1
|
Premeti K, Tsipa D, Nadalis AE, Papanikolaou MG, Syropoulou V, Karagkiozeli KD, Aggelis G, Iordanidou E, Labrakakis C, Pappas P, Keramidas AD, Antoniou K, Doulias PT, Kabanos TA, Leondaritis G. First generation vanadium-based PTEN inhibitors: Comparative study in vitro and in vivo and identification of a novel mechanism of action. Biochem Pharmacol 2025; 233:116756. [PMID: 39824468 DOI: 10.1016/j.bcp.2025.116756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/29/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
PTEN, a tumor suppressor phosphatase, regulates cellular functions by antagonizing the growth promoting PI3K/Akt/mTOR pathway through the dephosphorylation of the second messenger PIP3. Many preclinical cellular and animal studies have used PTEN inhibitors to highlight specific disease contexts where acute activation of PI3K/Akt/mTOR pathway might offer therapeutic advantages. In the present study we have re-evaluated first-generation PTEN inhibitors, including established bisperoxo-vanadium(V) complexes (bpVs). In vitro, all compounds tested inhibited PTEN with IC50 values between 0.2-0.8 μM, although their activity diminished under reducing conditions. bpV(phen) and bpV(HΟpic) significantly increased pSer473Akt levels in PTEN wild-type cells while bpV(phen) induced phosphorylation in PTEN null cells upon re-expression of functional PTEN. bpV(ΗΟpic) was less specific since it also triggered PTEN-independent Erk1/2 phosphorylation. In vivo, bpV(phen) administration in Wistar rats enhanced pS6 levels in kidney and liver tissues, but not in several CNS tissues, and led to reduced locomotion and exploratory behaviour in the open field test. The consensus mechanism of action of first generation PTEN inhibitors appears to be oxidative inhibition, however bpV(phen) does not induce oxidation of cellular endogenous PTEN. Instead, our findings suggest that the inhibition of PTEN by bpV(phen) in cells and in vivo may proceed through a mechanism involving non-specific S-nitrosylation of PTEN. Our study highlights the complexity of PTEN inhibition by first-generation compounds and their limitations, such as low specificity, adverse effects and non-specific mechanisms of action, and emphasizes the need for developing more selective and potent PTEN inhibitors with improved efficacy and well-defined mechanisms of actions.
Collapse
Affiliation(s)
- Kyriaki Premeti
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitra Tsipa
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Antonios E Nadalis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Michael G Papanikolaou
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Department of Chemistry, University of Cyprus, Nicosia 2109, Cyprus
| | - Vasiliki Syropoulou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantina-Danai Karagkiozeli
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - George Aggelis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Eleni Iordanidou
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Charalampos Labrakakis
- Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
| | - Periklis Pappas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | | | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
| | - Paschalis-Thomas Doulias
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
| | | | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece.
| |
Collapse
|
2
|
Urasaki Y, Le TT. Cinnamaldehyde and Curcumin Prime Akt2 for Insulin-Stimulated Activation. Nutrients 2022; 14:nu14163301. [PMID: 36014807 PMCID: PMC9416494 DOI: 10.3390/nu14163301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, the effects of cinnamaldehyde and curcumin on Akt2, a serine/threonine protein kinase central to the insulin signaling pathway, were examined in preadipocytes. Cinnamaldehyde or curcumin treatment increased Akt2 phosphorylation at multiple sites including T450 and Y475, but had no effect on Akt2 phosphorylation at S474, which is critical for Akt2 activation. Surprisingly, insulin treatment with cinnamaldehyde or curcumin increased p-Akt2 (S474) by 3.5-fold versus insulin treatment alone. Furthermore, combined cinnamaldehyde, curcumin, and insulin treatment increased p-Akt2 (S474) by 7-fold versus insulin treatment alone. Interestingly, cinnamaldehyde and curcumin inhibited both serine/threonine phosphatase 2A (PP2A) and protein tyrosine phosphatase 1B (PTP1B). Akt2 activation is a multistep process that requires phosphorylation at T450 for proper folding and maturation, and phosphorylation of both Y475 and S474 for stabilization of the catalytic domain. It is plausible that by inhibiting PP2A and PTP1B, cinnamaldehyde and curcumin increase phosphorylation at T450 and Y475, and prime Akt2 for insulin-stimulated phosphorylation at S474. Notably, the combination of a PP2A inhibitor, okadaic acid, and a PTP1B inhibitor increased p-Akt2 (S474), even in the absence of insulin. Future combinations of PP2A and PTP1B inhibitors provide a rational platform to engineer new therapeutics for insulin resistance syndrome.
Collapse
|
3
|
Petrikis P, Polyzou A, Premeti K, Roumelioti A, Karampas A, Georgiou G, Grigoriadis D, Leondaritis G. GSK3β and mTORC1 Represent 2 Distinct Signaling Markers in Peripheral Blood Mononuclear Cells of Drug-Naive, First Episode of Psychosis Patients. Schizophr Bull 2022; 48:1136-1144. [PMID: 35757972 PMCID: PMC9434466 DOI: 10.1093/schbul/sbac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is characterized by a complex interplay between genetic and environmental risk factors converging on prominent signaling pathways that orchestrate brain development. The Akt/GSK3β/mTORC1 pathway has long been recognized as a point of convergence and etiological mechanism, but despite evidence suggesting its hypofunction, it is still not clear if this is already established during the first episode of psychosis (FEP). STUDY DESIGN Here, we performed a systematic phosphorylation analysis of Akt, GSK3β, and S6, a mTORC1 downstream target, in fresh peripheral blood mononuclear cells from drug-naive FEP patients and control subjects. STUDY RESULTS Our results suggest 2 distinct signaling endophenotypes in FEP patients. GSK3β hypofunction exhibits a promiscuous association with psychopathology, and it is normalized after treatment, whereas mTORC1 hypofunction represents a stable state. CONCLUSIONS Our study provides novel insight on the peripheral hypofunction of the Akt/GSK3β/mTORC1 pathway and highlights mTORC1 activity as a prominent integrator of altered peripheral immune and metabolic states in FEP patients.
Collapse
Affiliation(s)
| | - Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Kyriaki Premeti
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Argyro Roumelioti
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Andreas Karampas
- Department of Psychiatry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Georgios Georgiou
- Department of Psychiatry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Dionysios Grigoriadis
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridgeshire, UK
| | - George Leondaritis
- To whom correspondence should be addressed; Department of Pharmacology, Faculty of Medicine, School of Health Sciences and Institute of Biosciences, University Research Center of Ioannina, 45110 Ioannina, Greece; tel: +302651007555, fax: +302651007859, e-mail:
| |
Collapse
|
4
|
Ledderose JMT, Benitez JA, Roberts AJ, Reed R, Bintig W, Larkum ME, Sachdev RNS, Furnari F, Eickholt BJ. The impact of phosphorylated PTEN at threonine 366 on cortical connectivity and behaviour. Brain 2022; 145:3608-3621. [PMID: 35603900 DOI: 10.1093/brain/awac188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022] Open
Abstract
The lipid phosphatase PTEN (phosphatase and tensin homologue on chromosome 10) is a key tumour suppressor gene and an important regulator of neuronal signalling. PTEN mutations have been identified in patients with autism spectrum disorders, characterized by macrocephaly, impaired social interactions and communication, repetitive behaviour, intellectual disability, and epilepsy. PTEN enzymatic activity is regulated by a cluster of phosphorylation sites at the C-terminus of the protein. Here, we focussed on the role of PTEN T366 phosphorylation and generated a knock-in mouse line in which Pten T366 was substituted with alanine (PtenT366A/T366A). We identify that phosphorylation of PTEN at T366 controls neuron size and connectivity of brain circuits involved in sensory processing. We show in behavioural tests that PtenT366/T366A mice exhibit cognitive deficits and selective sensory impairments, with significant differences in male individuals. We identify restricted cellular overgrowth of cortical neurons in PtenT366A/T366A brains, linked to increases in both dendritic arborization and soma size. In a combinatorial approach of anterograde and retrograde monosynaptic tracing using rabies virus, we characterize differences in connectivity to the primary somatosensory cortex of PtenT366A/T366A brains, with imbalances in long-range cortico-cortical input to neurons. We conclude that phosphorylation of PTEN at T366 controls neuron size and connectivity of brain circuits involved in sensory processing and propose that PTEN T366 signalling may account for a subset of autism-related functions of PTEN.
Collapse
Affiliation(s)
- Julia M T Ledderose
- Institute for Biochemistry, Charité Universitätsmedizin Berlin, Germany.,Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jorge A Benitez
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California, 92121, USA
| | - Amanda J Roberts
- The Scripps Research Institute, Animal Models Core, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Rachel Reed
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California, 92121, USA
| | - Willem Bintig
- Institute for Biochemistry, Charité Universitätsmedizin Berlin, Germany
| | - Matthew E Larkum
- Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Germany
| | | | - Frank Furnari
- Ludwig Cancer Institute, San Diego, USA.,University of California San Diego, La Jolla, USA
| | - Britta J Eickholt
- Institute for Biochemistry, Charité Universitätsmedizin Berlin, Germany.,Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Germany
| |
Collapse
|
5
|
Sharma M, Dey CS. Role of Akt isoforms in neuronal insulin signaling and resistance. Cell Mol Life Sci 2021; 78:7873-7898. [PMID: 34724097 PMCID: PMC11073101 DOI: 10.1007/s00018-021-03993-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/04/2023]
Abstract
The aim of the present study was to determine the role of Akt isoforms in insulin signaling and resistance in neuronal cells. By silencing Akt isoforms individually and in pairs, in Neuro-2a and HT22 cells we observed that, in insulin-sensitive condition, Akt isoforms differentially reduced activation of AS160 and glucose uptake with Akt2 playing the major role. Under insulin-resistant condition, phosphorylation of all isoforms and glucose uptake were severely affected. Over-expression of individual isoforms in insulin-sensitive and resistant cells differentially reversed AS160 phosphorylation with concomitant reversal in glucose uptake indicating a compensatory role of Akt isoforms in controlling neuronal insulin signaling. Post-insulin stimulation Akt2 translocated to the membrane the most followed by Akt3 and Akt1, decreasing glucose uptake in the similar order in insulin-sensitive cells. None of the Akt isoforms translocated in insulin-resistant cells or high-fat-diet mediated diabetic mice brain cells. Based on our data, insulin-dependent differential translocation of Akt isoforms to the plasma membrane turns out to be the key factor in determining Akt isoform specificity. Thus, isoforms play parallel with predominant role by Akt2, and compensatory yet novel role by Akt1 and Akt3 to regulate neuronal insulin signaling, glucose uptake, and insulin-resistance.
Collapse
Affiliation(s)
- Medha Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
6
|
Klemz A, Kreis P, Eickholt BJ, Gerevich Z. The actin binding protein drebrin helps to protect against the development of seizure-like events in the entorhinal cortex. Sci Rep 2021; 11:8662. [PMID: 33883605 PMCID: PMC8060314 DOI: 10.1038/s41598-021-87967-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
The actin binding protein drebrin plays a key role in dendritic spine formation and synaptic plasticity. Decreased drebrin protein levels have been observed in temporal lobe epilepsy, suggesting the involvement of drebrin in the disease. Here we investigated the effect of drebrin knockout on physiological and pathophysiological neuronal network activities in mice by inducing gamma oscillations, involved in higher cognitive functions, and by analyzing pathophysiological epileptiform activity. We found that loss of drebrin increased the emergence of spontaneous gamma oscillations suggesting an increase in neuronal excitability when drebrin is absent. Further analysis showed that although the kainate-induced hippocampal gamma oscillations were unchanged in drebrin deficient mice, seizure like events measured in the entorhinal cortex appeared earlier and more frequently. The results suggest that while drebrin is not essential for normal physiological network activity, it helps to protect against the formation of seizure like activities during pathological conditions. The data indicate that targeting drebrin function could potentially be a preventive or therapeutic strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Alexander Klemz
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Patricia Kreis
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
| | - Britta J Eickholt
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Zoltan Gerevich
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
7
|
Schiweck J, Murk K, Ledderose J, Münster-Wandowski A, Ornaghi M, Vida I, Eickholt BJ. Drebrin controls scar formation and astrocyte reactivity upon traumatic brain injury by regulating membrane trafficking. Nat Commun 2021; 12:1490. [PMID: 33674568 PMCID: PMC7935889 DOI: 10.1038/s41467-021-21662-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
The brain of mammals lacks a significant ability to regenerate neurons and is thus particularly vulnerable. To protect the brain from injury and disease, damage control by astrocytes through astrogliosis and scar formation is vital. Here, we show that brain injury in mice triggers an immediate upregulation of the actin-binding protein Drebrin (DBN) in astrocytes, which is essential for scar formation and maintenance of astrocyte reactivity. In turn, DBN loss leads to defective astrocyte scar formation and excessive neurodegeneration following brain injuries. At the cellular level, we show that DBN switches actin homeostasis from ARP2/3-dependent arrays to microtubule-compatible scaffolds, facilitating the formation of RAB8-positive membrane tubules. This injury-specific RAB8 membrane compartment serves as hub for the trafficking of surface proteins involved in astrogliosis and adhesion mediators, such as β1-integrin. Our work shows that DBN-mediated membrane trafficking in astrocytes is an important neuroprotective mechanism following traumatic brain injury in mice.
Collapse
Affiliation(s)
- Juliane Schiweck
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kai Murk
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Ledderose
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Marta Ornaghi
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Imre Vida
- grid.6363.00000 0001 2218 4662Institute of Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta J. Eickholt
- grid.6363.00000 0001 2218 4662Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662NeuroCure - Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Brosig A, Fuchs J, Ipek F, Kroon C, Schrötter S, Vadhvani M, Polyzou A, Ledderose J, van Diepen M, Holzhütter HG, Trimbuch T, Gimber N, Schmoranzer J, Lieberam I, Rosenmund C, Spahn C, Scheerer P, Szczepek M, Leondaritis G, Eickholt BJ. The Axonal Membrane Protein PRG2 Inhibits PTEN and Directs Growth to Branches. Cell Rep 2020; 29:2028-2040.e8. [PMID: 31722215 PMCID: PMC6856728 DOI: 10.1016/j.celrep.2019.10.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 08/09/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
In developing neurons, phosphoinositide 3-kinases (PI3Ks) control axon growth and branching by positively regulating PI3K/PI(3,4,5)P3, but how neurons are able to generate sufficient PI(3,4,5)P3 in the presence of high levels of the antagonizing phosphatase PTEN is difficult to reconcile. We find that normal axon morphogenesis involves homeostasis of elongation and branch growth controlled by accumulation of PI(3,4,5)P3 through PTEN inhibition. We identify a plasma membrane-localized protein-protein interaction of PTEN with plasticity-related gene 2 (PRG2). PRG2 stabilizes membrane PI(3,4,5)P3 by inhibiting PTEN and localizes in nanoclusters along axon membranes when neurons initiate their complex branching behavior. We demonstrate that PRG2 is both sufficient and necessary to account for the ability of neurons to generate axon filopodia and branches in dependence on PI3K/PI(3,4,5)P3 and PTEN. Our data indicate that PRG2 is part of a neuronal growth program that induces collateral branch growth in axons by conferring local inhibition of PTEN. Neuronal axon growth and branching is globally regulated by PI3K/PTEN signaling PRG2 inhibits PTEN and stabilizes PIP3 and F-actin PRG2 localizes to nanoclusters on the axonal membrane and coincides with branching PRG2 promotes axonal filopodia and branching dependent on PI3K/PTEN
Collapse
Affiliation(s)
- Annika Brosig
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Joachim Fuchs
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Fatih Ipek
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Cristina Kroon
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sandra Schrötter
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Department of Genetics and Complex Diseases, T.H. Chan Harvard School of Public Health, Boston, MA 02120, USA
| | - Mayur Vadhvani
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Julia Ledderose
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michiel van Diepen
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Hermann-Georg Holzhütter
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thorsten Trimbuch
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Niclas Gimber
- Advanced Medical Bioimaging Core Facility (AMBIO), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jan Schmoranzer
- Advanced Medical Bioimaging Core Facility (AMBIO), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ivo Lieberam
- Centre for Stem Cells and Regenerative Medicine and Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College, London, UK
| | - Christian Rosenmund
- NeuroCure-Cluster of Excellence, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Spahn
- NeuroCure-Cluster of Excellence, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michal Szczepek
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
| | - Britta J Eickholt
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; NeuroCure-Cluster of Excellence, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
9
|
Urasaki Y, Beaumont C, Talbot JN, Hill DK, Le TT. Akt3 Regulates the Tissue-Specific Response to Copaiba Essential Oil. Int J Mol Sci 2020; 21:ijms21082851. [PMID: 32325885 PMCID: PMC7216139 DOI: 10.3390/ijms21082851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022] Open
Abstract
This study reports a relationship between Akt3 expression and tissue-specific regulation of the pI3K/Akt/mTOR signaling pathway by copaiba essential oil. Akt3, a protein kinase B isoform important for the regulation of neuronal development, exhibited differential expression levels in cells of various origins. In neuronal and microglial cells, where Akt3 is present, copaiba essential oil positively regulated the pI3K/Akt/mTOR signaling pathway. In contrast, in liver cells and T lymphocytes, where Akt3 is absent, copaiba essential oil negatively regulated the pI3K/Akt/mTOR signaling pathway. The expression of Akt3 via plasmid DNA in liver cells led to positive regulatory effects by copaiba essential oil on the pI3K/Akt/mTOR signaling pathway. In contrast, inhibition of Akt3 expression in neuronal cells via small interfering RNA molecules targeting Akt3 transcripts abrogated the regulatory effects of copaiba essential oil on the pI3K/Akt/mTOR signaling pathway. Interestingly, Akt3 expression did not impact the regulatory effects of copaiba essential oil on other signaling pathways. For example, copaiba essential oil consistently upregulated the MAPK and JAK/STAT signaling pathways in all evaluated cell types, independent of the Akt3 expression level. Collectively, the data indicated that Akt3 expression was required for the positive regulatory effects of copaiba essential oil, specifically on the pI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yasuyo Urasaki
- College of Pharmacy, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV 89135, USA; (Y.U.); (J.N.T.)
| | - Cody Beaumont
- dōTERRA International, LLC, 389 South 1300 West, Pleasant Grove, UT 84062, USA; (C.B.); (D.K.H.)
| | - Jeffery N. Talbot
- College of Pharmacy, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV 89135, USA; (Y.U.); (J.N.T.)
| | - David K. Hill
- dōTERRA International, LLC, 389 South 1300 West, Pleasant Grove, UT 84062, USA; (C.B.); (D.K.H.)
| | - Thuc T. Le
- College of Pharmacy, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV 89135, USA; (Y.U.); (J.N.T.)
- Correspondence: ; Tel.: +1-702-802-2820
| |
Collapse
|
10
|
Urasaki Y, Beaumont C, Workman M, Talbot JN, Hill DK, Le TT. Fast-Acting and Receptor-Mediated Regulation of Neuronal Signaling Pathways by Copaiba Essential Oil. Int J Mol Sci 2020; 21:ijms21072259. [PMID: 32218156 PMCID: PMC7177672 DOI: 10.3390/ijms21072259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/03/2023] Open
Abstract
This study examined the biological activities of copaiba essential oil via measurement of its effects on signaling pathways in the SH-SY5Y neuronal cell line. Nanofluidic proteomic technologies were deployed to measure the phosphorylation of biomarker proteins within the signaling cascades. Interestingly, copaiba essential oil upregulated the pI3K/Akt/mTOR, MAPK, and JAK/STAT signaling pathways in neuronal cells. The effects of copaiba essential oil peaked at 30 min post-treatment, with a half-maximal effective concentration (EC50) of approximately 80 ng/mL. Treatment with cannabinoid receptor 2 (CB2) agonist AM1241 or the inverse agonist BML190 abrogated the regulatory effects of copaiba essential oil on the pI3K/Akt/mTOR signaling pathway. Surprisingly, copaiba essential oil also activated the apoptosis signaling pathway and reduced the viability of SH-SY5Y cells with an EC50 of approximately 400 ng/mL. Furthermore, β-caryophyllene, a principal constituent of copaiba essential oil, downregulated the pI3K/Akt/mTOR signaling pathway. Taken together, the findings indicated that copaiba essential oil upregulated signaling pathways associated with cell metabolism, growth, immunity, and apoptosis. The biological activities of copaiba essential oil were determined to be fast acting, CB2 mediated, and dependent on multiple chemical constituents of the oil. Nanofluidic proteomics provided a powerful means to assess the biological activities of copaiba essential oil.
Collapse
Affiliation(s)
- Yasuyo Urasaki
- College of Pharmacy, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV 89135, USA; (Y.U.); (J.N.T.)
| | - Cody Beaumont
- dōTERRA International, LLC, 389 South 1300 West, Pleasant Grove, UT 84062, USA; (C.B.); (M.W.); (D.K.H.)
| | - Michelle Workman
- dōTERRA International, LLC, 389 South 1300 West, Pleasant Grove, UT 84062, USA; (C.B.); (M.W.); (D.K.H.)
| | - Jeffery N. Talbot
- College of Pharmacy, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV 89135, USA; (Y.U.); (J.N.T.)
| | - David K. Hill
- dōTERRA International, LLC, 389 South 1300 West, Pleasant Grove, UT 84062, USA; (C.B.); (M.W.); (D.K.H.)
| | - Thuc T. Le
- College of Pharmacy, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV 89135, USA; (Y.U.); (J.N.T.)
- Correspondence: ; Tel.: +1-702-802-2820
| |
Collapse
|
11
|
Urasaki Y, Beaumont C, Workman M, Talbot JN, Hill DK, Le TT. Potency Assessment of CBD Oils by Their Effects on Cell Signaling Pathways. Nutrients 2020; 12:nu12020357. [PMID: 32019055 PMCID: PMC7071207 DOI: 10.3390/nu12020357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
This study used nanofluidic protein posttranslational modification (PTM) profiling to measure the effects of six cannabidiol (CBD) oils and isolated CBD on the signaling pathways of a cultured SH-SY5Y neuronal cell line. Chemical composition analysis revealed that all CBD oils met the label claims and legal regulatory limit regarding the CBD and tetrahydrocannabinol (THC) contents, respectively. Isolated CBD was cytotoxic, with an effective concentration (EC50) of 40 µM. In contrast, the CBD oils had no effect on cell viability at CBD concentrations exceeding 1.2 mM. Interestingly, only an unadulterated CBD oil had strong and statistically significant suppressive effects on the pI3K/Akt/mTOR signaling pathway with an EC50 value of 143 µM and a slow-acting timescale requiring hours. Systematic profiling of twenty-six proteins, which served as biomarkers for nine signaling pathways, revealed that the unadulterated CBD oil downregulated seven signaling pathways but had no measurable effect on the other two signaling pathways. The remaining CBD oils, which were adulterated, and isolated CBD had weak, variable, or undetectable effects on neuronal signaling pathways. Our data clearly showed that adulteration diminished the biological activities of CBD oils. In addition, nanofluidic protein PTM profiling provided a robust means for potency assessment of CBD oils.
Collapse
Affiliation(s)
- Yasuyo Urasaki
- College of Pharmacy, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV 89135, USA; (Y.U.); (J.N.T.)
| | - Cody Beaumont
- dōTERRA International, LLC, 389 South 1300 West, Pleasant Grove, UT 84062, USA; (C.B.); (M.W.); (D.K.H.)
| | - Michelle Workman
- dōTERRA International, LLC, 389 South 1300 West, Pleasant Grove, UT 84062, USA; (C.B.); (M.W.); (D.K.H.)
| | - Jeffery N. Talbot
- College of Pharmacy, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV 89135, USA; (Y.U.); (J.N.T.)
| | - David K. Hill
- dōTERRA International, LLC, 389 South 1300 West, Pleasant Grove, UT 84062, USA; (C.B.); (M.W.); (D.K.H.)
| | - Thuc T. Le
- College of Pharmacy, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV 89135, USA; (Y.U.); (J.N.T.)
- Correspondence: ; Tel.: +1-702-802-2820
| |
Collapse
|
12
|
Wen F, Zhuge W, Wang J, Lu X, You R, Liu L, Zhuge Q, Ding S. Oridonin prevents insulin resistance-mediated cognitive disorder through PTEN/Akt pathway and autophagy in minimal hepatic encephalopathy. J Cell Mol Med 2019; 24:61-78. [PMID: 31568638 PMCID: PMC6933371 DOI: 10.1111/jcmm.14546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/21/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Minimal hepatic encephalopathy (MHE) was characterized for cognitive dysfunction. Insulin resistance (IR) has been identified to be correlated with the pathogenesis of MHE. Oridonin (Ori) is an active terpenoid, which has been reported to rescue synaptic loss and restore insulin sensitivity. In this study, we found that intraperitoneal injection of Ori rescued IR, reduced the autophagosome formation and synaptic loss and improved cognitive dysfunction in MHE rats. Moreover, in insulin‐resistant PC12 cells and N2a cells, we found that Ori blocked IR‐induced synaptic deficits via the down‐regulation of PTEN, the phosphorylation of Akt and the inhibition of autophagy. Taken together, these results suggested that Ori displays therapeutic efficacy towards memory deficits via improvement of IR in MHE and represents a novel bioactive therapeutic agent for treating MHE.
Collapse
Affiliation(s)
- Fangfang Wen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weishan Zhuge
- Gastrointestinal Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoai Lu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruimin You
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leping Liu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qichuan Zhuge
- Neurosurgery Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saidan Ding
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Maibier M, Bintig W, Goede A, Höpfner M, Kuebler WM, Secomb TW, Nitzsche B, Pries AR. Gap junctions regulate vessel diameter in chick chorioallantoic membrane vasculature by both tone-dependent and structural mechanisms. Microcirculation 2019; 27:e12590. [PMID: 31520425 DOI: 10.1111/micc.12590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE In this study, we examined the impact of gap junction blockade on chick chorioallantoic membrane microvessels. METHODS Expression of Cx37, Cx40/42, and Cx43 in chick chorioallantoic membrane tissue was studied by PCR, Western blot, and confocal immunofluorescence microscopy. Vessel diameter changes occurring under gap junction blockade with carbenoxolone (175 µmol/L), palmitoleic acid (100 µmol/L), 43 GAP27 (1 mmol/L) were analyzed by intravital microscopy. To analyze vascular tone, chick chorioallantoic membrane vessels were exposed to a vasodilator cocktail consisting of acetylcholine (10 μmol/L), adenosine (100 μmol/L), papaverine (200 μmol/L), and sodium nitroprusside (10 μmol/L). RESULTS In chick chorioallantoic membrane lysates, Western blot analysis revealed the expression of Cx40 and Cx43. Immunofluorescence in intact chick chorioallantoic membrane vasculature showed only Cx43, limited to arterial vessel walls. Upon gap junction blockade (3 hours) arterial and venous diameters decreased to 0.50 ± 0.03 and 0.36 ± 0.06 (carbenoxolone), 0.72 ± 0.08 and 0.63 ± 0.15 (palmitoleic acid) and 0.77 ± 0.004 and 0.58 ± 0.05 (GAP27), relative to initial values. Initially, diameter decrease was dominated by increasing vascular tone. After 6 hours, however, vessel tone was reduced, suggesting structural network remodeling. CONCLUSIONS Our findings suggest a major role for connexins in mediating acute and chronic diameter changes in developing vascular networks.
Collapse
Affiliation(s)
- Martin Maibier
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin, Germany
- Institute of Physiology, Berlin Institute of Health, Berlin, Germany
| | - Willem Bintig
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin, Germany
- Institute of Biochemistry & Neuro Cure Cluster of Excellence, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrean Goede
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin, Germany
- Institute of Physiology, Berlin Institute of Health, Berlin, Germany
| | - Michael Höpfner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin, Germany
- Institute of Physiology, Berlin Institute of Health, Berlin, Germany
| | - Wolfgang M Kuebler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin, Germany
- Institute of Physiology, Berlin Institute of Health, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Departments of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Bianca Nitzsche
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Axel R Pries
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin, Germany
- German Heart Center Berlin, Berlin, Germany
| |
Collapse
|
14
|
Differentiation of Essential Oils Using Nanofluidic Protein Post-Translational Modification Profiling. Molecules 2019; 24:molecules24132383. [PMID: 31252611 PMCID: PMC6651569 DOI: 10.3390/molecules24132383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 06/25/2019] [Indexed: 11/30/2022] Open
Abstract
Current methods for the authentication of essential oils focus on analyzing their chemical composition. This study describes the use of nanofluidic protein post-translational modification (PTM) profiling to differentiate essential oils by analyzing their biochemical effects. Protein PTM profiling was used to measure the effects of four essential oils, copaiba, mandarin, Melissa, and turmeric, on the phosphorylation of MEK1, MEK2, and ERK1/2 in the MAPK signaling pathway; Akt and 4EBP1 in the pI3K/Akt/mTOR signaling pathway; and STAT3 in the JAK/STAT signaling pathway in cultured HepG2 cells. The gain or loss of the phosphorylation of these proteins served as direct read-outs for the positive or negative regulatory effects of essential oils on their respective signaling pathways. Furthermore, protein PTM profiling and GC-MS were employed side-by-side to assess the quality of the essential oils. In general, protein PTM profiling data concurred with GC-MS data on the identification of adulterated mandarin, Melissa, and turmeric essential oils. Most interestingly, protein PTM profiling data identified the differences in biochemical effects between copaiba essential oils, which were indistinguishable with GC-MS data on their chemical composition. Taken together, nanofluidic protein PTM profiling represents a robust method for the assessment of the quality and therapeutic potential of essential oils.
Collapse
|
15
|
Cormerais Y, Pagnuzzi‐Boncompagni M, Schrötter S, Giuliano S, Tambutté E, Endou H, Wempe MF, Pagès G, Pouysségur J, Picco V. Inhibition of the amino-acid transporter LAT1 demonstrates anti-neoplastic activity in medulloblastoma. J Cell Mol Med 2019; 23:2711-2718. [PMID: 30784173 PMCID: PMC6433660 DOI: 10.1111/jcmm.14176] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022] Open
Abstract
Most cases of medulloblastoma (MB) occur in young children. While the overall survival rate can be relatively high, current treatments combining surgery, chemo- and radiotherapy are very destructive for patient development and quality of life. Moreover, aggressive forms and recurrences of MB cannot be controlled by classical therapies. Therefore, new therapeutic approaches yielding good efficacy and low toxicity for healthy tissues are required to improve patient outcome. Cancer cells sustain their proliferation by optimizing their nutrient uptake capacities. The L-type amino acid transporter 1 (LAT1) is an essential amino acid carrier overexpressed in aggressive human cancers that was described as a potential therapeutic target. In this study, we investigated the therapeutic potential of JPH203, a LAT1-specific pharmacological inhibitor, on two independent MB cell lines belonging to subgroups 3 (HD-MB03) and Shh (DAOY). We show that while displaying low toxicity towards normal cerebral cells, JPH203 disrupts AA homeostasis, mTORC1 activity, proliferation and survival in MB cells. Moreover, we demonstrate that a long-term treatment with JPH203 does not lead to resistance in MB cells. Therefore, this study suggests that targeting LAT1 with JPH203 is a promising therapeutic approach for MB treatment.
Collapse
Affiliation(s)
- Yann Cormerais
- Biomedical DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
- Present address:
Department of Genetics and Complex DiseasesHarvard T. H. Chan School of Public HealthBostonMassachusetts
| | | | - Sandra Schrötter
- Department of Genetics and Complex DiseasesHarvard T. H. Chan School of Public HealthBostonMassachusetts
| | - Sandy Giuliano
- Biomedical DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
| | - Eric Tambutté
- Marine Biology DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
| | | | - Michael F. Wempe
- School of PharmacyAnschutz Medical Campus, University of Colorado DenverAuroraColorado
| | - Gilles Pagès
- Biomedical DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, University of Cote d’AzurNiceFrance
| | - Jacques Pouysségur
- Biomedical DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, University of Cote d’AzurNiceFrance
| | - Vincent Picco
- Biomedical DepartmentCentre Scientifique de MonacoMonacoPrincipality of Monaco
| |
Collapse
|
16
|
ATM phosphorylation of the actin-binding protein drebrin controls oxidation stress-resistance in mammalian neurons and C. elegans. Nat Commun 2019; 10:486. [PMID: 30700723 PMCID: PMC6353951 DOI: 10.1038/s41467-019-08420-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
Drebrin (DBN) regulates cytoskeletal functions during neuronal development, and is thought to contribute to structural and functional synaptic changes associated with aging and Alzheimer’s disease. Here we show that DBN coordinates stress signalling with cytoskeletal dynamics, via a mechanism involving kinase ataxia-telangiectasia mutated (ATM). An excess of reactive oxygen species (ROS) stimulates ATM-dependent phosphorylation of DBN at serine-647, which enhances protein stability and accounts for improved stress resilience in dendritic spines. We generated a humanized DBN Caenorhabditis elegans model and show that a phospho-DBN mutant disrupts the protective ATM effect on lifespan under sustained oxidative stress. Our data indicate a master regulatory function of ATM-DBN in integrating cytosolic stress-induced signalling with the dynamics of actin remodelling to provide protection from synapse dysfunction and ROS-triggered reduced lifespan. They further suggest that DBN protein abundance governs actin filament stability to contribute to the consequences of oxidative stress in physiological and pathological conditions. Drebrin is an actin-binding protein known to play a role in neuronal dendritic spines but its precise regulation is unclear. Here, the authors report that DBN is activated by oxidative stress in an ATM-kinase dependent manner and increases resistance to oxidative stress in mice and in C. elegans.
Collapse
|
17
|
Inositol-C2-PAF acts as a biological response modifier and antagonizes cancer-relevant processes in mammary carcinoma cells. Cell Oncol (Dordr) 2018; 41:505-516. [PMID: 30047091 DOI: 10.1007/s13402-018-0387-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Previous studies have identified alkyl-phospholipids as promising compounds for cancer therapy by targeting constituents of the cell membrane and different signaling pathways. We previously showed that the alkylphospholipid Inositol-C2-PAF inhibits the proliferation and migration of immortalized keratinocytes and the squamous carcinoma-derived cell line SCC-25. Here, we investigated the effect of this compound on growth and motility as well as its mode of action in mammary carcinoma-derived cell lines. METHODS Using BrdU incorporation and haptotactic cell migration assays, we assessed the effects of Inositol-C2-PAF on MCF-7 and MBA-MB-231 cell proliferation and migration. The phosphorylation status of signaling molecules was investigated by Western blotting as well as indirect immunofluorescence analysis and capillary isoelectric focusing. RESULTS We found that Inositol-C2-PAF inhibited the growth as well as the migration in MCF-7 and MBA-MB-231 cells. Furthermore, we found that this compound inhibited phosphorylation of the protein kinase Akt at serine residue 473, but had no impact on phosphorylation at threonine 308. Phosphorylation of other kinases, such as Erk1/2, FAK and Src, which are targeted by Inositol-C2-PAF in other cells, remained unaffected by the compound in the mammary carcinoma-derived cell lines tested. In MCF-7 cells, we found that IGF-1-induced growth, as well as phosphorylation of AktS473, mTOR and the tumor suppressor pRB, was inhibited in the presence of Inositol-C2-PAF. Moreover, we found that in these cells IGF-1 had no impact on migration and did not seem to be linked to full Akt activity. Therefore, MCF-7 cell migration appears to be inhibited by Ino-C2-PAF in an Akt-independent manner. CONCLUSION The antagonistic effects of Inositol-C2-PAF on cell migration and proliferation are indicative for its potential for breast cancer therapy, alone or in combination with other cytostatic drugs.
Collapse
|
18
|
Urasaki Y, Fiscus RR, Le TT. Detection of the Cell Cycle-Regulated Negative Feedback Phosphorylation of Mitogen-Activated Protein Kinases in Breast Carcinoma using Nanofluidic Proteomics. Sci Rep 2018; 8:9991. [PMID: 29968772 PMCID: PMC6030070 DOI: 10.1038/s41598-018-28335-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) play an important role in the regulation of cell proliferation, oncogenic transformation, and drug resistance. This study examined the capability of nanofluidic proteomics to identify aberrations in the MAPK signaling cascade, monitor its drug response, and guide the rational design of intervention strategies. Specifically, the protein post-translational modification (PTM) profiles of MEK1, MEK2, and ERK1/2 were measured in breast carcinoma and breast cancer cell lines. Nanofluidic proteomics revealed hyper-phosphorylation of MAPKs in breast carcinoma and breast cancer cells treated with kinase inhibitors that interfere with cell cycle regulation, such as dinaciclib, an inhibitor of cyclin-dependent kinases, and rigosertib, an inhibitor of polo-like kinase 1. A pMEK1 (Thr286) phosphor-isoform, which serves as a biomarker of cell cycle-regulated negative feedback phosphorylation in breast cancer cells, was detected in breast carcinoma. Inhibition of the MAPK pathway with dabrafenib, a B-Raf inhibitor, or trametinib, a MEK1/2 inhibitor, suppressed both the positively regulated phosphorylation of MAPKs and the negatively regulated phosphorylation of MEK1. Interestingly, the combinations of dabrafenib and rigosertib or trametinib and rigosertib permitted the suppression of positively regulated MAPK phosphorylation together with the promotion of negatively regulated MEK1 phosphorylation. The effectiveness of protein PTM-guided drug combinations for inhibition of the MAPK pathway remains to be experimentally tested. Via protein PTM profiling, nanofluidic proteomics provides a robust means to detect anomalies in the MAPK signaling cascade, monitor its drug response, and guide the possible design of drug combinations for MAPK pathway-focused targeting.
Collapse
Affiliation(s)
- Yasuyo Urasaki
- College of Pharmacy, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV, 89135, USA
| | - Ronald R Fiscus
- College of Medicine, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV, 89135, USA
| | - Thuc T Le
- College of Pharmacy, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV, 89135, USA.
| |
Collapse
|
19
|
Urasaki Y, Zhang C, Cheng JX, Le TT. Quantitative Assessment of Liver Steatosis and Affected Pathways with Molecular Imaging and Proteomic Profiling. Sci Rep 2018; 8:3606. [PMID: 29483581 PMCID: PMC5826939 DOI: 10.1038/s41598-018-22082-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/16/2018] [Indexed: 02/08/2023] Open
Abstract
Current assessment of non-alcoholic fatty liver disease (NAFLD) with histology is time-consuming, insensitive to early-stage detection, qualitative, and lacks information on etiology. This study explored alternative methods for fast and quantitative assessment of NAFLD with hyperspectral stimulated Raman scattering (SRS) microscopy and nanofluidic proteomics. Hyperspectral SRS microscopy quantitatively measured liver composition of protein, DNA, and lipid without labeling and sensitively detected early-stage steatosis in a few minutes. On the other hand, nanofluidic proteomics quantitatively measured perturbations to the post-translational modification (PTM) profiles of selective liver proteins to identify affected cellular signaling and metabolic pathways in a few hours. Perturbations to the PTM profiles of Akt, 4EBP1, BID, HMGCS2, FABP1, and FABP5 indicated abnormalities in multiple cellular processes including cell cycle regulation, PI3K/Akt/mTOR signaling cascade, autophagy, ketogenesis, and fatty acid transport. The integrative deployment of hyperspectral SRS microscopy and nanofluidic proteomics provided fast, sensitive, and quantitative assessment of liver steatosis and affected pathways that overcame the limitations of histology.
Collapse
Affiliation(s)
- Yasuyo Urasaki
- Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV, 89135, USA
| | - Chi Zhang
- Departments of Electrical and Computer Engineering & Biomedical Engineering, College of Engineering, Boston University, 8 St. Mary's St, Boston, MA, 02215, USA
| | - Ji-Xin Cheng
- Departments of Electrical and Computer Engineering & Biomedical Engineering, College of Engineering, Boston University, 8 St. Mary's St, Boston, MA, 02215, USA.
| | - Thuc T Le
- Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, 10530 Discovery Drive, Las Vegas, NV, 89135, USA.
| |
Collapse
|
20
|
Willmes CG, Mack TGA, Ledderose J, Schmitz D, Wozny C, Eickholt BJ. Investigation of hippocampal synaptic transmission and plasticity in mice deficient in the actin-binding protein Drebrin. Sci Rep 2017; 7:42652. [PMID: 28198431 PMCID: PMC5309812 DOI: 10.1038/srep42652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
The dynamic regulation of the actin cytoskeleton plays a key role in controlling the structure and function of synapses. It is vital for activity-dependent modulation of synaptic transmission and long-term changes in synaptic morphology associated with memory consolidation. Several regulators of actin dynamics at the synapse have been identified, of which a salient one is the postsynaptic actin stabilising protein Drebrin (DBN). It has been suggested that DBN modulates neurotransmission and changes in dendritic spine morphology associated with synaptic plasticity. Given that a decrease in DBN levels is correlated with cognitive deficits associated with ageing and dementia, it was hypothesised that DBN protein abundance instructs the integrity and function of synapses. We created a novel DBN deficient mouse line. Analysis of gross brain and neuronal morphology revealed no phenotype in the absence of DBN. Electrophysiological recordings in acute hippocampal slices and primary hippocampal neuronal cultures showed that basal synaptic transmission, and both long-term and homeostatic synaptic plasticity were unchanged, suggesting that loss of DBN is not sufficient in inducing synapse dysfunction. We propose that the overall lack of changes in synaptic function and plasticity in DBN deficient mice may indicate robust compensatory mechanisms that safeguard cytoskeleton dynamics at the synapse.
Collapse
Affiliation(s)
- Claudia G Willmes
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,NeuroCure - Cluster of Excellence, Charité - Universitätsmedizin Berlin, Germany
| | - Till G A Mack
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Julia Ledderose
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Dietmar Schmitz
- NeuroCure - Cluster of Excellence, Charité - Universitätsmedizin Berlin, Germany.,Neuroscience Research Center (NWFZ), Charité Universitätsmedizin, 10117 Berlin, Germany
| | - Christian Wozny
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Britta J Eickholt
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,NeuroCure - Cluster of Excellence, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|