1
|
Kaltner H, Caballero GG, Schmidt S. Analysis of chicken LGALSL (galectin-related protein) gene's proximal promoter and its control by Krüppel-like factors 3 and 7. Gene 2025; 933:148972. [PMID: 39343186 DOI: 10.1016/j.gene.2024.148972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The Galectin-Related Protein (GRP), encoded by the LGALSL gene, assigned to the protein family of β-galactoside-binding Galectins, has lost carbohydrate-binding abilities. Its chicken homolog (C-GRP) occurs in the bursa of Fabricius' epithelial and B cells. Our study investigates the unknown regulatory mechanisms controlling its expression by analyzing the promoter region of the chicken (C-)LGALSL gene in chicken cells. We aimed to identify the sequence elements of the C-LGALSL gene promoter responsible for maximum activity and transcription factors (TFs) that can modulate this activity. Using luciferase reporter assays, we investigated deletion variants of the 5' region (-2480 bp to +26 bp). Through in silico analyses and site-directed mutagenesis, we explored potential transcription factor binding sites, identified crucial transcription factors through transient overexpression and tested its direct binding by ChIP. Our findings highlight that the region from -274 to -75 bp, conserved among bird species, is crucial for promoter regulation. Among other tested factors, only the chicken (ch) Krüppel-like factors, chKLF3 and chKLF7, modulate the promoter's activity. The TFs chKLF3 acts as a repressor, and chKLF7 as an activator, although direct binding could not be confirmed. In conclusion, chKLF3 and chKLF7 contribute, in contrast to other factors with binding sites in the region from -274 to -75 bp, to C-LGALSL gene promoter regulation with a balanced impact on activity.
Collapse
Affiliation(s)
- Herbert Kaltner
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg-Martinsried, Germany
| | - Gabriel García Caballero
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg-Martinsried, Germany
| | - Sebastian Schmidt
- Department of Veterinary Sciences, Physiological Chemistry, Ludwig-Maximilians-University Munich, Lena-Christ-Str. 48, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
2
|
Li Q, Liu J, Su R, Zhen J, Liu X, Liu G. Small extracellular vesicles-shuttled miR-23a-3p from mesenchymal stem cells alleviate renal fibrosis and inflammation by inhibiting KLF3/STAT3 axis in diabetic kidney disease. Int Immunopharmacol 2024; 139:112667. [PMID: 39018690 DOI: 10.1016/j.intimp.2024.112667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
Human umbilical cord mesenchymal stem cells-derived small extracellular vesicles (MSC-sEV) provide a pragmatic solution as a cell-free therapy for patients with diabetic kidney disease (DKD). However, the underlying protective mechanisms of MSC-sEV remain largely unknown in DKD. Invivo and in vitro analyses demonstrated that MSC-sEV attenuated renal fibrosis and inflammation of DKD. The underlying mechanism of the MSC-sEV-induced therapeutic effect was explored by high-throughput sequencing, which identified the unique enrichment of a set of miRNAs in MSC-sEV compared with human skin fibroblasts-sEV (HSF-sEV). Vitro experiments demonstrated that the protective potential was primarily attributed to miR-23a-3p, one of the most abundant miRNAs in MSC-sEV. Further, overexpression or knockdown analyses revealed that miR-23a-3p, and its target Krüppel-like factor 3 (KLF3) suppressed the STAT3 signaling pathway in high glucose (HG) induced HK-2 cells were essential for the renal-protective property of MSC-sEV. Moreover, we found that miR-23a-3p was packaged into MSC-sEV by RNA Binding Motif Protein X-Linked (RBMX) and transmitted to HG-induced HK-2 cells. Finally, inhibiting miR-23a-3p could mitigate the protective effects of MSC-sEV in db/db mice. These findings suggest that a systemic administration of sEV derived from MSC, have the capacity to incorporate into kidney where they can exert renal-protective potential against HG-induced injury through delivery of miR-23a-3p.
Collapse
Affiliation(s)
- Qianhua Li
- Nephrology Research Institute of Shandong University, Jinan, Shandong, 250033, China; Department of Nephrology, Multidisciplinary Innovation Center for Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Jiaxi Liu
- Graduate School of Arts and Sciences, Columbia University, USA
| | - Rongyun Su
- Nephrology Research Institute of Shandong University, Jinan, Shandong, 250033, China; Department of Nephrology, Multidisciplinary Innovation Center for Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Junhui Zhen
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Xiangchun Liu
- Nephrology Research Institute of Shandong University, Jinan, Shandong, 250033, China; Department of Nephrology, Multidisciplinary Innovation Center for Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China
| | - Gang Liu
- Nephrology Research Institute of Shandong University, Jinan, Shandong, 250033, China; Department of Nephrology, Multidisciplinary Innovation Center for Nephrology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China; Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong,250012, China.
| |
Collapse
|
3
|
Yuce K, Ozkan AI. The kruppel-like factor (KLF) family, diseases, and physiological events. Gene 2024; 895:148027. [PMID: 38000704 DOI: 10.1016/j.gene.2023.148027] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
The Kruppel-Like Factor family of regulatory proteins, which has 18 members, is transcription factors. This family contains zinc finger proteins, regulates the activation and suppression of transcription, and binds to DNA, RNA, and proteins. Klfs related to the immune system are Klf1, Klf2, Klf3, Klf4, Klf6, and Klf14. Klfs related to adipose tissue development and/or glucose metabolism are Klf3, Klf7, Klf9, Klf10, Klf11, Klf14, Klf15, and Klf16. Klfs related to cancer are Klf3, Klf4, Klf5, Klf6, Klf7, Klf8, Klf9, Klf10, Klf11, Klf12, Klf13, Klf14, Klf16, and Klf17. Klfs related to the cardiovascular system are Klf4, Klf5, Klf10, Klf13, Klf14, and Klf15. Klfs related to the nervous system are Klf4, Klf7, Klf8, and Klf9. Klfs are associated with diseases such as carcinogenesis, oxidative stress, diabetes, liver fibrosis, thalassemia, and the metabolic syndrome. The aim of this review is to provide information about the relationship of Klfs with some diseases and physiological events and to guide future studies.
Collapse
Affiliation(s)
- Kemal Yuce
- Selcuk University, Medicine Faculty, Department of Basic Medical Sciences, Physiology, Konya, Turkiye.
| | - Ahmet Ismail Ozkan
- Artvin Coruh University, Medicinal-Aromatic Plants Application and Research Center, Artvin, Turkiye.
| |
Collapse
|
4
|
Klug K, Spitzel M, Hans C, Klein A, Schottmann NM, Erbacher C, Üçeyler N. Endothelial Cell Dysfunction and Hypoxia as Potential Mediators of Pain in Fabry Disease: A Human-Murine Translational Approach. Int J Mol Sci 2023; 24:15422. [PMID: 37895103 PMCID: PMC10607880 DOI: 10.3390/ijms242015422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Fabry disease (FD) is caused by α-galactosidase A (AGAL) enzyme deficiency, leading to globotriaosylceramide accumulation (Gb3) in several cell types. Pain is one of the pathophysiologically incompletely understood symptoms in FD patients. Previous data suggest an involvement of hypoxia and mitochondriopathy in FD pain development at dorsal root ganglion (DRG) level. Using immunofluorescence and quantitative real-time polymerase chain reaction (qRT PCR), we investigated patient-derived endothelial cells (EC) and DRG tissue of the GLA knockout (KO) mouse model of FD. We address the question of whether hypoxia and mitochondriopathy contribute to FD pain pathophysiology. In EC of FD patients (P1 with pain and, P2 without pain), we found dysregulated protein expression of hypoxia-inducible factors (HIF) 1a and HIF2 compared to the control EC (p < 0.01). The protein expression of the HIF downstream target vascular endothelial growth factor A (VEGFA, p < 0.01) was reduced and tube formation was hampered in the P1 EC compared to the healthy EC (p < 0.05). Tube formation ability was rescued by applying transforming growth factor beta (TGFβ) inhibitor SB-431542. Additionally, we found dysregulated mitochondrial fusion/fission characteristics in the P1 and P2 EC (p < 0.01) and depolarized mitochondrial membrane potential in P2 compared to control EC (p < 0.05). Complementary to human data, we found upregulated hypoxia-associated genes in the DRG of old GLA KO mice compared to WT DRG (p < 0.01). At protein level, nuclear HIF1a was higher in the DRG neurons of old GLA KO mice compared to WT mice (p < 0.01). Further, the HIF1a downstream target CA9 was upregulated in the DRG of old GLA KO mice compared to WT DRG (p < 0.01). Similar to human EC, we found a reduction in the vascular characteristics in GLA KO DRG compared to WT (p < 0.05). We demonstrate increased hypoxia, impaired vascular properties, and mitochondrial dysfunction in human FD EC and complementarily at the GLA KO mouse DRG level. Our data support the hypothesis that hypoxia and mitochondriopathy in FD EC and GLA KO DRG may contribute to FD pain development.
Collapse
Affiliation(s)
- Katharina Klug
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Marlene Spitzel
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Clara Hans
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Alexandra Klein
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Nicole Michelle Schottmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Christoph Erbacher
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
| | - Nurcan Üçeyler
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany; (K.K.); (M.S.); (C.H.); (N.M.S.); (C.E.)
- Würzburg Fabry Center for Interdisciplinary Therapy (FAZIT), University Hospital of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
5
|
Zaborska B, Sikora-Frąc M, Smarż K, Pilichowska-Paszkiet E, Budaj A, Sitkiewicz D, Sygitowicz G. The Role of Galectin-3 in Heart Failure-The Diagnostic, Prognostic and Therapeutic Potential-Where Do We Stand? Int J Mol Sci 2023; 24:13111. [PMID: 37685918 PMCID: PMC10488150 DOI: 10.3390/ijms241713111] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Heart failure (HF) is a clinical syndrome with high morbidity and mortality, and its prevalence is rapidly increasing. Galectin-3 (Gal-3) is an important factor in the pathophysiology of HF, mainly due to its role in cardiac fibrosis, inflammation, and ventricular remodeling. Fibrosis is a hallmark of cardiac remodeling, HF, and atrial fibrillation development. This review aims to explore the involvement of Gal-3 in HF and its role in the pathogenesis and clinical diagnostic and prognostic significance. We report data on Gal-3 structure and molecular mechanisms of biological function crucial for HF development. Over the last decade, numerous studies have shown an association between echocardiographic and CMR biomarkers in HF and Gal-3 serum concentration. We discuss facts and concerns about Gal-3's utility in acute and chronic HF with preserved and reduced ejection fraction for diagnosis, prognosis, and risk stratification. Finally, we present attempts to use Gal-3 as a therapeutic target in HF.
Collapse
Affiliation(s)
- Beata Zaborska
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, 04-073 Warsaw, Poland; (B.Z.); (M.S.-F.); (E.P.-P.); (A.B.)
| | - Małgorzata Sikora-Frąc
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, 04-073 Warsaw, Poland; (B.Z.); (M.S.-F.); (E.P.-P.); (A.B.)
| | - Krzysztof Smarż
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, 04-073 Warsaw, Poland; (B.Z.); (M.S.-F.); (E.P.-P.); (A.B.)
| | - Ewa Pilichowska-Paszkiet
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, 04-073 Warsaw, Poland; (B.Z.); (M.S.-F.); (E.P.-P.); (A.B.)
| | - Andrzej Budaj
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, 04-073 Warsaw, Poland; (B.Z.); (M.S.-F.); (E.P.-P.); (A.B.)
| | - Dariusz Sitkiewicz
- Department of Laboratory Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (D.S.); (G.S.)
| | - Grażyna Sygitowicz
- Department of Laboratory Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (D.S.); (G.S.)
| |
Collapse
|
6
|
Shah M, Knights AJ, Vohralik EJ, Psaila AM, Quinlan KGR. Blood and adipose-resident eosinophils are defined by distinct transcriptional profiles. J Leukoc Biol 2023; 113:191-202. [PMID: 36822180 DOI: 10.1093/jleuko/qiac009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are granular leukocytes of the innate immune system that play important functions in host defense. Inappropriate activation of eosinophils can occur in pathologies such as asthma and esophagitis. However, eosinophils also reside within adipose tissue, where they play homeostatic roles and are important in the activation of thermogenic beige fat. Here we performed bulk RNA sequencing in mouse adipose tissue-resident eosinophils isolated from both subcutaneous and gonadal depots, for the first time, and compared gene expression to blood eosinophils. We found a predominantly conserved transcriptional landscape in eosinophils between adipose depots that is distinct from blood eosinophils in circulation. Through exploration of differentially expressed transcription factors and transcription factors with binding sites enriched in adipose-resident eosinophil genes, we identified KLF, CEBP, and Fos/Jun family members that may drive functional specialization of eosinophils in adipose tissue. These findings increase our understanding of tissue-specific eosinophil heterogeneity, with implications for targeting eosinophil function to treat metabolic disorders such as obesity.
Collapse
Affiliation(s)
- Manan Shah
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Alexander J Knights
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Annalise M Psaila
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, High Street, Kensington, New South Wales 2052, Australia
| |
Collapse
|
7
|
Li J, Shen H, Owens GK, Guo LW. SREBP1 regulates Lgals3 activation in response to cholesterol loading. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:892-909. [PMID: 35694209 PMCID: PMC9168384 DOI: 10.1016/j.omtn.2022.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/12/2022] [Indexed: 12/02/2022]
Abstract
Aberrant smooth muscle cell (SMC) plasticity is etiological to vascular diseases. Cholesterol induces SMC phenotypic transition featuring high LGALS3 (galectin-3) expression. This proatherogenic process is poorly understood for its molecular underpinnings, in particular, the mechanistic role of sterol regulatory-element binding protein-1 (SREBP1), a master regulator of lipid metabolism. Herein we show that cholesterol loading stimulated SREBP1 expression in mouse, rat, and human SMCs. SREBP1 positively regulated LGALS3 expression (and vice versa), whereas Krüppel-like factor-15 (KLF15) acted as a negative regulator. Both bound to the Lgals3 promoter, yet at discrete sites, as revealed by chromatin immunoprecipitation-qPCR and electrophoretic mobility shift assays. SREBP1 and LGALS3 each abated KLF15 protein, and blocking the bromo/extraterminal domain-containing proteins (BETs) family of acetyl-histone readers abolished cholesterol-stimulated SREBP1/LGALS3 protein production. Furthermore, silencing bromodomain protein 2 (BRD2; but not other BETs) reduced SREBP1; endogenous BRD2 co-immunoprecipitated with SREBP1's transcription-active domain, its own promoter DNA, and that of L gals 3. Thus, results identify a previously uncharacterized cholesterol-responsive dyad-SREBP1 and LGALS3, constituting a feedforward circuit that can be blocked by BETs inhibition. This study provides new insights into SMC phenotypic transition and potential interventional targets.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Hongtao Shen
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Gary K. Owens
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
8
|
Knights AJ, Liu S, Ma Y, Nudell VS, Perkey E, Sorensen MJ, Kennedy RT, Maillard I, Ye L, Jun H, Wu J. Acetylcholine-synthesizing macrophages in subcutaneous fat are regulated by β 2 -adrenergic signaling. EMBO J 2021; 40:e106061. [PMID: 34459015 PMCID: PMC8672283 DOI: 10.15252/embj.2020106061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 12/29/2022] Open
Abstract
Non-neuronal cholinergic signaling, mediated by acetylcholine, plays important roles in physiological processes including inflammation and immunity. Our group first discovered evidence of non-neuronal cholinergic circuitry in adipose tissue, whereby immune cells secrete acetylcholine to activate beige adipocytes during adaptive thermogenesis. Here, we reveal that macrophages are the cellular protagonists responsible for secreting acetylcholine to regulate thermogenic activation in subcutaneous fat, and we term these cells cholinergic adipose macrophages (ChAMs). An adaptive increase in ChAM abundance is evident following acute cold exposure, and macrophage-specific deletion of choline acetyltransferase (ChAT), the enzyme for acetylcholine biosynthesis, impairs the cold-induced thermogenic capacity of mice. Further, using pharmacological and genetic approaches, we show that ChAMs are regulated via adrenergic signaling, specifically through the β2 adrenergic receptor. These findings demonstrate that macrophages are an essential adipose tissue source of acetylcholine for the regulation of adaptive thermogenesis, and may be useful for therapeutic targeting in metabolic diseases.
Collapse
Affiliation(s)
| | - Shanshan Liu
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
| | - Yingxu Ma
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
- Department of CardiologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Victoria S Nudell
- Department of NeuroscienceThe Scripps Research InstituteLa JollaCAUSA
| | - Eric Perkey
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
- Graduate Program in Cellular and Molecular BiologyUniversity of MichiganAnn ArborMIUSA
| | | | - Robert T Kennedy
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
- Department of PharmacologyUniversity of MichiganAnn ArborMIUSA
| | - Ivan Maillard
- Division of Hematology‐OncologyDepartment of MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Li Ye
- Department of NeuroscienceThe Scripps Research InstituteLa JollaCAUSA
| | - Heejin Jun
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
| | - Jun Wu
- Life Sciences InstituteUniversity of MichiganAnn ArborMIUSA
- Department of Molecular and Integrative PhysiologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
9
|
Tan Y, Zheng Y, Xu D, Sun Z, Yang H, Yin Q. Galectin-3: a key player in microglia-mediated neuroinflammation and Alzheimer's disease. Cell Biosci 2021; 11:78. [PMID: 33906678 PMCID: PMC8077955 DOI: 10.1186/s13578-021-00592-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia and is characterized by the deposition of extracellular aggregates of amyloid-β (Aβ), the formation of intraneuronal tau neurofibrillary tangles and microglial activation-mediated neuroinflammation. One of the key molecules involved in microglial activation is galectin-3 (Gal-3). In recent years, extensive studies have dissected the mechanisms by which Gal-3 modulates microglial activation, impacting Aβ deposition, in both animal models and human studies. In this review article, we focus on the emerging role of Gal-3 in biology and pathobiology, including its origin, its functions in regulating microglial activation and neuroinflammation, and its emergence as a biomarker in AD and other neurodegenerative diseases. These aspects are important to elucidate the involvement of Gal-3 in AD pathogenesis and may provide novel insights into the use of Gal-3 for AD diagnosis and therapy.
Collapse
Affiliation(s)
- Yinyin Tan
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yanqun Zheng
- Department of Neurology, The Dongshan Hospital of Linyi, Linyi, 276017, Shandong, China
| | - Daiwen Xu
- Department of Neurology, The People Hospital of Huaiyin Jinan, Jinan, 250021, Shandong, China
| | - Zhanfang Sun
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Huan Yang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
10
|
Sun L, Sun M, Ma K, Liu J. Let-7d-5p suppresses inflammatory response in neonatal rats with necrotizing enterocolitis via LGALS3-mediated TLR4/NF-κB signaling pathway. Am J Physiol Cell Physiol 2020; 319:C967-C979. [PMID: 32667865 DOI: 10.1152/ajpcell.00571.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Necrotizing enterocolitis (NEC) is an acute intestinal condition accounting for severe mortality and morbidity in preterm infants. This study aimed to identify the possible roles of let-7d-5p in neonatal rats with NEC. The differentially expressed genes (DEGs) related to NEC were initially screened in silico. After establishment of NEC rat models, measurement of the expression of let-7d-5p, galectin-3 (LGALS3), Toll-like receptor 4 (TLR4), and nuclear factor-κB (NF-κB) as well as proinflammatory cytokines (TNF-α, IL-1β, and IL-6) was conducted. The interaction between let-7d-5p and LGALS3 or argonaute-2 (AGO2) was identified. Gain- and loss-of-function approaches were then performed in an attempt to investigate the regulatory roles of let-7d-5p and LGALS3 in inflammation and cell apoptosis in NEC neonatal rats. Let-7d-5p was poorly expressed, whereas LGALS3, TLR4, and NF-κB were highly expressed, in the intestinal tissues of NEC rats. Overexpression of let-7d-5p resulted in decreased levels of proinflammatory factors in the intestinal tissues of NEC rats. Through sequential experimentation, let-7d-5p was identified to target LGALS3 and bind to AGO2. In addition, LGALS3 silencing or LPS treatment blocked the TLR4/NF-κB signaling pathway, thereby suppressing intestinal epithelial cell apoptosis and inflammation in NEC. Collectively, let-7d-5p might exercise its inhibitory properties in the inflammatory response and intestinal epithelial cell apoptosis in NEC neonatal rats via inactivation of the LGALS3-dependent TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Liqun Sun
- Department of Pediatric Outpatient, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Meihua Sun
- Department of Pediatric Outpatient, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Ke Ma
- Department of Pediatric Outpatient, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Jiangtao Liu
- Department of Pediatric Outpatient, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
11
|
Eosinophil function in adipose tissue is regulated by Krüppel-like factor 3 (KLF3). Nat Commun 2020; 11:2922. [PMID: 32523103 PMCID: PMC7286919 DOI: 10.1038/s41467-020-16758-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/20/2020] [Indexed: 01/01/2023] Open
Abstract
The conversion of white adipocytes to thermogenic beige adipocytes represents a potential mechanism to treat obesity and related metabolic disorders. However, the mechanisms involved in converting white to beige adipose tissue remain incompletely understood. Here we show profound beiging in a genetic mouse model lacking the transcriptional repressor Krüppel-like factor 3 (KLF3). Bone marrow transplants from these animals confer the beige phenotype on wild type recipients. Analysis of the cellular and molecular changes reveal an accumulation of eosinophils in adipose tissue. We examine the transcriptomic profile of adipose-resident eosinophils and posit that KLF3 regulates adipose tissue function via transcriptional control of secreted molecules linked to beiging. Furthermore, we provide evidence that eosinophils may directly act on adipocytes to drive beiging and highlight the critical role of these little-understood immune cells in thermogenesis. Immune cells are important regulators of adipose tissue function, including adaptive thermogenesis. Here the authors show that mice with Krüppel-like factor 3 (KLF3) deficiency in bone marrow-derived cells have increased adipose tissue beiging which may at least in part be due to altered eosinophil paracrine signaling.
Collapse
|
12
|
Piskacek M, Havelka M, Jendruchova K, Knight A, Keegan LP. The evolution of the 9aaTAD domain in Sp2 proteins: inactivation with valines and intron reservoirs. Cell Mol Life Sci 2020; 77:1793-1810. [PMID: 31375868 PMCID: PMC11105055 DOI: 10.1007/s00018-019-03251-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/10/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022]
Abstract
The universal nine-amino-acid transactivation domains (9aaTADs) have been identified in numerous transcription activators. Here, we identified the conserved 9aaTAD motif in all nine members of the specificity protein (SP) family. Previously, the Sp1 transcription factor has been defined as a glutamine-rich activator. We showed by amino acid substitutions that the glutamine residues are completely dispensable for 9aaTAD function and are not conserved in the SP family. We described the origin and evolutionary history of 9aaTADs. The 9aaTADs of the ancestral Sp2 gene became inactivated in early chordates. We next discovered that an accumulation of valines in 9aaTADs inactivated their transactivation function and enabled their strict conservation during evolution. Subsequently, in chordates, Sp2 has duplicated and created new paralogs, Sp1, Sp3, and Sp4 (the SP1-4 clade). During chordate evolution, the dormancy of the Sp2 activation domain lasted over 100 million years. The dormant but still intact ancestral Sp2 activation domains allowed diversification of the SP1-4 clade into activators and repressors. By valine substitution in the 9aaTADs, Sp1 and Sp3 regained their original activator function found in ancestral lower metazoan sea sponges. Therefore, the vertebrate SP1-4 clade could include both repressors and activators. Furthermore, we identified secondary 9aaTADs in Sp2 introns present from fish to primates, including humans. In the gibbon genome, introns containing 9aaTADs were used as exons, which turned the Sp2 gene into an activator. Similarly, we identified introns containing 9aaTADs used conditionally as exons in the (SP family-unrelated) transcription factor SREBP1, suggesting that the intron-9aaTAD reservoir is a general phenomenon.
Collapse
Affiliation(s)
- Martin Piskacek
- Department of Pathological Physiology, Faculty of Medicine, Laboratory of Cancer Biology and Genetics, Masaryk University Brno, Kamenice 5, Brno, 625 00, Czech Republic.
| | - Marek Havelka
- Department of Pathological Physiology, Faculty of Medicine, Laboratory of Cancer Biology and Genetics, Masaryk University Brno, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kristina Jendruchova
- Department of Pathological Physiology, Faculty of Medicine, Laboratory of Cancer Biology and Genetics, Masaryk University Brno, Kamenice 5, Brno, 625 00, Czech Republic
| | - Andrea Knight
- Department of Pathological Physiology, Faculty of Medicine, Gamma Delta T Cell Laboratory, Masaryk University Brno, Kamenice 5, Brno, 625 00, Czech Republic.
| | - Liam P Keegan
- CEITEC, Masaryk University, Kamenice 753/5, Pavilion A35, Brno, 62 500, Czech Republic.
| |
Collapse
|
13
|
Knights AJ, Yang L, Shah M, Norton LJ, Green GS, Stout ES, Vohralik EJ, Crossley M, Quinlan KGR. Krüppel-like factor 3 (KLF3) suppresses NF-κB-driven inflammation in mice. J Biol Chem 2020; 295:6080-6091. [PMID: 32213596 DOI: 10.1074/jbc.ra120.013114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial products such as lipopolysaccharides (or endotoxin) cause systemic inflammation, resulting in a substantial global health burden. The onset, progression, and resolution of the inflammatory response to endotoxin are usually tightly controlled to avoid chronic inflammation. Members of the NF-κB family of transcription factors are key drivers of inflammation that activate sets of genes in response to inflammatory signals. Such responses are typically short-lived and can be suppressed by proteins that act post-translationally, such as the SOCS (suppressor of cytokine signaling) family. Less is known about direct transcriptional regulation of these responses, however. Here, using a combination of in vitro approaches and in vivo animal models, we show that endotoxin treatment induced expression of the well-characterized transcriptional repressor Krüppel-like factor 3 (KLF3), which, in turn, directly repressed the expression of the NF-κB family member RELA/p65. We also observed that KLF3-deficient mice were hypersensitive to endotoxin and exhibited elevated levels of circulating Ly6C+ monocytes and macrophage-derived inflammatory cytokines. These findings reveal that KLF3 is a fundamental suppressor that operates as a feedback inhibitor of RELA/p65 and may be important in facilitating the resolution of inflammation.
Collapse
Affiliation(s)
- Alexander J Knights
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lu Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Manan Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Laura J Norton
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Gamran S Green
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Elizabeth S Stout
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Emily J Vohralik
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
14
|
Huang Y, Ren Q. A Kruppel-like factor from Macrobrachium rosenbergii (MrKLF) involved in innate immunity against pathogen infection. FISH & SHELLFISH IMMUNOLOGY 2019; 95:519-527. [PMID: 31683000 DOI: 10.1016/j.fsi.2019.10.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Kruppel-like factors (KLFs) belong to a family of zinc finger-containing transcription factors that are widely present in eukaryotes. In the present study, a novel KLF from the giant river prawn Macrobrachium rosenbergii (designated as MrKLF) was successfully cloned and characterized. The full-length cDNA of MrKLF was 1799 bp with an open reading frame of 1332 bp that encodes a putative protein of 444 amino acids, including three conserved ZnF_C2H2 domains at the C-terminus. Multiple alignment analysis showed that MrKLF and other crustacean KLFs shared high similarity. Quantitative real-time PCR analysis revealed that MrKLF mRNA was found in different tissues of prawns and detected in the gills, hepatopancreas, and intestines. After the challenge with Vibrio parahaemolyticus and Aeromonas hydrophila, different expression patterns of MrKLF in the gills, intestines, and hepatopancreas were observed. RNA interference analysis indicated that MrKLF was involved in regulating the expression of four antimicrobial peptides, namely, Crustin (Crus) 2, Crus8, anti-lipopolysaccharide factor (ALF) 1, and ALF3. These results help promote research on M. rosenbergii innate immunity.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China; Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, 40 Tonghu Road, Baoying, Yangzhou, Jiangsu, 225800, China.
| | - Qian Ren
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
15
|
Ding F, Lai J, Gao Y, Wang G, Shang J, Zhang D, Zheng S. NEAT1/miR-23a-3p/KLF3: a novel regulatory axis in melanoma cancer progression. Cancer Cell Int 2019; 19:217. [PMID: 31462890 PMCID: PMC6706883 DOI: 10.1186/s12935-019-0927-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Melanoma is an extremely aggressive malignant skin tumor with high mortality. Many types of long noncoding RNAs and microRNAs have been reported to be associated with the oncogenesis of melanoma. However, a novel lncRNA-NEAT has not been thoroughly investigated in melanoma cancer. The purposes of this study were to investigate the underlying molecular mechanism in a novel couple of lnc-NEAT1 and miR-23a-3p, as well as the function role of KLF3 in the regulation of melanoma cancer. METHODS 28 groups of tumor tissues and normal tissues were obtained from melanoma cancer patients. We performed a series of experiments and analysis, including RT-qPCR, western blots, CCK-8 assay, and migration/invasion assay, to investigate the expressions of NEAT1, miR-23a-5p and KLF3, cell viabilities, and tumor growth in vivo. RESULTS In this study, we observed that the expression of NEAT1 was significantly upregulated in melanoma tissues, which remarkedly promoted the cells' proliferation, cell migration, and invasion in melanoma cell lines. Besides, NEAT1 could directly bind to miR-23a-3p, which was found to reverse the effect caused by NEAT1. MiR-23a-3p was discovered to bind to 3'UTR of KLF3, which reduced KLF3 expression. In addition, the overexpression of KLF3 could lower the effects of miR-23a-3p caused on melanoma cancer cell development. CONCLUSION Our results demonstrated that NEAT1 could sponge miR-23a-3p and functions via the expression of KLF3. This axis of NEAT1/miR-23a-5p/KLF3 could together regulate melanoma cancer proliferation. This might provide a new therapeutic strategy for melanoma skin cancer.Trial registration HBTCM38574839, registered 12 October 2012.
Collapse
Affiliation(s)
- Fei Ding
- Department of Dermatology, Zhoukou Central Hospital, Zhoukou, 466000 Henan China
| | - Jindong Lai
- Department of Dermatology, Suining First People’s Hospital, Suining, 629000 Sichuan China
| | - Yang Gao
- Department of Dermatology, Affiliated Hospital of Hebei Academy of Traditional Chinese Medicine, Shijiazhuang, 050000 Hebei China
| | - Genhui Wang
- Department of Dermatology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, 050000 Hebei China
| | - Jingwen Shang
- Department of Dermatology, Zhoukou Central Hospital, Zhoukou, 466000 Henan China
| | - Daojun Zhang
- Department of Dermatology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 400040 China
| | - Shumao Zheng
- Department of Dermatology, Hebei Academy of Chinese Medicine, Shijiazhuang, 050000 Hebei China
| |
Collapse
|
16
|
Chen X, Lin J, Hu T, Ren Z, Li L, Hameed I, Zhang X, Men C, Guo Y, Xu D, Zhan Y. Galectin-3 exacerbates ox-LDL-mediated endothelial injury by inducing inflammation via integrin β1-RhoA-JNK signaling activation. J Cell Physiol 2018; 234:10990-11000. [PMID: 30536538 PMCID: PMC6590151 DOI: 10.1002/jcp.27910] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022]
Abstract
Oxidized low‐density lipoprotein (Ox‐LDL)‐induced endothelial cell injury plays a crucial role in the pathogenesis of atherosclerosis (AS). Plasma galectin‐3 (Gal‐3) is elevated inside and drives diverse systemic inflammatory disorders, including cardiovascular diseases. However, the exact role of Gal‐3 in ox‐LDL‐mediated endothelial injury remains unclear. This study explores the effects of Gal‐3 on ox‐LDL‐induced endothelial dysfunction and the underlying molecular mechanisms. In this study, Gal‐3, integrin β1, and GTP‐RhoA in the blood and plaques of AS patients were examined by ELISA and western blot respectively. Their levels were found to be obviously upregulated compared with non‐AS control group. CCK8 assay and flow cytometry analysis showed that Gal‐3 significantly decreased cell viability and promoted apoptosis in ox‐LDL‐treated human umbilical vascular endothelial cells (HUVECs). The upregulation of integrinβ1, GTP‐RhoA, p‐JNK, p‐p65, p‐IKKα, and p‐IKKβ induced by ox‐LDL was further enhanced by treatment with Gal‐3. Pretreatment with Gal‐3 increased expression of inflammatory factors (interleukin [IL]‐6, IL‐8, and IL‐1β), chemokines(CXCL‐1 and CCL‐2) and adhesion molecules (VCAM‐1 and ICAM‐1). Furthermore, the promotional effects of Gal‐3 on NF‐κB activation and inflammatory factors in ox‐LDL‐treated HUVECs were reversed by the treatments with integrinβ1‐siRNA or the JNK inhibitor. We also found that integrinβ1‐siRNA decreased the protein expression of GTP‐RhoA and p‐JNK, while RhoA inhibitor partially reduced the upregulated expression of p‐JNK induced by Gal‐3. In conclusion, our finding suggests that Gal‐3 exacerbates ox‐LDL‐mediated endothelial injury by inducing inflammation via integrin β1‐RhoA‐JNK signaling activation.
Collapse
Affiliation(s)
- Xiumei Chen
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Lin
- Department of Urology and Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Hu
- Department of Cancer Research, The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Zhiyun Ren
- Department of Urology and Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Linnan Li
- Department of Cancer Research, Academy of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Irbaz Hameed
- Department of Cardiothoracic Surgery, New York Presbyterian Hospital Weill cornell Medicine, New York, New York
| | - Xiaoyu Zhang
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Men
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Guo
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Di Xu
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiyang Zhan
- Department of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Pollak NM, Hoffman M, Goldberg IJ, Drosatos K. Krüppel-like factors: Crippling and un-crippling metabolic pathways. JACC Basic Transl Sci 2018; 3:132-156. [PMID: 29876529 PMCID: PMC5985828 DOI: 10.1016/j.jacbts.2017.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/20/2022]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors that regulate various pathways that control metabolism and other cellular mechanisms. Various KLF isoforms have been associated with cellular, organ or systemic metabolism. Altered expression or activation of KLFs has been linked to metabolic abnormalities, such as obesity and diabetes, as well as with heart failure. In this review article we summarize the metabolic functions of KLFs, as well as the networks of different KLF isoforms that jointly regulate metabolism in health and disease.
Collapse
Affiliation(s)
- Nina M. Pollak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew Hoffman
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ira J. Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, New York
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Suthahar N, Meijers WC, Silljé HH, Ho JE, Liu FT, de Boer RA. Galectin-3 Activation and Inhibition in Heart Failure and Cardiovascular Disease: An Update. Theranostics 2018; 8:593-609. [PMID: 29344292 PMCID: PMC5771079 DOI: 10.7150/thno.22196] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/24/2017] [Indexed: 12/15/2022] Open
Abstract
Galectin-3 is a versatile protein orchestrating several physiological and pathophysiological processes in the human body. In the last decade, considerable interest in galectin-3 has emerged because of its potential role as a biotarget. Galectin-3 is differentially expressed depending on the tissue type, however its expression can be induced under conditions of tissue injury or stress. Galectin-3 overexpression and secretion is associated with several diseases and is extensively studied in the context of fibrosis, heart failure, atherosclerosis and diabetes mellitus. Monomeric (extracellular) galectin-3 usually undergoes further "activation" which significantly broadens the spectrum of biological activity mainly by modifying its carbohydrate-binding properties. Self-interactions of this protein appear to play a crucial role in regulating the extracellular activities of this protein, however there is limited and controversial data on the mechanisms involved. We therefore summarize (recent) literature in this area and describe galectin-3 from a binding perspective providing novel insights into mechanisms by which galectin-3 is known to be "activated" and how such activation may be regulated in pathophysiological scenarios.
Collapse
Affiliation(s)
- Navin Suthahar
- University Medical Center Groningen, University of Groningen, Department of Cardiology, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Wouter C. Meijers
- University Medical Center Groningen, University of Groningen, Department of Cardiology, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Herman H.W. Silljé
- University Medical Center Groningen, University of Groningen, Department of Cardiology, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Jennifer E. Ho
- Massachusetts General Hospital, Cardiovascular Research Center, Boston, MA, USA
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Rudolf A. de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, PO Box 30.001, 9700 RB Groningen, the Netherlands
| |
Collapse
|
19
|
Landrith TA, Sureshchandra S, Rivera A, Jang JC, Rais M, Nair MG, Messaoudi I, Wilson EH. CD103 + CD8 T Cells in the Toxoplasma-Infected Brain Exhibit a Tissue-Resident Memory Transcriptional Profile. Front Immunol 2017; 8:335. [PMID: 28424687 PMCID: PMC5372813 DOI: 10.3389/fimmu.2017.00335] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/08/2017] [Indexed: 12/20/2022] Open
Abstract
During chronic infection, memory T cells acquire a unique phenotype and become dependent on different survival signals than those needed for memory T cells generated during an acute infection. The distinction between the role of effector and memory T cells in an environment of persistent antigen remains unclear. Here, in the context of chronic Toxoplasma gondii infection, we demonstrate that a population of CD8 T cells exhibiting a tissue-resident memory (TRM) phenotype accumulates within the brain. We show that this population is distributed throughout the brain in both parenchymal and extraparenchymal spaces. Furthermore, this population is transcriptionally distinct and exhibits a transcriptional signature consistent with the TRM observed in acute viral infections. Finally, we establish that the CD103+ TRM population has an intrinsic capacity to produce both IFN-γ and TNF-α, cytokines critical for parasite control within the central nervous system (CNS). The contribution of this population to pro-inflammatory cytokine production suggests an important role for TRM in protective and ongoing immune responses in the infected CNS. Accession number: GSE95105
Collapse
Affiliation(s)
- Tyler A Landrith
- School of Medicine, University of California, Riverside, CA, USA
| | | | - Andrea Rivera
- School of Medicine, University of California, Riverside, CA, USA
| | - Jessica C Jang
- School of Medicine, University of California, Riverside, CA, USA
| | - Maham Rais
- School of Medicine, University of California, Riverside, CA, USA
| | - Meera G Nair
- School of Medicine, University of California, Riverside, CA, USA
| | - Ilhem Messaoudi
- School of Medicine, University of California, Riverside, CA, USA
| | - Emma H Wilson
- School of Medicine, University of California, Riverside, CA, USA
| |
Collapse
|