1
|
Borén J, Taskinen MR, Packard CJ. Biosynthesis and Metabolism of ApoB-Containing Lipoproteins. Annu Rev Nutr 2024; 44:179-204. [PMID: 38635875 DOI: 10.1146/annurev-nutr-062222-020716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Recent advances in human genetics, together with a substantial body of epidemiological, preclinical and clinical trial evidence, strongly support a causal relationship between triglyceride-rich lipoproteins (TRLs) and atherosclerotic cardiovascular disease. Consequently, the secretion and metabolism of TRLs have a significant impact on cardiovascular health. This knowledge underscores the importance of understanding the molecular mechanisms and regulation of very-low-density lipoprotein (VLDL) and chylomicron biogenesis. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL, leading to many ground-breaking molecular insights. Furthermore, the identification of molecular control mechanisms related to triglyceride metabolism has greatly advanced our understanding of the complex metabolism of TRLs. In this review, we explore recent advances in the assembly, secretion, and metabolism of TRLs. We also discuss available treatment strategies for hypertriglyceridemia.
Collapse
Affiliation(s)
- Jan Borén
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden;
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
van Zwol W, van de Sluis B, Ginsberg HN, Kuivenhoven JA. VLDL Biogenesis and Secretion: It Takes a Village. Circ Res 2024; 134:226-244. [PMID: 38236950 PMCID: PMC11284300 DOI: 10.1161/circresaha.123.323284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 01/23/2024]
Abstract
The production and secretion of VLDLs (very-low-density lipoproteins) by hepatocytes has a direct impact on liver fat content, as well as the concentrations of cholesterol and triglycerides in the circulation and thus affects both liver and cardiovascular health, respectively. Importantly, insulin resistance, excess caloric intake, and lack of physical activity are associated with overproduction of VLDL, hepatic steatosis, and increased plasma levels of atherogenic lipoproteins. Cholesterol and triglycerides in remnant particles generated by VLDL lipolysis are risk factors for atherosclerotic cardiovascular disease and have garnered increasing attention over the last few decades. Presently, however, increased risk of atherosclerosis is not the only concern when considering today's cardiometabolic patients, as they often also experience hepatic steatosis, a prevalent disorder that can progress to steatohepatitis and cirrhosis. This duality of metabolic risk highlights the importance of understanding the molecular regulation of the biogenesis of VLDL, the lipoprotein that transports triglycerides and cholesterol out of the liver. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL by hepatocytes, which has led to many exciting new molecular insights that are the topic of this review. Increasing our understanding of the biology of this pathway will aid to the identification of novel therapeutic targets to improve both the cardiovascular and the hepatic health of cardiometabolic patients. This review focuses, for the first time, on this duality.
Collapse
Affiliation(s)
- Willemien van Zwol
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Sluis
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henry. N. Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jan Albert Kuivenhoven
- Department of Paediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Clay R, Siddiqi S, Siddiqi SA. α-Tocopherol reduces VLDL secretion through modulation of intracellular ER-to-Golgi transport of VLDL. Can J Physiol Pharmacol 2023; 101:554-564. [PMID: 37683292 PMCID: PMC11418172 DOI: 10.1139/cjpp-2023-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Avoiding hepatic steatosis is crucial for preventing liver dysfunction, and one mechanism by which this is accomplished is through synchronization of the rate of very low density lipoprotein (VLDL) synthesis with its secretion. Endoplasmic reticulum (ER)-to-Golgi transport of nascent VLDL is the rate-limiting step in its secretion and is mediated by the VLDL transport vesicle (VTV). Recent in vivo studies have indicated that α-tocopherol (α-T) supplementation can reverse steatosis in nonalcoholic fatty liver disease, but its effects on hepatic lipoprotein metabolism are poorly understood. Here, we investigated the impact of α-T on hepatic VLDL synthesis, secretion, and intracellular ER-to-Golgi VLDL trafficking using an in vitro model. Pulse-chase assays using [3H]-oleic acid and 100 µmol/L α-T demonstrated a disruption of early VLDL synthesis, resulting in enhanced apolipoprotein B-100 expression, decreased expression in markers for VTV budding, ER-to-Golgi VLDL transport, and reduced VLDL secretion. Additionally, an in vitro VTV budding assay indicated a significant decrease in VTV production and VTV-Golgi fusion. Confocal imaging of lipid droplet (LD) localization revealed a decrease in overall LD retention, diminished presence of ER-associated LDs, and an increase in Golgi-level LD retention. We conclude that α-T disrupts ER-to-Golgi VLDL transport by modulating the expression of specific proteins and thus reduces VLDL secretion.
Collapse
Affiliation(s)
- Ryan Clay
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Shaila Siddiqi
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Shadab A Siddiqi
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
4
|
Chu S, Xie X, Payan C, Stochaj U. Valosin containing protein (VCP): initiator, modifier, and potential drug target for neurodegenerative diseases. Mol Neurodegener 2023; 18:52. [PMID: 37545006 PMCID: PMC10405438 DOI: 10.1186/s13024-023-00639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
The AAA+ ATPase valosin containing protein (VCP) is essential for cell and organ homeostasis, especially in cells of the nervous system. As part of a large network, VCP collaborates with many cofactors to ensure proteostasis under normal, stress, and disease conditions. A large number of mutations have revealed the importance of VCP for human health. In particular, VCP facilitates the dismantling of protein aggregates and the removal of dysfunctional organelles. These are critical events to prevent malfunction of the brain and other parts of the nervous system. In line with this idea, VCP mutants are linked to the onset and progression of neurodegeneration and other diseases. The intricate molecular mechanisms that connect VCP mutations to distinct brain pathologies continue to be uncovered. Emerging evidence supports the model that VCP controls cellular functions on multiple levels and in a cell type specific fashion. Accordingly, VCP mutants derail cellular homeostasis through several mechanisms that can instigate disease. Our review focuses on the association between VCP malfunction and neurodegeneration. We discuss the latest insights in the field, emphasize open questions, and speculate on the potential of VCP as a drug target for some of the most devastating forms of neurodegeneration.
Collapse
Affiliation(s)
- Siwei Chu
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Xinyi Xie
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Carla Payan
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, HG3 1Y6, Canada.
- Quantitative Life Sciences Program, McGill University, Montreal, Canada.
| |
Collapse
|
5
|
Atalay Şahar E, Ballar Kirmizibayrak P. Differential Expression and Function of SVIP in Breast Cancer Cell Lines and In Silico Analysis of Its Expression and Prognostic Potential in Human Breast Cancer. Cells 2023; 12:1362. [PMID: 37408196 DOI: 10.3390/cells12101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
The heterogeneity of cancer strongly suggests the need to explore additional pathways to target. As cancer cells have increased proteotoxic stress, targeting proteotoxic stress-related pathways such as endoplasmic reticulum stress is attracting attention as a new anticancer treatment. One of the downstream responses to endoplasmic reticulum stress is endoplasmic reticulum-associated degradation (ERAD), a major degradation pathway that facilitates proteasome-dependent degradation of unfolded or misfolded proteins. Recently, SVIP (small VCP/97-interacting protein), an endogenous ERAD inhibitor, has been implicated in cancer progression, especially in glioma, prostate, and head and neck cancers. Here, the data of several RNA-sequencing (RNA-seq) and gene array studies were combined to evaluate the SVIP gene expression analysis on a variety of cancers, with a particular focus on breast cancer. The mRNA level of SVIP was found to be significantly higher in primary breast tumors and correlated well with its promoter methylation status and genetic alterations. Strikingly, the SVIP protein level was found to be low despite increased mRNA levels in breast tumors compared to normal tissues. On the other hand, the immunoblotting analysis showed that the expression of SVIP protein was significantly higher in breast cancer cell lines compared to non-tumorigenic epithelial cell lines, while most of the key proteins of gp78-mediated ERAD did not exhibit such an expression pattern, except for Hrd1. Silencing of SVIP enhanced the proliferation of p53 wt MCF-7 and ZR-75-1 cells but not p53 mutant T47D and SK-BR-3 cells; however, it increased the migration ability of both types of cell lines. Importantly, our data suggest that SVIP may increase p53 protein levels in MCF7 cells by inhibiting Hrd1-mediated p53 degradation. Overall, our data reveal the differential expression and function of SVIP on breast cancer cell lines together with in silico data analysis.
Collapse
Affiliation(s)
- Esra Atalay Şahar
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir 35100, Turkey
| | - Petek Ballar Kirmizibayrak
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir 35100, Turkey
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey
| |
Collapse
|
6
|
Shen Y, Gu HM, Qin S, Zhang DW. Surf4, cargo trafficking, lipid metabolism, and therapeutic implications. J Mol Cell Biol 2023; 14:6852946. [PMID: 36574593 PMCID: PMC9929512 DOI: 10.1093/jmcb/mjac063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/30/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Surfeit 4 is a polytopic transmembrane protein that primarily resides in the endoplasmic reticulum (ER) membrane. It is ubiquitously expressed and functions as a cargo receptor, mediating cargo transport from the ER to the Golgi apparatus via the canonical coat protein complex II (COPII)-coated vesicles or specific vesicles. It also participates in ER-Golgi protein trafficking through a tubular network. Meanwhile, it facilitates retrograde transportation of cargos from the Golgi apparatus to the ER through COPI-coated vesicles. Surf4 can selectively mediate export of diverse cargos, such as PCSK9 very low-density lipoprotein (VLDL), progranulin, α1-antitrypsin, STING, proinsulin, and erythropoietin. It has been implicated in facilitating VLDL secretion, promoting cell proliferation and migration, and increasing replication of positive-strand RNA viruses. Therefore, Surf4 plays a crucial role in various physiological and pathophysiological processes and emerges as a promising therapeutic target. However, the molecular mechanisms by which Surf4 selectively sorts diverse cargos for ER-Golgi protein trafficking remain elusive. Here, we summarize the most recent advances in Surf4, focusing on its role in lipid metabolism.
Collapse
Affiliation(s)
- Yishi Shen
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| | - Hong-Mei Gu
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| | - Shucun Qin
- Institute of Atherosclerosis in Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6R 2G3, Canada
| |
Collapse
|
7
|
Ilhan R, Üner G, Yilmaz S, Atalay Sahar E, Cayli S, Erzurumlu Y, Gozen O, Ballar Kirmizibayrak P. Novel regulation mechanism of adrenal cortisol and DHEA biosynthesis via the endogen ERAD inhibitor small VCP-interacting protein. Sci Rep 2022; 12:869. [PMID: 35042898 PMCID: PMC8766438 DOI: 10.1038/s41598-022-04821-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a well-characterized mechanism of protein quality control by removal of misfolded or unfolded proteins. The tight regulation of ERAD is critical for protein homeostasis as well as lipid metabolism. Although the mechanism is complex, all ERAD branches converge on p97/VCP, a key protein in the retrotranslocation step. The multifunctionality of p97/VCP relies on its multiple binding partners, one of which is the endogenous ERAD inhibitor, SVIP (small VCP-interacting protein). As SVIP is a promising target for the regulation of ERAD, we aimed to assess its novel physiological roles. We revealed that SVIP is highly expressed in the rat adrenal gland, especially in the cortex region, at a consistently high level during postnatal development, unlike the gradual increase in expression seen in developing nerves. Steroidogenic stimulators caused a decrease in SVIP mRNA expression and increase in SVIP protein degradation in human adrenocortical H295R cells. Interestingly, silencing of SVIP diminished cortisol secretion along with downregulation of steroidogenic enzymes and proteins involved in cholesterol uptake and cholesterol biosynthesis. A certain degree of SVIP overexpression mainly increased the biosynthesis of cortisol as well as DHEA by enhancing the expression of key steroidogenic proteins, whereas exaggerated overexpression led to apoptosis, phosphorylation of eIF2α, and diminished adrenal steroid hormone biosynthesis. In conclusion, SVIP is a novel regulator of adrenal cortisol and DHEA biosynthesis, suggesting that alterations in SVIP expression levels may be involved in the deregulation of steroidogenic stimulator signaling and abnormal adrenal hormone secretion.
Collapse
Affiliation(s)
- Recep Ilhan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey
| | - Göklem Üner
- Department of Bioengineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Sinem Yilmaz
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey
- Department of Bioengineering, Faculty of Engineering, University of Alanya Aladdin Keykubat, Antalya, Turkey
| | - Esra Atalay Sahar
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey
| | - Sevil Cayli
- Department of Histology and Embryology, Medical Faculty, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey
- Suleyman Demirel University, Faculty of Pharmacy, Isparta, Turkey
| | - Oguz Gozen
- Department of Physiology, School of Medicine, Ege University, Izmir, Turkey
| | - Petek Ballar Kirmizibayrak
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey.
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Turkey.
| |
Collapse
|
8
|
Akcan G, Alimogullari E, Abu-Issa R, Cayli S. Analysis of the developmental expression of small VCP-interacting protein and its interaction with steroidogenic acute regulatory protein in Leydig cells. Reprod Biol 2020; 20:88-96. [PMID: 32037270 DOI: 10.1016/j.repbio.2020.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 02/07/2023]
Abstract
Small VCP-interacting protein (SVIP) is a 9-kDa protein that is composed of 76 amino acids, and it plays a role in the endoplasmic reticulum-associated protein degradation (ERAD) pathway. Recent studies have shown that SVIP is an androgen-responsive protein and its expression is regulated by androgens. Because no data are available regarding the cellular localization and expression of SVIP in the mouse testis, where androgens are highly expressed, immunohistochemistry and western blotting were performed. In the fetal testis, we found that moderate but consistent staining of SVIP is present in the cytoplasm of Leydig cells. In prepubertal and adult life, SVIP remains present in Leydig cells as well as in the cytoplasm of some peritubular and Sertoli cells. From postnatal day 15 onward, SVIP is strongly expressed in the cytoplasm of Leydig cells. Furthermore, TM3, MA-10 Leydig and Sertoli cell lines were also used to evaluate the expression of SVIP. To identify the interacting partners, such as steroidogenic acute regulatory (STAR) protein, colocalization studies were performed by fluorescence microscopy, showing that STAR colocalized with SVIP in the adult mouse testis. The expression changes of STAR were studied by using SVIP siRNAs in Leydig cell line cultures. Depletion of SVIP resulted in decreased expression of STAR. Additionally, the number and size of lipid droplets were significantly increased in SVIP-depleted Leydig cells. Taken together, our data identify SVIP as a marker of Leydig cell lineage and as a regulator of STAR protein expression and lipid droplet status in Leydig cells.
Collapse
Affiliation(s)
- Gulben Akcan
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey
| | - Ebru Alimogullari
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey
| | - Radwan Abu-Issa
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey
| | - Sevil Cayli
- Ankara Yıldırım Beyazıt University, Medical Faculty, Department of Histology and Embryology, Ankara, Turkey.
| |
Collapse
|
9
|
Romero-Nava R, Aguayo-Cerón KA, Ruiz-Hernández A, Huang F, Hong E, Aguilera-Mendez A, Villafaña Rauda S. Silencing of GPR82 with Interference RNA Improved Metabolic Profiles in Rats with High Fructose Intake. J Vasc Res 2019; 57:1-7. [PMID: 31266033 DOI: 10.1159/000500781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/06/2019] [Indexed: 11/19/2022] Open
Abstract
Metabolic syndrome (MS) is a clinical condition, constituted by alterations that lead to the onset of type II diabetes and cardiovascular disease. It has been reported that orphan G-protein-coupled receptor 82 (GPR82) participates in metabolic processes. The aim of this study was to evaluate the function of GPR82 in MS using a small interfering RNA (siRNA) against this receptor. We used Wistar rats of 10-12 weeks of age fed with a high-fructose solution (70%) for 9 weeks to induce MS. Subsequently, the rats were treated with an intrajugular dose of an siRNA against GPR82 and the effects were evaluated on day 3 and 7 after administration. On day 3 the siRNA had a transient effect on decreasing blood pressure and triglycerides and increasing high-density lipoprotein cholesterol, which recovered to the MS control on day 7. Decreased gene expressions of GPR82 mRNA in the aorta and heart were observed on day 3; moreover, decreased gene expression was maintained in the aorta on day 7. Therefore, we conclude that the orphan receptor GPR82 participates in the development of MS induced by fructose and the silencing of this receptor could ameliorate metabolic components.
Collapse
Affiliation(s)
- Rodrigo Romero-Nava
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratorio de Investigación en Farmacología, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico.,Laboratorio de Farmacología, Departamento Ciencias de la Salud, Div. C.B.S., Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Karla Aidee Aguayo-Cerón
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Armando Ruiz-Hernández
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico.,Department of Pharmacology, School of Medicine, Autonomous University of Baja California, Mexicali, Mexico
| | - Fengyang Huang
- Laboratorio de Investigación en Farmacología, Hospital Infantil de México Federico Gómez (HIMFG), Mexico City, Mexico
| | - Enrique Hong
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| | - Asdrubal Aguilera-Mendez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás Hidalgo, Morelia, Mexico
| | - Santiago Villafaña Rauda
- Laboratorio de Señalización Intracelular, Sección de Estudios de Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico,
| |
Collapse
|
10
|
Jia D, Wang YY, Wang P, Huang Y, Liang DY, Wang D, Cheng C, Zhang C, Guo L, Liang P, Wang Y, Jia Y, Li C. SVIP alleviates CCl 4-induced liver fibrosis via activating autophagy and protecting hepatocytes. Cell Death Dis 2019; 10:71. [PMID: 30683843 PMCID: PMC6347612 DOI: 10.1038/s41419-019-1311-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
Abstract
Prolonged parenchymal cell death leads to activation of fibrogenic cells and extracellular matrix accumulation and eventually liver fibrosis. Autophagy, a major catabolic process of intracellular degradation and recycling, participates in hepatic fibrosis. However, the precise role of autophagy in the pathogenesis of hepatic fibrosis is controversial. The present study aims to investigate the key role of small VCP/p97 interacting protein (SVIP) against CCl4-induced hepatic fibrosis via activating autophagy. Autophagy could be activated by SVIP in HepG2 cells, but starvation cannot increase SVIP expression in vitro and in vivo. Moreover, SVIP expression, in agreement with autophagic activity and the volume of lipid droplets, first increases and then decreases during the progression of liver fibrosis with CCl4 treatment in vivo and in vivo. Further, overexpression of SVIP can protect HepG2 cells from the toxicity of CCl4, which could be enhanced by starvation. Finally, starvation keeps SVIP and autophagy at such high levels in the rat livers that markedly delays the progress of hepatic fibrosis. Probably, the protective effect of SVIP is associated with stabilizing nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) and transcription factor EB (TFEB). The current study provides insight into the biological role of SVIP and autophagy in regulating hepatic fibrosis, targeting SVIP might be a novel therapeutic strategy in the future.
Collapse
Affiliation(s)
- Dan Jia
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yuan Yuan Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Pin Wang
- Administration Department, Dalian Medical University, Dalian, China
| | - Yao Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - David Yuke Liang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Dongmei Wang
- Department of Experimental Functionality, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chuandong Cheng
- Department of Neurosurgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Caihua Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lianying Guo
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Pin Liang
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yang Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Yujie Jia
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Cong Li
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
11
|
Siddiqi S, Zhelyabovska O, Siddiqi SA. Reticulon 3 regulates very low density lipoprotein secretion by controlling very low density lipoprotein transport vesicle biogenesis. Can J Physiol Pharmacol 2018; 96:668-675. [PMID: 29756473 DOI: 10.1139/cjpp-2018-0077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Secretion of very low density lipoprotein (VLDL) by the liver is an important physiological process; however, the rate of VLDL secretion is determined by its transport from the endoplasmic reticulum (ER) to the Golgi. This transport event is facilitated by a specialized ER-derived vesicle, the VLDL transport vesicle (VTV). We have reported earlier a detailed VTV proteome, which revealed that reticulon 3 (RTN3) is uniquely present in the VTV. Our immunoblotting and electron microscopic data demonstrate that RTN3 is enriched in the VTV; however, other ER-derived vesicles do not contain RTN3. Co-immunoprecipitation data coupled with confocal microscopic analyses strongly suggest that RTN3 interacts with VLDL core protein, apoB100, at the ER level. Our data show that either blocking of RTN3 using specific antibodies or RTN3 knockdown resulted in significant reduction in VTV biogenesis from hepatic ER membranes. Additionally, VLDL secretion from hepatocytes was significantly decreased when RTN3 was silenced by RTN3 siRNA. We conclude that RTN3 regulates VLDL secretion by controlling VTV-mediated ER-to-Golgi transport of nascent VLDL.
Collapse
Affiliation(s)
- Shaila Siddiqi
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.,Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Olga Zhelyabovska
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.,Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Shadab A Siddiqi
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.,Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
12
|
Speziali G, Liesinger L, Gindlhuber J, Leopold C, Pucher B, Brandi J, Castagna A, Tomin T, Krenn P, Thallinger GG, Olivieri O, Martinelli N, Kratky D, Schittmayer M, Birner-Gruenberger R, Cecconi D. Myristic acid induces proteomic and secretomic changes associated with steatosis, cytoskeleton remodeling, endoplasmic reticulum stress, protein turnover and exosome release in HepG2 cells. J Proteomics 2018; 181:118-130. [PMID: 29654920 DOI: 10.1016/j.jprot.2018.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/19/2018] [Accepted: 04/09/2018] [Indexed: 01/08/2023]
Abstract
Myristic acid, the 14-carbon saturated fatty acid (C14:0), is associated to an increased cardiovascular disease risk. Since it is found in low concentration in cells, its specific properties have not been fully analyzed. The aim of this study was to explore the cell response to this fatty acid to help explaining clinical findings on the relationship between C14:0 and cardiovascular disease. The human liver HepG2 cell line was used to investigate the hepatic response to C14:0 in a combined proteomic and secretomic approach. A total of 47 intracellular and 32 secreted proteins were deregulated after treatments with different concentrations of C14:0. Data are available via ProteomeXchange (PXD007902). In addition, C14:0 treatment of primary murine hepatocytes confirmed that C14:0 induces lipid droplet accumulation and elevates perilipin-2 levels. Functional enrichment analysis revealed that C14:0 modulates lipid droplet formation and cytoskeleton organization, induce ER stress, changes in exosome and extracellular miRNA sorting in HepG2cells. Our data provide for the first time a proteomic profiling of the effects of C14:0 in human hepatoma cells and contribute to the elucidation of molecular mechanisms through which this fatty acid may cause adverse health effects. BIOLOGICAL SIGNIFICANCE Myristic acid is correlated with an increase in plasma cholesterol and mortality due to cardiovascular diseases. This study is the first example of an integration of proteomic and secretomic analysis of HepG2 cells to investigate the specific properties and functional roles of myristic acid on hepatic cells. Our analyses will lead to a better understanding of the myristic acid induced effects and can elicit new diagnostic and treatment strategies based on altered proteins.
Collapse
Affiliation(s)
- Giulia Speziali
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, Verona, Italy
| | - Laura Liesinger
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Juergen Gindlhuber
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Christina Leopold
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Bettina Pucher
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
| | - Jessica Brandi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, Verona, Italy
| | - Annalisa Castagna
- Department of Medicine, Unit of Internal Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy
| | - Tamara Tomin
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Petra Krenn
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Gerhard G Thallinger
- Omics Center Graz, BioTechMed-Graz, Graz, Austria; Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
| | - Oliviero Olivieri
- Department of Medicine, Unit of Internal Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy
| | - Nicola Martinelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, P.le L.A. Scuro 10, Verona, Italy
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Matthias Schittmayer
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- Research Unit of Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Daniela Cecconi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Strada le Grazie 15, Verona, Italy.
| |
Collapse
|
13
|
Patalano S, Rodríguez-Nieves J, Colaneri C, Cotellessa J, Almanza D, Zhilin-Roth A, Riley T, Macoska J. CXCL12/CXCR4-Mediated Procollagen Secretion Is Coupled To Cullin-RING Ubiquitin Ligase Activation. Sci Rep 2018; 8:3499. [PMID: 29472636 PMCID: PMC5823879 DOI: 10.1038/s41598-018-21506-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/06/2018] [Indexed: 01/07/2023] Open
Abstract
Tissue fibrosis is mediated by the actions of multiple pro-fibrotic proteins that can induce myofibroblast phenoconversion through diverse signaling pathways coupled predominantly to Smads or MEK/Erk proteins. The TGFβ/TGFβR and CXCL12/CXCR4 axes induce myofibroblast phenoconversion independently through Smads and MEK/Erk proteins, respectively. To investigate these mechanisms at the genetic level, we have now elucidated the TGFβ/TGFβR and CXCL12/CXCR4 transcriptomes in human fibroblasts. These transcriptomes are largely convergent, and up-regulate transcripts encoding proteins known to promote myofibroblast phenoconversion. These studies also revealed a molecular signature unique to CXCL12/CXCR4 axis activation for COPII vesicle formation, ubiquitination, and Golgi/ER localization/targeting. In particular, both CUL3 and KLHL12, key members of the Cullin-RING (CRL) ubiquitin ligase family of proteins involved in procollagen transport from the ER to the Golgi, were highly up-regulated in CXCL12-, but repressed in TGFβ-, treated cells. Up-regulation of CUL3 and KLHL12 was correlated with higher procollagen secretion by CXCL12-treated cells, and this affect was ablated upon treatment with inhibitors specific for CXCR4 or CUL3 and repressed by TGFβ/TGFβR axis activation. The results of these studies show that activation of the CXCL12/CXCR4 axis uniquely facilitates procollagen I secretion through a COPII-vesicle mediated mechanism to promote production of the ECM characteristic of fibrosis.
Collapse
Affiliation(s)
- Susan Patalano
- Department of Biology, University of Massachusetts Boston, Boston, United States.,Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States
| | - José Rodríguez-Nieves
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States
| | - Cory Colaneri
- Department of Biology, University of Massachusetts Boston, Boston, United States
| | - Justin Cotellessa
- Department of Biology, University of Massachusetts Boston, Boston, United States.,Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States
| | - Diego Almanza
- Department of Biology, University of Massachusetts Boston, Boston, United States.,Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States
| | - Alisa Zhilin-Roth
- Department of Biology, University of Massachusetts Boston, Boston, United States.,Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States
| | - Todd Riley
- Department of Biology, University of Massachusetts Boston, Boston, United States
| | - Jill Macoska
- Department of Biology, University of Massachusetts Boston, Boston, United States. .,Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, United States.
| |
Collapse
|
14
|
Thibeaux S, Siddiqi S, Zhelyabovska O, Moinuddin F, Masternak MM, Siddiqi SA. Cathepsin B regulates hepatic lipid metabolism by cleaving liver fatty acid-binding protein. J Biol Chem 2017; 293:1910-1923. [PMID: 29259130 DOI: 10.1074/jbc.m117.778365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 11/15/2017] [Indexed: 12/30/2022] Open
Abstract
Synthesis and secretion of hepatic triglycerides (TAG) associated with very-low-density lipoprotein (VLDL) play a major role in maintaining overall lipid homeostasis. This study aims to identify factors affecting synthesis and secretion of VLDL-TAG using the growth hormone-deficient Ames dwarf mouse model, which has reduced serum TAG. Proteomic analysis coupled with a bioinformatics-driven approach revealed that these mice express greater amounts of hepatic cathepsin B and lower amounts of liver fatty acid-binding protein (LFABP) than their wildtype littermates. siRNA-mediated knockdown of cathepsin B in McA-RH7777 cells resulted in a 39% increase in [3H]TAG associated with VLDL secretion. Cathepsin B knockdown was accompanied by a 74% increase in cellular LFABP protein levels, but only when cells were exposed to 0.4 mm oleic acid (OA) complexed to BSA. The cathepsin B knockdown and 24-h treatment with OA resulted in increased CD36 expression alone and additively. Co-localization of LFABP and cathepsin B was observed in a distinct Golgi apparatus-like pattern, which required a 1-h OA treatment. Moreover, we observed co-localization of LFABP and apoB, independent of the OA treatment. Overexpression of cathepsin B resulted in decreased OA uptake and VLDL secretion. Co-expression of cathepsin B and cathepsin B-resistant mutant LFABP in McA-RH7777 cells resulted in an increased TAG secretion as compared with cells co-expressing cathepsin B and wildtype LFABP. Together, these data indicate that cathepsin B regulates VLDL secretion and free fatty acid uptake via cleavage of LFABP, which occurs in response to oleic acid exposure.
Collapse
Affiliation(s)
- Simeon Thibeaux
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Shaila Siddiqi
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Olga Zhelyabovska
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Faisal Moinuddin
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Michal M Masternak
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Shadab A Siddiqi
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| |
Collapse
|
15
|
Walsh MT, Hussain MM. Targeting microsomal triglyceride transfer protein and lipoprotein assembly to treat homozygous familial hypercholesterolemia. Crit Rev Clin Lab Sci 2016; 54:26-48. [PMID: 27690713 DOI: 10.1080/10408363.2016.1221883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a polygenic disease arising from defects in the clearance of plasma low-density lipoprotein (LDL), which results in extremely elevated plasma LDL cholesterol (LDL-C) and increased risk of atherosclerosis, coronary heart disease, and premature death. Conventional lipid-lowering therapies, such as statins and ezetimibe, are ineffective at lowering plasma cholesterol to safe levels in these patients. Other therapeutic options, such as LDL apheresis and liver transplantation, are inconvenient, costly, and not readily available. Recently, lomitapide was approved by the Federal Drug Administration as an adjunct therapy for the treatment of HoFH. Lomitapide inhibits microsomal triglyceride transfer protein (MTP), reduces lipoprotein assembly and secretion, and lowers plasma cholesterol levels by over 50%. Here, we explain the steps involved in lipoprotein assembly, summarize the role of MTP in lipoprotein assembly, explore the clinical and molecular basis of HoFH, and review pre-clinical studies and clinical trials with lomitapide and other MTP inhibitors for the treatment of HoFH. In addition, ongoing research and new approaches underway for better treatment modalities are discussed.
Collapse
Affiliation(s)
- Meghan T Walsh
- a School of Graduate Studies, Molecular and Cell Biology Program, State University of New York Downstate Medical Center , Brooklyn , NY , USA.,b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA
| | - M Mahmood Hussain
- b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA.,c Department of Pediatrics , SUNY Downstate Medical Center , Brooklyn , NY , USA.,d VA New York Harbor Healthcare System , Brooklyn , NY , USA , and.,e Winthrop University Hospital , Mineola , NY , USA
| |
Collapse
|