RyRs form large protein complexes comprising four 560-kD RyR subunits, four ∼12-kD FK506-binding proteins, and various accessory proteins including calmodulin, protein kinases, and protein phosphatases. RyRs share ∼70% sequence identity, with the greatest sequence similarity in the C-terminal region that forms the transmembrane, ion-conducting domain comprising ∼500 amino acids. The remaining ∼4,500 amino acids form the large regulatory cytoplasmic "foot" structure. Experimental evidence for Ca2+, ATP, phosphorylation, and redox-sensitive sites in the cytoplasmic structure have been described. Exogenous effectors include the two Ca2+ releasing agents caffeine and ryanodine. Recent work describing the near atomic structures of mammalian skeletal and cardiac muscle RyRs provides a structural basis for the regulation of the RyRs by their multiple effectors.
Collapse
Affiliation(s)
- Gerhard Meissner
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
21
|
Abstract
Ca2+ is a ubiquitous intracellular messenger that controls diverse cellular functions but can become toxic and cause cell death. Selective control of specific targets depends on spatiotemporal patterning of the calcium signal and decoding it by multiple, tunable, and often strategically positioned Ca2+-sensing elements. Ca2+ is detected by specialized motifs on proteins that have been biochemically characterized decades ago. However, the field of Ca2+ sensing has been reenergized by recent progress in fluorescent technology, genetics, and cryo-EM. These approaches exposed local Ca2+-sensing mechanisms inside organelles and at the organellar interfaces, revealed how Ca2+ binding might work to open some channels, and identified human mutations and disorders linked to a variety of Ca2+-sensing proteins. Here we attempt to place these new developments in the context of intracellular calcium homeostasis and signaling.
Collapse
Affiliation(s)
- Rafaela Bagur
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics and Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics and Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
22
|
Jones PP, Guo W, Chen SRW. Control of cardiac ryanodine receptor by sarcoplasmic reticulum luminal Ca 2. J Gen Physiol 2017; 149:867-875. [PMID: 28798281 PMCID: PMC5583710 DOI: 10.1085/jgp.201711805] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/25/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022] Open
Abstract
Jones et al. propose that SR luminal Ca2+ regulates RyR2 activity via a luminal Ca2+ sensor distinct from the cytosolic Ca2+ sensor.
Collapse
Affiliation(s)
- Peter P Jones
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, Otago, New Zealand .,HeartOtago, University of Otago, Dunedin, Otago, New Zealand
| | - Wenting Guo
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
23
|
Sárközi S, Komáromi I, Jóna I, Almássy J. Lanthanides Report Calcium Sensor in the Vestibule of Ryanodine Receptor. Biophys J 2017; 112:2127-2137. [PMID: 28538150 DOI: 10.1016/j.bpj.2017.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/11/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023] Open
Abstract
Ca2+ regulates ryanodine receptor's (RyR) activity through an activating and an inhibiting Ca2+-binding site located on the cytoplasmic side of the RyR channel. Their altered sensitivity plays an important role in the pathology of malignant hyperthermia and heart failure. We used lanthanide ions (Ln3+) as probes to investigate the Ca2+ sensors of RyR, because they specifically bind to Ca2+-binding proteins and they are impermeable to the channel. Eu3+'s and Sm3+'s action was tested on single RyR1 channels reconstituted into planar lipid bilayers. When the activating binding site was saturated by 50 μM Ca2+, Ln3+ potently inhibited RyR's open probability (Kd Eu3+ = 167 ± 5 nM and Kd Sm3+ = 63 ± 3 nM), but in nominally 0 [Ca2+], low [Eu3+] activated the channel. These results suggest that Ln3+ acts as an agonist of both Ca2+-binding sites. More importantly, the voltage-dependent characteristics of Ln3+'s action led to the conclusion that the activating Ca2+ binding site is located within the electrical field of the channel (in the vestibule). This idea was tested by applying the pore blocker toxin maurocalcine on the cytoplasmic side of RyR. These experiments showed that RyR lost reactivity to changing cytosolic [Ca2+] from 50 μM to 100 nM when the toxin occupied the vestibule. These results suggest that maurocalcine mechanically prevented Ca2+ from dissociating from its binding site and support our vestibular Ca2+ sensor-model further.
Collapse
Affiliation(s)
- Sándor Sárközi
- Department of Physiology, Faculty of Medicine, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Komáromi
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Jóna
- Department of Physiology, Faculty of Medicine, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
24
|
Zalk R, Marks AR. Ca 2+ Release Channels Join the 'Resolution Revolution'. Trends Biochem Sci 2017; 42:543-555. [PMID: 28499500 PMCID: PMC5875148 DOI: 10.1016/j.tibs.2017.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/02/2017] [Accepted: 04/13/2017] [Indexed: 01/22/2023]
Abstract
Ryanodine receptors (RyRs) are calcium release channels expressed in the sarcoendoplasmic reticula of many cell types including cardiac and skeletal muscle cells. In recent years Ca2+ leak through RyRs has been implicated as a major contributor to the development of diseases including heart failure, muscle myopathies, Alzheimer's disease, and diabetes, making it an important therapeutic target. Recent mammalian RyR1 cryoelectron microscopy (cryo-EM) structures of multiple functional states have clarified longstanding questions including the architecture of the transmembrane (TM) pore and cytoplasmic domains, the location and architecture of the channel gate, ligand-binding sites, and the gating mechanism. As we advance toward complete models of RyRs this new information enables the determination of domain-domain interfaces and the location and structural effects of disease-causing RyR mutations.
Collapse
Affiliation(s)
- Ran Zalk
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
25
|
Xu L, Gomez AC, Pasek DA, Meissner G, Yamaguchi N. Two EF-hand motifs in ryanodine receptor calcium release channels contribute to isoform-specific regulation by calmodulin. Cell Calcium 2017; 66:62-70. [PMID: 28807150 DOI: 10.1016/j.ceca.2017.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/08/2017] [Accepted: 05/24/2017] [Indexed: 01/03/2023]
Abstract
The mammalian ryanodine receptor Ca2+ release channel (RyR) has a single conserved high affinity calmodulin (CaM) binding domain. However, the skeletal muscle RyR1 is activated and cardiac muscle RyR2 is inhibited by CaM at submicromolar Ca2+. This suggests isoform-specific domains are involved in RyR regulation by CaM. To gain insight into the differential regulation of cardiac and skeletal muscle RyRs by CaM, RyR1/RyR2 chimeras and mutants were expressed in HEK293 cells, and their single channel activities were measured using a lipid bilayer method. All RyR1/RyR2 chimeras and mutants were inhibited by CaM at 2μM Ca2+, consistent with CaM inhibition of RyR1 and RyR2 at micromolar Ca2+ concentrations. An RyR1/RyR2 chimera with RyR1 N-terminal amino acid residues (aa) 1-3725 and RyR2 C-terminal aa 3692-4968 were inhibited by CaM at <1μM Ca2+ similar to RyR2. In contrast, RyR1/RyR2 chimera with RyR1 aa 1-4301 and RyR2 4254-4968 was activated at <1μM Ca2+ similar to RyR1. Replacement of RyR1 aa 3726-4298 with corresponding residues from RyR2 conferred CaM inhibition at <1μM Ca2+, which suggests RyR1 aa 3726-4298 are required for activation by CaM. Characterization of additional RyR1/RyR2 chimeras and mutants in two predicted Ca2+ binding motifs in RyR1 aa 4081-4092 (EF1) and aa 4116-4127 (EF2) suggests that both EF-hand motifs and additional sequences in the large N-terminal regions are required for isoform-specific RyR1 and RyR2 regulation by CaM at submicromolar Ca2+ concentrations.
Collapse
Affiliation(s)
- Le Xu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, United States
| | - Angela C Gomez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, United States; Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, United States
| | - Daniel A Pasek
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, United States
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, United States
| | - Naohiro Yamaguchi
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, United States; Cardiac Signaling Center, University of South Carolina, Medical University of South Carolina and Clemson University, Charleston, SC 29425, United States.
| |
Collapse
|
26
|
Gaburjakova M, Gaburjakova J. Insight towards the identification of cytosolic Ca 2+ -binding sites in ryanodine receptors from skeletal and cardiac muscle. Acta Physiol (Oxf) 2017; 219:757-767. [PMID: 27543850 DOI: 10.1111/apha.12772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 07/13/2016] [Accepted: 08/12/2016] [Indexed: 11/30/2022]
Abstract
Ca2+ plays a critical role in several processes involved in skeletal and cardiac muscle contraction. One key step in cardiac excitation-contraction (E-C) coupling is the activation of the cardiac ryanodine receptor (RYR2) by cytosolic Ca2+ elevations. Although this process is not critical for skeletal E-C coupling, the activation and inhibition of the skeletal ryanodine receptor (RYR1) seem to be important for overall muscle function. The RYR1 and RYR2 channels fall within the large category of Ca2+ -binding proteins that harbour highly selective Ca2+ -binding sites to receive and translate the various Ca2+ signals into specific functional responses. However, little is known about the precise localization of these sites within the cytosolic assembly of both RYR isoforms, although several experimental lines of evidence have highlighted their EF-hand nature. EF-hand proteins share a common helix-loop-helix structural motif with highly conserved residues involved in Ca2+ coordination. The first step in predicting EF-hand positive regions is to compare the primary protein structure with the EF-hand motif by employing available bioinformatics tools. Although this simple method narrows down search regions, it does not provide solid evidence regarding which regions bind Ca2+ in both RYR isoforms. In this review, we seek to highlight the key findings and experimental approaches that should strengthen our future efforts to identify the cytosolic Ca2+ -binding sites responsible for activation and inhibition in the RYR1 channel, as much less work has been conducted on the RYR2 channel.
Collapse
Affiliation(s)
- M. Gaburjakova
- Institute of Molecular Physiology and Genetics; Slovak Academy of Sciences; Bratislava Slovak Republic
| | - J. Gaburjakova
- Institute of Molecular Physiology and Genetics; Slovak Academy of Sciences; Bratislava Slovak Republic
| |
Collapse
|
27
|
Filer CN. Tritium-labelled alkaloids: Synthesis and applications. J Labelled Comp Radiopharm 2017; 60:96-109. [DOI: 10.1002/jlcr.3480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/12/2016] [Accepted: 11/01/2016] [Indexed: 11/06/2022]
|
28
|
Van Petegem F. Ligand binding to Ryanodine Receptors revealed through cryo-electron microscopy. Cell Calcium 2017; 61:50-52. [DOI: 10.1016/j.ceca.2016.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 10/29/2016] [Indexed: 10/20/2022]
|
29
|
des Georges A, Clarke OB, Zalk R, Yuan Q, Condon KJ, Grassucci RA, Hendrickson WA, Marks AR, Frank J. Structural Basis for Gating and Activation of RyR1. Cell 2016; 167:145-157.e17. [PMID: 27662087 DOI: 10.1016/j.cell.2016.08.075] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/08/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
Abstract
The type-1 ryanodine receptor (RyR1) is an intracellular calcium (Ca(2+)) release channel required for skeletal muscle contraction. Here, we present cryo-EM reconstructions of RyR1 in multiple functional states revealing the structural basis of channel gating and ligand-dependent activation. Binding sites for the channel activators Ca(2+), ATP, and caffeine were identified at interdomain interfaces of the C-terminal domain. Either ATP or Ca(2+) alone induces conformational changes in the cytoplasmic assembly ("priming"), without pore dilation. In contrast, in the presence of all three activating ligands, high-resolution reconstructions of open and closed states of RyR1 were obtained from the same sample, enabling analyses of conformational changes associated with gating. Gating involves global conformational changes in the cytosolic assembly accompanied by local changes in the transmembrane domain, which include bending of the S6 transmembrane segment and consequent pore dilation, displacement, and deformation of the S4-S5 linker and conformational changes in the pseudo-voltage-sensor domain.
Collapse
Affiliation(s)
- Amédée des Georges
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Oliver B Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Ran Zalk
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Kendall J Condon
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Robert A Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Wayne A Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; Wu Center for Molecular Cardiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
30
|
Sun B, Guo W, Tian X, Yao J, Zhang L, Wang R, Chen SRW. The Cytoplasmic Region of Inner Helix S6 Is an Important Determinant of Cardiac Ryanodine Receptor Channel Gating. J Biol Chem 2016; 291:26024-26034. [PMID: 27789712 DOI: 10.1074/jbc.m116.758821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/18/2016] [Indexed: 11/06/2022] Open
Abstract
The ryanodine receptor (RyR) channel pore is formed by four S6 inner helices, with its intracellular gate located at the S6 helix bundle crossing region. The cytoplasmic region of the extended S6 helix is held by the U motif of the central domain and is thought to control the opening and closing of the S6 helix bundle. However, the functional significance of the S6 cytoplasmic region in channel gating is unknown. Here we assessed the role of the S6 cytoplasmic region in the function of cardiac RyR (RyR2) via structure-guided site-directed mutagenesis. We mutated each residue in the S6 cytoplasmic region of the mouse RyR2 (4876QQEQVKEDM4884) and characterized their functional impact. We found that mutations Q4876A, V4880A, K4881A, and M4884A, located mainly on one side of the S6 helix that faces the U motif, enhanced basal channel activity and the sensitivity to Ca2+ or caffeine activation, whereas mutations Q4877A, E4878A, Q4879A, and D4883A, located largely on the opposite side of S6, suppressed channel activity. Furthermore, V4880A, a cardiac arrhythmia-associated mutation, markedly enhanced the frequency of spontaneous openings and the sensitivity to cytosolic and luminal Ca2+ activation of single RyR2 channels. V4880A also increased the propensity and reduced the threshold for arrhythmogenic spontaneous Ca2+ release in HEK293 cells. Collectively, our data suggest that interactions between the cytoplasmic region of S6 and the U motif of RyR2 are important for stabilizing the closed state of the channel. Mutations in the S6/U motif domain interface likely destabilize the closed state of RyR2, resulting in enhanced basal channel activity and sensitivity to activation and increased propensity for spontaneous Ca2+ release and cardiac arrhythmias.
Collapse
Affiliation(s)
- Bo Sun
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Wenting Guo
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xixi Tian
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jinjing Yao
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Lin Zhang
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Ruiwu Wang
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - S R Wayne Chen
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
31
|
Peng W, Shen H, Wu J, Guo W, Pan X, Wang R, Chen SRW, Yan N. Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2. Science 2016; 354:science.aah5324. [PMID: 27708056 DOI: 10.1126/science.aah5324] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/14/2016] [Indexed: 01/10/2023]
Abstract
RyR2 is a high-conductance intracellular calcium (Ca2+) channel that controls the release of Ca2+ from the sarco(endo)plasmic reticulum of a variety of cells. Here, we report the structures of RyR2 from porcine heart in both the open and closed states at near-atomic resolutions determined using single-particle electron cryomicroscopy. Structural comparison reveals a breathing motion of the overall cytoplasmic region resulted from the interdomain movements of amino-terminal domains (NTDs), Helical domains, and Handle domains, whereas almost no intradomain shifts are observed in these armadillo repeats-containing domains. Outward rotations of the Central domains, which integrate the conformational changes of the cytoplasmic region, lead to the dilation of the cytoplasmic gate through coupled motions. Our structural and mutational characterizations provide important insights into the gating and disease mechanism of RyRs.
Collapse
Affiliation(s)
- Wei Peng
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Huaizong Shen
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianping Wu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wenting Guo
- The Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - Xiaojing Pan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Ruiwu Wang
- The Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - S R Wayne Chen
- The Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada, T2N 4N1.
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. .,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Abstract
Ryanodine Receptors are large ion channels responsible for the release of Ca from the Endoplasmic and Sarcoplasmic Reticulum, a prerequisite for muscle contraction. Recent cryo-electron microscopy data have allowed a direct visualization of allosteric motions within these membrane protein giants.
Collapse
Affiliation(s)
- Filip Van Petegem
- University of British Columbia, Department of Biochemistry and Molecular Biology, 2350 Health Sciences Mall, V6T 1Z3 Vancouver, BC, Canada
| |
Collapse
|
33
|
Gomez AC, Holford TW, Yamaguchi N. Malignant hyperthermia-associated mutations in the S2-S3 cytoplasmic loop of type 1 ryanodine receptor calcium channel impair calcium-dependent inactivation. Am J Physiol Cell Physiol 2016; 311:C749-C757. [PMID: 27558158 DOI: 10.1152/ajpcell.00134.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/19/2016] [Indexed: 11/22/2022]
Abstract
Channel activities of skeletal muscle ryanodine receptor (RyR1) are activated by micromolar Ca2+ and inactivated by higher (∼1 mM) Ca2+ To gain insight into a mechanism underlying Ca2+-dependent inactivation of RyR1 and its relationship with skeletal muscle diseases, we constructed nine recombinant RyR1 mutants carrying malignant hyperthermia or centronuclear myopathy-associated mutations and determined RyR1 channel activities by [3H]ryanodine binding assay. These mutations are localized in or near the RyR1 domains which are responsible for Ca2+-dependent inactivation of RyR1. Four RyR1 mutations (F4732D, G4733E, R4736W, and R4736Q) in the cytoplasmic loop between the S2 and S3 transmembrane segments (S2-S3 loop) greatly reduced Ca2+-dependent channel inactivation. Activities of these mutant channels were suppressed at 10-100 μM Ca2+, and the suppressions were relieved by 1 mM Mg2+ The Ca2+- and Mg2+-dependent regulation of S2-S3 loop RyR1 mutants are similar to those of the cardiac isoform of RyR (RyR2) rather than wild-type RyR1. Two mutations (T4825I and H4832Y) in the S4-S5 cytoplasmic loop increased Ca2+ affinities for channel activation and decreased Ca2+ affinities for inactivation, but impairment of Ca2+-dependent inactivation was not as prominent as those of S2-S3 loop mutants. Three mutations (T4082M, S4113L, and N4120Y) in the EF-hand domain showed essentially the same Ca2+-dependent channel regulation as that of wild-type RyR1. The results suggest that nine RyR1 mutants associated with skeletal muscle diseases were differently regulated by Ca2+ and Mg2+ Four malignant hyperthermia-associated RyR1 mutations in the S2-S3 loop conferred RyR2-type Ca2+- and Mg2+-dependent channel regulation.
Collapse
Affiliation(s)
- Angela C Gomez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina; and.,Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| | - Timothy W Holford
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina; and.,Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| | - Naohiro Yamaguchi
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina; and .,Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, and Clemson University, Charleston, South Carolina
| |
Collapse
|
34
|
Clarke OB, Hendrickson WA. Structures of the colossal RyR1 calcium release channel. Curr Opin Struct Biol 2016; 39:144-152. [PMID: 27687475 PMCID: PMC5419430 DOI: 10.1016/j.sbi.2016.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 01/19/2023]
Abstract
Ryanodine receptors (RyRs) are intracellular cation channels that mediate the rapid and voluminous release of Ca2+ from the sarcoplasmic reticulum (SR) as required for excitation-contraction coupling in cardiac and skeletal muscle. Understanding of the architecture and gating of RyRs has advanced dramatically over the past two years, due to the publication of high resolution cryo-electron microscopy (cryoEM) reconstructions and associated atomic models of multiple functional states of the skeletal muscle receptor, RyR1. Here we review recent advances in our understanding of RyR architecture and gating, and highlight remaining gaps in understanding which we anticipate will soon be filled.
Collapse
Affiliation(s)
- Oliver B Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Wayne A Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
35
|
Yuchi Z, Van Petegem F. Ryanodine receptors under the magnifying lens: Insights and limitations of cryo-electron microscopy and X-ray crystallography studies. Cell Calcium 2016; 59:209-27. [DOI: 10.1016/j.ceca.2016.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 10/21/2022]
|
36
|
Gaburjakova J, Gaburjakova M. Cardiac ryanodine receptor: Selectivity for alkaline earth metal cations points to the EF-hand nature of luminal binding sites. Bioelectrochemistry 2016; 109:49-56. [PMID: 26849106 DOI: 10.1016/j.bioelechem.2016.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 11/18/2022]
Abstract
A growing body of evidence suggests that the regulation of cardiac ryanodine receptor (RYR2) by luminal Ca(2+) is mediated by luminal binding sites located on the RYR2 channel itself and/or its auxiliary protein, calsequestrin. The localization and structure of RYR2-resident binding sites are not known because of the lack of a high-resolution structure of RYR2 luminal regions. To obtain the first structural insight, we probed the RYR2 luminal face stripped of calsequestrin by alkaline earth metal divalents (M(2+): Mg(2+), Ca(2+), Sr(2+) or Ba(2+)). We show that the RYR2 response to caffeine at the single-channel level is significantly modified by the nature of luminal M(2+). Moreover, we performed competition experiments by varying the concentration of luminal M(2+) (Mg(2+), Sr(2+) or Ba(2+)) from 8 mM to 53 mM and investigated its ability to compete with 1mM luminal Ca(2+). We demonstrate that all tested M(2+) bind to exactly the same RYR2 luminal binding sites. Their affinities decrease in the order: Ca(2+)>Sr(2+)>Mg(2+)~Ba(2+), showing a strong correlation with the M(2+) affinity of the EF-hand motif. This indicates that the RYR2 luminal binding regions and the EF-hand motif likely share some structural similarities because the structure ties directly to the function.
Collapse
Affiliation(s)
- Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Health Sciences Pavilion, 840 05, Bratislava, Slovak Republic.
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Health Sciences Pavilion, 840 05, Bratislava, Slovak Republic.
| |
Collapse
|