1
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Proteomic profiling of impaired excitation-contraction coupling and abnormal calcium handling in muscular dystrophy. Proteomics 2022; 22:e2200003. [PMID: 35902360 PMCID: PMC10078611 DOI: 10.1002/pmic.202200003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
The X-linked inherited neuromuscular disorder Duchenne muscular dystrophy is characterised by primary abnormalities in the membrane cytoskeletal component dystrophin. The almost complete absence of the Dp427-M isoform of dystrophin in skeletal muscles renders contractile fibres more susceptible to progressive degeneration and a leaky sarcolemma membrane. This in turn results in abnormal calcium homeostasis, enhanced proteolysis and impaired excitation-contraction coupling. Biochemical and mass spectrometry-based proteomic studies of both patient biopsy specimens and genetic animal models of dystrophinopathy have demonstrated significant changes in the concentration and/or physiological function of essential calcium-regulatory proteins in dystrophin-lacking voluntary muscles. Abnormalities include dystrophinopathy-associated changes in voltage sensing receptors, calcium release channels, calcium pumps and calcium binding proteins. This review article provides an overview of the importance of the sarcolemmal dystrophin-glycoprotein complex and the wider dystrophin complexome in skeletal muscle and its linkage to depolarisation-induced calcium-release mechanisms and the excitation-contraction-relaxation cycle. Besides chronic inflammation, fat substitution and reactive myofibrosis, a major pathobiochemical hallmark of X-linked muscular dystrophy is represented by the chronic influx of calcium ions through the damaged plasmalemma in conjunction with abnormal intracellular calcium fluxes and buffering. Impaired calcium handling proteins should therefore be included in an improved biomarker signature of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
2
|
Shen Y, Wang H, Xie J, Wang Z, Ma Y. Trait-specific Selection Signature Detection Reveals Novel Loci of Meat Quality in Large White Pigs. Front Genet 2021; 12:761252. [PMID: 34868241 PMCID: PMC8635012 DOI: 10.3389/fgene.2021.761252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
In past decades, meat quality traits have been shaped by human-driven selection in the process of genetic improvement programs. Exploring the potential genetic basis of artificial selection and mapping functional candidate genes for economic traits are of great significance in genetic improvement of pigs. In this study, we focus on investigating the genetic basis of five meat quality traits, including intramuscular fat content (IMF), drip loss, water binding capacity, pH at 45 min (pH45min), and ultimate pH (pH24h). Through making phenotypic gradient differential population pairs, Wright’s fixation index (FST) and the cross-population extended haplotype homozogysity (XPEHH) were applied to detect selection signatures for these five traits. Finally, a total of 427 and 307 trait-specific selection signatures were revealed by FST and XPEHH, respectively. Further bioinformatics analysis indicates that some genes, such as USF1, NDUFS2, PIGM, IGSF8, CASQ1, and ACBD6, overlapping with the trait-specific selection signatures are responsible for the phenotypes including fat metabolism and muscle development. Among them, a series of promising trait-specific selection signatures that were detected in the high IMF subpopulation are located in the region of 93544042-95179724bp on SSC4, and the genes harboring in this region are all related to lipids and muscle development. Overall, these candidate genes of meat quality traits identified in this analysis may provide some fundamental information for further exploring the genetic basis of this complex trait.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Haiyan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jiahao Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zixuan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Lilliu E, Koenig S, Koenig X, Frieden M. Store-Operated Calcium Entry in Skeletal Muscle: What Makes It Different? Cells 2021; 10:2356. [PMID: 34572005 PMCID: PMC8468011 DOI: 10.3390/cells10092356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 01/26/2023] Open
Abstract
Current knowledge on store-operated Ca2+ entry (SOCE) regarding its localization, kinetics, and regulation is mostly derived from studies performed in non-excitable cells. After a long time of relative disinterest in skeletal muscle SOCE, this mechanism is now recognized as an essential contributor to muscle physiology, as highlighted by the muscle pathologies that are associated with mutations in the SOCE molecules STIM1 and Orai1. This review mainly focuses on the peculiar aspects of skeletal muscle SOCE that differentiate it from its counterpart found in non-excitable cells. This includes questions about SOCE localization and the movement of respective proteins in the highly organized skeletal muscle fibers, as well as the diversity of expressed STIM isoforms and their differential expression between muscle fiber types. The emerging evidence of a phasic SOCE, which is activated during EC coupling, and its physiological implication is described as well. The specific issues related to the use of SOCE modulators in skeletal muscles are discussed. This review highlights the complexity of SOCE activation and its regulation in skeletal muscle, with an emphasis on the most recent findings and the aim to reach a current picture of this mesmerizing phenomenon.
Collapse
Affiliation(s)
- Elena Lilliu
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Stéphane Koenig
- Department of Cell Physiology and Metabolism, University of Geneva, 1201 Geneva, Switzerland;
| | - Xaver Koenig
- Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, University of Geneva, 1201 Geneva, Switzerland;
| |
Collapse
|
4
|
Dissanayake KN, Chou RCC, Thompson A, Margetiny F, Davie C, McKinnon S, Patel V, Sultatos L, McArdle JJ, Clutton RE, Eddleston M, Ribchester RR. Impaired neuromuscular function by conjoint actions of organophosphorus insecticide metabolites omethoate and cyclohexanol with implications for treatment of respiratory failure. Clin Toxicol (Phila) 2021; 59:1239-1258. [PMID: 33988053 DOI: 10.1080/15563650.2021.1916519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Ingestion of agricultural organophosphorus insecticides is a significant cause of death in rural Asia. Patients often show acute respiratory failure and/or delayed, unexplained signs of neuromuscular paralysis, sometimes diagnosed as "Intermediate Syndrome". We tested the hypothesis that omethoate and cyclohexanol, circulating metabolites of one agricultural formulation, cause muscle weakness and paralysis. METHODS Acetylcholinesterase activity of insecticide components and metabolites was measured using purified enzyme from eel electroplaque or muscle homogenates. Mechanomyographic recording of pelvic limb responses to nerve stimulation was made in anaesthetized pigs and isometric force was recorded from isolated nerve-muscle preparations from mice. Omethoate and cyclohexanol were administered intravenously or added to physiological saline bathing isolated muscle. We also assessed the effect of MgSO4 and cooling on neuromuscular function. RESULTS Omethoate caused tetanic fade in pig muscles and long-lasting contractions of the motor innervation zone in mouse muscle. Both effects were mitigated, either by i.v. administration of MgSO4 in vivo or by adding 5 mM Mg2+ to the medium bathing isolated preparations. Combination of omethoate and cyclohexanol initially potentiated muscle contractions but then rapidly blocked them. Cyclohexanol alone caused fade and block of muscle contractions in pigs and in isolated preparations. Similar effects were observed ex vivo with cyclohexanone and xylene. Cyclohexanol-induced neuromuscular block was temperature-sensitive and rapidly reversible. CONCLUSIONS The data indicate a crucial role for organophosphorus and solvent metabolites in muscle weakness following ingestion of agricultural OP insecticide formulations. The metabolites omethoate and cyclohexanol acted conjointly to impair neuromuscular function but their effects were mitigated by elevating extracellular Mg2+ and decreasing core temperature, respectively. Clinical studies of MgSO4 therapy and targeted temperature management in insecticide-poisoned patients are required to determine whether they may be effective adjuncts to treatment.
Collapse
Affiliation(s)
- Kosala N Dissanayake
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | - Adrian Thompson
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Filip Margetiny
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Charlotte Davie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Scott McKinnon
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Vishwendra Patel
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Lester Sultatos
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Joseph J McArdle
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Richard E Clutton
- Wellcome Trust Critical Care Laboratory for Large Animals, Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Michael Eddleston
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
5
|
Woo JS, Jeong SY, Park JH, Choi JH, Lee EH. Calsequestrin: a well-known but curious protein in skeletal muscle. Exp Mol Med 2020; 52:1908-1925. [PMID: 33288873 PMCID: PMC8080761 DOI: 10.1038/s12276-020-00535-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Calsequestrin (CASQ) was discovered in rabbit skeletal muscle tissues in 1971 and has been considered simply a passive Ca2+-buffering protein in the sarcoplasmic reticulum (SR) that provides Ca2+ ions for various Ca2+ signals. For the past three decades, physiologists, biochemists, and structural biologists have examined the roles of the skeletal muscle type of CASQ (CASQ1) in skeletal muscle and revealed that CASQ1 has various important functions as (1) a major Ca2+-buffering protein to maintain the SR with a suitable amount of Ca2+ at each moment, (2) a dynamic Ca2+ sensor in the SR that regulates Ca2+ release from the SR to the cytosol, (3) a structural regulator for the proper formation of terminal cisternae, (4) a reverse-directional regulator of extracellular Ca2+ entries, and (5) a cause of human skeletal muscle diseases. This review is focused on understanding these functions of CASQ1 in the physiological or pathophysiological status of skeletal muscle.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 10833, USA
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Ji Hee Park
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
6
|
Deslauriers D, Svendsen JC, Genz J, Wall AJ, Baktoft H, Enders EC, Anderson WG. Environmental calcium and variation in yolk sac size influence swimming performance in larval lake sturgeon ( Acipenser fulvescens). ACTA ACUST UNITED AC 2018; 221:jeb.164533. [PMID: 29440358 DOI: 10.1242/jeb.164533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/03/2018] [Indexed: 12/31/2022]
Abstract
In many animal species, performance in the early life stages strongly affects recruitment to the adult population; however, factors that influence early life history stages are often the least understood. This is particularly relevant for lake sturgeon, Acipenser fulvescens, living in areas where environmental calcium concentrations are declining, partly due to anthropogenic activity. As calcium is important for muscle contraction and fatigue resistance, declining calcium levels could constrain swimming performance. Similarly, swimming performance could be influenced by variation in yolk sac volume, because the yolk sac is likely to affect drag forces during swimming. Testing swimming performance of larval A. fulvescens reared in four different calcium treatments spanning the range of 4-132 mg l-1 [Ca2+], this study found no treatment effects on the sprint swimming speed. A novel test of volitional swimming performance, however, revealed reduced swimming performance in the low calcium environment. Specifically, volitionally swimming larvae covered a shorter distance before swimming cessation in the low calcium environment compared with the other treatments. Moreover, sprint swimming speed in larvae with a large yolk sac was significantly slower than in larvae with a small yolk sac, regardless of body length variation. Thus, elevated maternal allocation (i.e. more yolk) was associated with reduced swimming performance. Data suggest that larvae in low calcium environments or with a large yolk sac exhibit reduced swimming performance and could be more susceptible to predation or premature downstream drift. Our study reveals how environmental factors and phenotypic variation influence locomotor performance in a larval fish.
Collapse
Affiliation(s)
- David Deslauriers
- University of Manitoba, Department of Biological Sciences, 369 Duff Roblin, 190 Dysart Road, Winnipeg, MB R3T 2N2, Canada.,Fisheries and Oceans Canada, Central & Arctic Region, Freshwater Institute, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| | - Jon C Svendsen
- Fisheries and Oceans Canada, Central & Arctic Region, Freshwater Institute, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada .,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.,Technical University of Denmark, National Institute of Aquatic Resources (DTU-Aqua), Section for Ecosystem based Marine Management, Kemitorvet, Building 201, DK-2800 Kgs. Lyngby, Denmark
| | - Janet Genz
- University of Manitoba, Department of Biological Sciences, 369 Duff Roblin, 190 Dysart Road, Winnipeg, MB R3T 2N2, Canada.,University of West Georgia, Biology Department, 1601 Maple Street, Carrollton, GA 30118, USA
| | - Alex J Wall
- Fisheries and Oceans Canada, Central & Arctic Region, Freshwater Institute, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| | - Henrik Baktoft
- Technical University of Denmark, National Institute of Aquatic Resources, Section for Freshwater Fisheries and Ecology, Vejlsøvej 39, DK-8600 Silkeborg, Denmark
| | - Eva C Enders
- Fisheries and Oceans Canada, Central & Arctic Region, Freshwater Institute, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada
| | - W Gary Anderson
- University of Manitoba, Department of Biological Sciences, 369 Duff Roblin, 190 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
Clark EL, Bush SJ, McCulloch MEB, Farquhar IL, Young R, Lefevre L, Pridans C, Tsang HG, Wu C, Afrasiabi C, Watson M, Whitelaw CB, Freeman TC, Summers KM, Archibald AL, Hume DA. A high resolution atlas of gene expression in the domestic sheep (Ovis aries). PLoS Genet 2017; 13:e1006997. [PMID: 28915238 PMCID: PMC5626511 DOI: 10.1371/journal.pgen.1006997] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/03/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023] Open
Abstract
Sheep are a key source of meat, milk and fibre for the global livestock sector, and an important biomedical model. Global analysis of gene expression across multiple tissues has aided genome annotation and supported functional annotation of mammalian genes. We present a large-scale RNA-Seq dataset representing all the major organ systems from adult sheep and from several juvenile, neonatal and prenatal developmental time points. The Ovis aries reference genome (Oar v3.1) includes 27,504 genes (20,921 protein coding), of which 25,350 (19,921 protein coding) had detectable expression in at least one tissue in the sheep gene expression atlas dataset. Network-based cluster analysis of this dataset grouped genes according to their expression pattern. The principle of 'guilt by association' was used to infer the function of uncharacterised genes from their co-expression with genes of known function. We describe the overall transcriptional signatures present in the sheep gene expression atlas and assign those signatures, where possible, to specific cell populations or pathways. The findings are related to innate immunity by focusing on clusters with an immune signature, and to the advantages of cross-breeding by examining the patterns of genes exhibiting the greatest expression differences between purebred and crossbred animals. This high-resolution gene expression atlas for sheep is, to our knowledge, the largest transcriptomic dataset from any livestock species to date. It provides a resource to improve the annotation of the current reference genome for sheep, presenting a model transcriptome for ruminants and insight into gene, cell and tissue function at multiple developmental stages.
Collapse
Affiliation(s)
- Emily L. Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Stephen J. Bush
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Mary E. B. McCulloch
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Iseabail L. Farquhar
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Rachel Young
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Clare Pridans
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Hiu G. Tsang
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Chunlei Wu
- Department of Integrative and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Cyrus Afrasiabi
- Department of Integrative and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - C. Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Tom C. Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Kim M. Summers
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Mater Research Institute and University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Alan L. Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - David A. Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Mater Research Institute and University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
8
|
Valle G, Vergani B, Sacchetto R, Reggiani C, De Rosa E, Maccatrozzo L, Nori A, Villa A, Volpe P. Characterization of fast-twitch and slow-twitch skeletal muscles of calsequestrin 2 (CASQ2)-knock out mice: unexpected adaptive changes of fast-twitch muscles only. J Muscle Res Cell Motil 2017; 37:225-233. [PMID: 28130614 DOI: 10.1007/s10974-016-9463-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/22/2016] [Indexed: 01/02/2023]
Abstract
This study investigates the functional role of calsequestrin 2 (CASQ2) in both fast-twitch and slow-twitch skeletal muscles by using CASQ2-/- mice; CASQ2 is expressed throughout life in slow-twitch muscles, but only in the developmental and neonatal stages in fast-twitch muscles. CASQ2-/- causes increase in calsequestrin 1 (CASQ1) expression, but without functional changes in both muscle types. CASQ2-/- mice have ultrastructural changes in fast-twitch muscles only, i.e., formation of pentads and stacks in the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Giorgia Valle
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy
| | - Barbara Vergani
- Consorzio MIA (Microscopy Image Analysis), Università di Milano-Bicocca, 20052, Monza, Italy
| | - Roberta Sacchetto
- Dipartimento di Biomedicina Comparata ed Alimentazione dell'Università di Padova, Padova, Italy
| | - Carlo Reggiani
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy
| | - Edith De Rosa
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy
| | - Lisa Maccatrozzo
- Dipartimento di Biomedicina Comparata ed Alimentazione dell'Università di Padova, Padova, Italy
| | - Alessandra Nori
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy
| | - Antonello Villa
- Consorzio MIA (Microscopy Image Analysis), Università di Milano-Bicocca, 20052, Monza, Italy
| | - Pompeo Volpe
- Dipartimento di Scienze Biomediche dell'Università di Padova, Istituto Interuniversitario di Miologia, Viale G. Colombo 3, 35121, Padova, Italy.
| |
Collapse
|
9
|
Beam TA, Loudermilk EF, Kisor DF. Pharmacogenetics and pathophysiology of CACNA1S mutations in malignant hyperthermia. Physiol Genomics 2016; 49:81-87. [PMID: 28011884 DOI: 10.1152/physiolgenomics.00126.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/14/2016] [Indexed: 12/27/2022] Open
Abstract
A review of the pharmacogenetics (PGt) and pathophysiology of calcium voltage-gated channel subunit alpha1 S (CACNA1S) mutations in malignant hyperthermia susceptibility type 5 (MHS5; MIM #60188) is presented. Malignant hyperthermia (MH) is a life-threatening hypermetabolic state of skeletal muscle usually induced by volatile, halogenated anesthetics and/or the depolarizing neuromuscular blocker succinylcholine. In addition to ryanodine receptor 1 (RYR1) mutations, several CACNA1S mutations are known to be risk factors for increased susceptibility to MH (MHS). However, the presence of these pathogenic CACNA1S gene variations cannot be used to positively predict MH since the condition is genetically heterogeneous with variable expression and incomplete penetrance. At present, one or at most six CACNA1S mutations display significant linkage or association either to clinically diagnosed MH or to MHS as determined by contracture testing. Additional pathogenic variants in CACNA1S, either alone or in combination with genes affecting Ca2+ homeostasis, are likely to be discovered in association to MH as whole exome sequencing becomes more commonplace.
Collapse
Affiliation(s)
- Teresa A Beam
- Department of Pharmaceutical Sciences, Manchester University College of Pharmacy, Natural and Health Sciences, Fort Wayne, Indiana; and
| | - Emily F Loudermilk
- Department of Pharmaceutical and Biomedical Sciences, Ohio Northern University, College of Pharmacy, Ada, Ohio
| | - David F Kisor
- Department of Pharmaceutical Sciences, Manchester University College of Pharmacy, Natural and Health Sciences, Fort Wayne, Indiana; and
| |
Collapse
|