1
|
Luo S, Zhou X, Wu M, Wang G, Wang L, Feng X, Wu H, Luo R, Lu M, Ju J, Wang W, Yuan L, Luo X, Peng D, Yang L, Zhang Q, Chen M, Liang S, Dong X, Hao G, Zhang Y, Liu Z. Optimizing Nav1.7-Targeted Analgesics: Revealing Off-Target Effects of Spider Venom-Derived Peptide Toxins and Engineering Strategies for Improvement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406656. [PMID: 39248322 PMCID: PMC11558128 DOI: 10.1002/advs.202406656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/22/2024] [Indexed: 09/10/2024]
Abstract
The inhibition of Nav1.7 is a promising strategy for the development of analgesic treatments. Spider venom-derived peptide toxins are recognized as significant sources of Nav1.7 inhibitors. However, their development has been impeded by limited selectivity. In this study, eight peptide toxins from three distinct spider venom Nav channel families demonstrated robust inhibition of hNav1.7, rKv4.2, and rKv4.3 (rKv4.2/4.3) currents, exhibiting a similar mode of action. The analysis of structure and function relationship revealed a significant overlap in the pharmacophore responsible for inhibiting hNav1.7 and rKv4.2 by HNTX-III, although Lys25 seems to play a more pivotal role in the inhibition of rKv4.2/4.3. Pharmacophore-guided rational design is employed for the development of an mGpTx1 analogue, mGpTx1-SA, which retains its inhibition of hNav1.7 while significantly reducing its inhibition of rKv4.2/4.3 and eliminating cardiotoxicity. Moreover, mGpTx1-SA demonstrates potent analgesic effects in both inflammatory and neuropathic pain models, accompanied by an improved in vivo safety profile. The results suggest that off-target inhibition of rKv4.2/4.3 by specific spider peptide toxins targeting hNav1.7 may arise from a conserved binding motif. This insight promises to facilitate the design of hNav1.7-specific analgesics, aimed at minimizing rKv4.2/4.3 inhibition and associated toxicity, thereby enhancing their suitability for therapeutic applications.
Collapse
|
2
|
Wang X, Luo H, Peng X, Chen J. Spider and scorpion knottins targeting voltage-gated sodium ion channels in pain signaling. Biochem Pharmacol 2024; 227:116465. [PMID: 39102991 DOI: 10.1016/j.bcp.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
In sensory neurons that transmit pain signals, whether acute or chronic, voltage-gated sodium channels (VGSCs) are crucial for regulating excitability. NaV1.1, NaV1.3, NaV1.6, NaV1.7, NaV1.8, and NaV1.9 have been demonstrated and defined their functional roles in pain signaling based on their biophysical properties and distinct patterns of expression in each subtype of sensory neurons. Scorpions and spiders are traditional Chinese medicinal materials, belonging to the arachnid class. Most of the studied species of them have evolved venom peptides that exhibit a wide variety of knottins specifically targeting VGSCs with subtype selectivity and conformational specificity. This review provides an overview on the exquisite knottins from scorpion and spider venoms targeting pain-related NaV channels, describing the sequences and the structural features as well as molecular determinants that influence their selectivity on special subtype and at particular conformation, with an aim for the development of novel research tools on NaV channels and analgesics with minimal adverse effects.
Collapse
Affiliation(s)
- Xiting Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Huan Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua 418000, China.
| | - Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 418000, China.
| |
Collapse
|
3
|
Becker J, Effraim PR, Dib-Hajj S, Rittner HL. Lessons learned in translating pain knowledge into practice. Pain Rep 2023; 8:e1100. [PMID: 37928204 PMCID: PMC10624476 DOI: 10.1097/pr9.0000000000001100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/05/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction During the past 2 decades, basic research deciphering the underlying mechanisms of nociception and chronic pain was thought to finally step beyond opioids and nonsteroidals and provide patients with new analgesics. But apart from calcitonin gene-related peptide antagonists, nothing arrived in hands of clinicians. Objectives To present existing evidence of 3 representative target molecules in the development of novel pain treatment that, so far, did not result in approved drugs. Methods This Clinical Update aligns with the 2022 IASP Global Year Translating Pain Knowledge into Practice and selectively reviews best available evidence and practice. Results We highlight 3 targets: a ion channel, a neuronal growth factor, and a neuropeptide to explore why these drug targets have been dropped in clinical phase II-III trials. Antibodies to nerve growth factor had very good effects in musculoskeletal pain but resulted into more patients requiring joint replacements. Blockers of NaV1.7 were often not effective enough-at least if patients were not stratified. Blockers of neurokinin receptor were similarly not successful enough. In general, failure was most often to the result of a lack of effect and to a lesser extend because of unexpected severe side effects. However, all studies and trials lead to an enormous move in the scientific community to better preclinical models and testing as well as revised methods to molecularly phenotype and stratify patients. Conclusion All stakeholders in the process can help in the future: better preclinical studies, phenotyping and stratifying patients, and participation in clinical trials to move the discovery of analgesics forward.
Collapse
Affiliation(s)
- Juliane Becker
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Philip R. Effraim
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, CT, USA
| | - Sulayman Dib-Hajj
- Department of Neurology, Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Heike L. Rittner
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Dongol Y, Wilson DT, Daly NL, Cardoso FC, Lewis RJ. Structure-function and rational design of a spider toxin Ssp1a at human voltage-gated sodium channel subtypes. Front Pharmacol 2023; 14:1277143. [PMID: 38034993 PMCID: PMC10682951 DOI: 10.3389/fphar.2023.1277143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
The structure-function and optimization studies of NaV-inhibiting spider toxins have focused on developing selective inhibitors for peripheral pain-sensing NaV1.7. With several NaV subtypes emerging as potential therapeutic targets, structure-function analysis of NaV-inhibiting spider toxins at such subtypes is warranted. Using the recently discovered spider toxin Ssp1a, this study extends the structure-function relationships of NaV-inhibiting spider toxins beyond NaV1.7 to include the epilepsy target NaV1.2 and the pain target NaV1.3. Based on these results and docking studies, we designed analogues for improved potency and/or subtype-selectivity, with S7R-E18K-rSsp1a and N14D-P27R-rSsp1a identified as promising leads. S7R-E18K-rSsp1a increased the rSsp1a potency at these three NaV subtypes, especially at NaV1.3 (∼10-fold), while N14D-P27R-rSsp1a enhanced NaV1.2/1.7 selectivity over NaV1.3. This study highlights the challenge of developing subtype-selective spider toxin inhibitors across multiple NaV subtypes that might offer a more effective therapeutic approach. The findings of this study provide a basis for further rational design of Ssp1a and related NaSpTx1 homologs targeting NaV1.2, NaV1.3 and/or NaV1.7 as research tools and therapeutic leads.
Collapse
Affiliation(s)
- Yashad Dongol
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David T. Wilson
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Norelle L. Daly
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Fernanda C. Cardoso
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Richard J. Lewis
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Tran P, Tran HNT, McMahon KL, Deuis JR, Ragnarsson L, Norman A, Sharpe SJ, Payne RJ, Vetter I, Schroeder CI. Changes in Potency and Subtype Selectivity of Bivalent Na V Toxins are Knot-Specific. Bioconjug Chem 2023. [PMID: 37262436 DOI: 10.1021/acs.bioconjchem.3c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Disulfide-rich peptide toxins have long been studied for their ability to inhibit voltage-gated sodium channel subtype NaV1.7, a validated target for the treatment of pain. In this study, we sought to combine the pore blocking activity of conotoxins with the gating modifier activity of spider toxins to design new bivalent inhibitors of NaV1.7 with improved potency and selectivity. To do this, we created an array of heterodimeric toxins designed to target human NaV1.7 by ligating a conotoxin to a spider toxin and assessed the potency and selectivity of the resulting bivalent toxins. A series of spider-derived gating modifier toxins (GpTx-1, ProTx-II, gHwTx-IV, JzTx-V, CcoTx-1, and Pn3a) and two pore-blocker μ-conotoxins, SxIIIC and KIIIA, were used for this study. We employed either enzymatic ligation with sortase A for C- to N-terminal ligation or click chemistry for N- to N-terminal ligation. The bivalent peptide resulting from ligation of ProTx-II and SxIIIC (Pro[LPATG6]Sx) was shown to be the best combination as native ProTx-II potency at hNaV1.7 was conserved following ligation. At hNaV1.4, a synergistic effect between the pore blocker and gating modifier toxin moieties was observed, resulting in altered sodium channel subtype selectivity compared to the parent peptides. Further studies including mutant bivalent peptides and mutant hNaV1.7 channels suggested that gating modifier toxins have a greater contribution to the potency of the bivalent peptides than pore blockers. This study delineated potential benefits and drawbacks of designing pharmacological hybrid peptides targeting hNaV1.7.
Collapse
Affiliation(s)
- Poanna Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hue N T Tran
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kirsten L McMahon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jennifer R Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lotten Ragnarsson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alexander Norman
- School of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Simon J Sharpe
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Camperdown, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Genentech, 1 DNA Way South San Francisco, California 94080, United States
| |
Collapse
|
6
|
Gualandi N, Fracarossi D, Riommi D, Sollitto M, Greco S, Mardirossian M, Pacor S, Hori T, Pallavicini A, Gerdol M. Unveiling the Impact of Gene Presence/Absence Variation in Driving Inter-Individual Sequence Diversity within the CRP-I Gene Family in Mytilus spp. Genes (Basel) 2023; 14:genes14040787. [PMID: 37107545 PMCID: PMC10138031 DOI: 10.3390/genes14040787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Mussels (Mytilus spp.) tolerate infections much better than other species living in the same marine coastal environment thanks to a highly efficient innate immune system, which exploits a remarkable diversification of effector molecules involved in mucosal and humoral responses. Among these, antimicrobial peptides (AMPs) are subjected to massive gene presence/absence variation (PAV), endowing each individual with a potentially unique repertoire of defense molecules. The unavailability of a chromosome-scale assembly has so far prevented a comprehensive evaluation of the genomic arrangement of AMP-encoding loci, preventing an accurate ascertainment of the orthology/paralogy relationships among sequence variants. Here, we characterized the CRP-I gene cluster in the blue mussel Mytilus edulis, which includes about 50 paralogous genes and pseudogenes, mostly packed in a small genomic region within chromosome 5. We further reported the occurrence of widespread PAV within this family in the Mytilus species complex and provided evidence that CRP-I peptides likely adopt a knottin fold. We functionally characterized the synthetic peptide sCRP-I H1, assessing the presence of biological activities consistent with other knottins, revealing that mussel CRP-I peptides are unlikely to act as antimicrobial agents or protease inhibitors, even though they may be used as defense molecules against infections from eukaryotic parasites.
Collapse
Affiliation(s)
- Nicolò Gualandi
- Area of Neuroscience, International School for Advanced Studies, 34136 Trieste, Italy;
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
| | - Davide Fracarossi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
| | - Damiano Riommi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
| | - Marco Sollitto
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
| | - Mario Mardirossian
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
| | - Sabrina Pacor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
| | - Tiago Hori
- Atlantic Aqua Farms Ltd., Vernon Bridge, PE C0A 2E0, Canada;
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
- Anton Dohrn Zoological Station, 80121 Naples, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (D.F.); (D.R.); (M.S.); (S.G.); (M.M.); (S.P.); (A.P.)
- Correspondence:
| |
Collapse
|
7
|
Wisedchaisri G, Gamal El-Din TM. Druggability of Voltage-Gated Sodium Channels-Exploring Old and New Drug Receptor Sites. Front Pharmacol 2022; 13:858348. [PMID: 35370700 PMCID: PMC8968173 DOI: 10.3389/fphar.2022.858348] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 01/12/2023] Open
Abstract
Voltage-gated ion channels are important drug targets because they play crucial physiological roles in both excitable and non-excitable cells. About 15% of clinical drugs used for treating human diseases target ion channels. However, most of these drugs do not provide sufficient specificity to a single subtype of the channels and their off-target side effects can be serious and sometimes fatal. Recent advancements in imaging techniques have enabled us for the first time to visualize unique and hidden parts of voltage-gated sodium channels in different structural conformations, and to develop drugs that further target a selected functional state in each channel subtype with the potential for high precision and low toxicity. In this review we describe the druggability of voltage-gated sodium channels in distinct functional states, which could potentially be used to selectively target the channels. We review classical drug receptors in the channels that have recently been structurally characterized by cryo-electron microscopy with natural neurotoxins and clinical drugs. We further examine recent drug discoveries for voltage-gated sodium channels and discuss opportunities to use distinct, state-dependent receptor sites in the voltage sensors as unique drug targets. Finally, we explore potential new receptor sites that are currently unknown for sodium channels but may be valuable for future drug discovery. The advancement presented here will help pave the way for drug development that selectively targets voltage-gated sodium channels.
Collapse
Affiliation(s)
- Goragot Wisedchaisri
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Tamer M Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Kong X, Li Y, Perez-Miller S, Luo G, Liao Q, Wu X, Liang S, Tang C, Khanna R, Liu Z. The small molecule compound C65780 alleviates pain by stabilizing voltage-gated sodium channels in the inactivated and slowly-recovering state. Neuropharmacology 2022; 212:109057. [DOI: 10.1016/j.neuropharm.2022.109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
|
9
|
Adams GL, Pall PS, Grauer SM, Zhou X, Ballard JE, Vavrek M, Kraus RL, Morissette P, Li N, Colarusso S, Bianchi E, Palani A, Klein R, John CT, Wang D, Tudor M, Nolting AF, Biba M, Nowak T, Makarov AA, Reibarkh M, Buevich AV, Zhong W, Regalado EL, Wang X, Gao Q, Shahripour A, Zhu Y, de Simone D, Frattarelli T, Pasquini NM, Magotti P, Iaccarino R, Li Y, Solly K, Lee KJ, Wang W, Chen F, Zeng H, Wang J, Regan H, Amin RP, Regan CP, Burgey CS, Henze DA, Sun C, Tellers DM. Development of ProTx-II Analogues as Highly Selective Peptide Blockers of Na v1.7 for the Treatment of Pain. J Med Chem 2021; 65:485-496. [PMID: 34931831 DOI: 10.1021/acs.jmedchem.1c01570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inhibitor cystine knot peptides, derived from venom, have evolved to block ion channel function but are often toxic when dosed at pharmacologically relevant levels in vivo. The article describes the design of analogues of ProTx-II that safely display systemic in vivo blocking of Nav1.7, resulting in a latency of response to thermal stimuli in rodents. The new designs achieve a better in vivo profile by improving ion channel selectivity and limiting the ability of the peptides to cause mast cell degranulation. The design rationale, structural modeling, in vitro profiles, and rat tail flick outcomes are disclosed and discussed.
Collapse
Affiliation(s)
- Gregory L Adams
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Parul S Pall
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Steven M Grauer
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Xiaoping Zhou
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Marissa Vavrek
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Richard L Kraus
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Nianyu Li
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Stefania Colarusso
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Elisabetta Bianchi
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Anandan Palani
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Rebecca Klein
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Deping Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Matthew Tudor
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Andrew F Nolting
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Mirlinda Biba
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Timothy Nowak
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | | | | | - Wendy Zhong
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Xiao Wang
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Qi Gao
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Yuping Zhu
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Daniele de Simone
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Tommaso Frattarelli
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Nicolo' Maria Pasquini
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Paola Magotti
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Roberto Iaccarino
- Peptides and Small Molecules R&D Department, IRBM Spa, Via Pontina km 30.600, 00071 Pomezia (RM), Italy
| | - Yuxing Li
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Kelli Solly
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Keun-Joong Lee
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Weixun Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Feifei Chen
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Haoyu Zeng
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jixin Wang
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Hilary Regan
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Rupesh P Amin
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | | | - Darrell A Henze
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Chengzao Sun
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - David M Tellers
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
10
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Neff RA, Wickenden AD. Selective Targeting of Nav1.7 with Engineered Spider Venom-Based Peptides. Channels (Austin) 2021; 15:179-193. [PMID: 33427574 PMCID: PMC7808416 DOI: 10.1080/19336950.2020.1860382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 01/12/2023] Open
Abstract
A fundamental mechanism that drives the propagation of electrical signals in the nervous system is the activation of voltage-gated sodium channels. The sodium channel subtype Nav1.7 is critical for the transmission of pain-related signaling, with gain-of-function mutations in Nav1.7 resulting in various painful pathologies. Loss-of-function mutations cause complete insensitivity to pain and anosmia in humans that otherwise have normal nervous system function, rendering Nav1.7 an attractive target for the treatment of pain. Despite this, no Nav1.7 selective therapeutic has been approved for use as an analgesic to date. Here we present a summary of research that has focused on engineering peptides found in spider venoms to produce Nav1.7 selective antagonists. We discuss the progress that has been made on various scaffolds from different venom families and highlight the challenges that remain in the effort to produce a Nav1.7 selective, venom-based analgesic.
Collapse
Affiliation(s)
- Robert A. Neff
- Neuroscience Discovery, Janssen Research and Development, LLC, San Diego, CA, USA
| | - Alan D. Wickenden
- Molecular and Cellular Pharmacology, Janssen Research and Development, LLC, San Diego, CA, USA
| |
Collapse
|
12
|
Hu H, Mawlawi SE, Zhao T, Deuis JR, Jami S, Vetter I, Lewis RJ, Cardoso FC. Engineering of a Spider Peptide via Conserved Structure-Function Traits Optimizes Sodium Channel Inhibition In Vitro and Anti-Nociception In Vivo. Front Mol Biosci 2021; 8:742457. [PMID: 34621788 PMCID: PMC8490825 DOI: 10.3389/fmolb.2021.742457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Venom peptides are potent and selective modulators of voltage-gated ion channels that regulate neuronal function both in health and in disease. We previously identified the spider venom peptide Tap1a from the Venezuelan tarantula Theraphosa apophysis that targeted multiple voltage-gated sodium and calcium channels in visceral pain pathways and inhibited visceral mechano-sensing neurons contributing to irritable bowel syndrome. In this work, alanine scanning and domain activity analysis revealed Tap1a inhibited sodium channels by binding with nanomolar affinity to the voltage-sensor domain II utilising conserved structure-function features characteristic of spider peptides belonging to family NaSpTx1. In order to speed up the development of optimized NaV-targeting peptides with greater inhibitory potency and enhanced in vivo activity, we tested the hypothesis that incorporating residues identified from other optimized NaSpTx1 peptides into Tap1a could also optimize its potency for NaVs. Applying this approach, we designed the peptides Tap1a-OPT1 and Tap1a-OPT2 exhibiting significant increased potency for NaV1.1, NaV1.2, NaV1.3, NaV1.6 and NaV1.7 involved in several neurological disorders including acute and chronic pain, motor neuron disease and epilepsy. Tap1a-OPT1 showed increased potency for the off-target NaV1.4, while this off-target activity was absent in Tap1a-OPT2. This enhanced potency arose through a slowed off-rate mechanism. Optimized inhibition of NaV channels observed in vitro translated in vivo, with reversal of nocifensive behaviours in a murine model of NaV-mediated pain also enhanced by Tap1a-OPT. Molecular docking studies suggested that improved interactions within loops 3 and 4, and C-terminal of Tap1a-OPT and the NaV channel voltage-sensor domain II were the main drivers of potency optimization. Overall, the rationally designed peptide Tap1a-OPT displayed new and refined structure-function features which are likely the major contributors to its enhanced bioactive properties observed in vivo. This work contributes to the rapid engineering and optimization of potent spider peptides multi-targeting NaV channels, and the research into novel drugs to treat neurological diseases.
Collapse
Affiliation(s)
- H Hu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - S E Mawlawi
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - T Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - J R Deuis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - S Jami
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - I Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - R J Lewis
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - F C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Centre for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Rengasamy KRR, Mahomoodally MF, Joaheer T, Zhang Y. A Systematic Review of Traditionally Used Herbs and Animal-Derived Products as Potential Analgesics. Curr Neuropharmacol 2021; 19:553-588. [PMID: 32781962 PMCID: PMC8206464 DOI: 10.2174/1570159x18666200808151522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/10/2020] [Accepted: 06/21/2020] [Indexed: 11/25/2022] Open
Abstract
Pain is a distressing but fundamental manifestation that prepares the body for potentially detrimental stimuli while ensuring its protection. Plant and animal products have traditionally been used to relieve pain for centuries. However, no attempt has been made to compile a single report of plant and animal products possessing analgesic properties. This review enadeavours to recover data from published articles to establish a collective literature review on folk remedies from plant and animal sources used as analgesics and in the treatment of pain-related conditions, identifying gaps in existing knowledge and future works. Relevant information was systematically retrieved using the PRISMA method. In this review, in total, 209 plants were found to be either used raw or prepared by decoctions or maceration. Administration was either oral or topical, and they were predominantly used in Asian countries. In vivo studies of plants with analgesic properties, which were tested using different methods including acetic-induced writhing test, hotplate test, tail-flick test, and formalin-induced pain test, were compiled. Animal products with analgesic properties were obtained mainly from compounds present in venom; their bioactive compounds were also identified. In the literature search, certain gaps were noted, which could be reviewed in future studies. For instance, there was a disparity of information regarding the traditional uses of medicinal plants. In this review, an attempt was made to critically assess and describe the pharmacological properties and bioactive composition of indigenous plants, some animal species, and animal venom by scrutinizing databases and looking for published articles. Therefore, it can be concluded that the compounds obtained from these sources can serve as important ingredients in therapeutic agents to alleviate pain once their limitations are assessed and improved upon. In the literature search, certain gaps were noted, which could be reviewed in future studies.
Collapse
Affiliation(s)
- Kannan R R Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.,Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam,Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2745, North West Province, South Africa
| | - Mohamad Fawzi Mahomoodally
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Teshika Joaheer
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Yansheng Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
14
|
Zhang Y, Wang L, Peng D, Zhang Q, Yang Q, Li J, Li D, Tang D, Chen M, Liang S, Liu Y, Wang S, Liu Z. Engineering of highly potent and selective HNTX-III mutant against hNa v1.7 sodium channel for treatment of pain. J Biol Chem 2021; 296:100326. [PMID: 33493520 PMCID: PMC7988488 DOI: 10.1016/j.jbc.2021.100326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
Human voltage-gated sodium channel Nav1.7 (hNav1.7) is involved in the generation and conduction of neuropathic and nociceptive pain signals. Compelling genetic and preclinical studies have validated that hNav1.7 is a therapeutic target for the treatment of pain; however, there is a dearth of currently available compounds capable of targeting hNav1.7 with high potency and specificity. Hainantoxin-III (HNTX-III) is a 33-residue polypeptide from the venom of the spider Ornithoctonus hainana. It is a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels. Here, we report the engineering of improved potency and Nav selectivity of hNav1.7 inhibition peptides derived from the HNTX-III scaffold. Alanine scanning mutagenesis showed key residues for HNTX-III interacting with hNav1.7. Site-directed mutagenesis analysis indicated key residues on hNav1.7 interacting with HNTX-III. Molecular docking was conducted to clarify the binding interface between HNTX-III and Nav1.7 and guide the molecular engineering process. Ultimately, we obtained H4 [K0G1-P18K-A21L-V] based on molecular docking of HNTX-III and hNav1.7 with a 30-fold improved potency (IC50 0.007 ± 0.001 μM) and >1000-fold selectivity against Nav1.4 and Nav1.5. H4 also showed robust analgesia in the acute and chronic inflammatory pain model and neuropathic pain model. Thus, our results provide further insight into peptide toxins that may prove useful in guiding the development of inhibitors with improved potency and selectivity for Nav subtypes with robust analgesia.
Collapse
Affiliation(s)
- Yunxiao Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Li Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dezheng Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Qingfeng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiuchu Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jiayan Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dan Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dongfang Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yu Liu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China.
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
15
|
Venom peptides in cancer therapy: An updated review on cellular and molecular aspects. Pharmacol Res 2020; 164:105327. [PMID: 33276098 DOI: 10.1016/j.phrs.2020.105327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Based on the high incidence and mortality rates of cancer, its therapy remains one of the most vital challenges in the field of medicine. Consequently, enhancing the efficacy of currently applied treatments and finding novel strategies are of great importance for cancer treatment. Venoms are important sources of a variety of bioactive compounds including salts, small molecules, macromolecules, proteins, and peptides that are defined as toxins. They can exhibit different pharmacological effects, and in recent years, their anti-tumor activities have gained significant attention. Several different compounds are responsible for the anti-tumor activity of venoms, and peptides are one of them. In the present review, we discuss the possible anti-tumor activities of venom peptides by highlighting molecular pathways and mechanisms through which these molecules can act effectively. Venom peptides can induce cell death in cancer cells and can substantially enhance the efficacy of chemotherapy and radiotherapy. Also, the venom peptides can mitigate the migration of cancer cells via suppression of angiogenesis and epithelial-to-mesenchymal transition. Notably, nanoparticles have been applied in enhancing the bioavailability of venom peptides and providing targeted delivery, thereby leading to their elevated anti-tumor activity and potential application for cancer therapy.
Collapse
|
16
|
Alsaloum M, Higerd GP, Effraim PR, Waxman SG. Status of peripheral sodium channel blockers for non-addictive pain treatment. Nat Rev Neurol 2020; 16:689-705. [PMID: 33110213 DOI: 10.1038/s41582-020-00415-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
The effective and safe treatment of pain is an unmet health-care need. Current medications used for pain management are often only partially effective, carry dose-limiting adverse effects and are potentially addictive, highlighting the need for improved therapeutic agents. Most common pain conditions originate in the periphery, where dorsal root ganglion and trigeminal ganglion neurons feed pain information into the CNS. Voltage-gated sodium (NaV) channels drive neuronal excitability and three subtypes - NaV1.7, NaV1.8 and NaV1.9 - are preferentially expressed in the peripheral nervous system, suggesting that their inhibition might treat pain while avoiding central and cardiac adverse effects. Genetic and functional studies of human pain disorders have identified NaV1.7, NaV1.8 and NaV1.9 as mediators of pain and validated them as targets for pain treatment. Consequently, multiple NaV1.7-specific and NaV1.8-specific blockers have undergone clinical trials, with others in preclinical development, and the targeting of NaV1.9, although hampered by technical constraints, might also be moving ahead. In this Review, we summarize the clinical and preclinical literature describing compounds that target peripheral NaV channels and discuss the challenges and future prospects for the field. Although the potential of peripheral NaV channel inhibition for the treatment of pain has yet to be realized, this remains a promising strategy to achieve non-addictive analgesia for multiple pain conditions.
Collapse
Affiliation(s)
- Matthew Alsaloum
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA.,Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Grant P Higerd
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
| | - Philip R Effraim
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA. .,Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA. .,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
17
|
|
18
|
Johnson SR, Rikli HG. Aspartic Acid Isomerization Characterized by High Definition Mass Spectrometry Significantly Alters the Bioactivity of a Novel Toxin from Poecilotheria. Toxins (Basel) 2020; 12:E207. [PMID: 32218140 PMCID: PMC7232244 DOI: 10.3390/toxins12040207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022] Open
Abstract
Research in toxinology has created a pharmacological paradox. With an estimated 220,000 venomous animals worldwide, the study of peptidyl toxins provides a vast number of effector molecules. However, due to the complexity of the protein-protein interactions, there are fewer than ten venom-derived molecules on the market. Structural characterization and identification of post-translational modifications are essential to develop biological lead structures into pharmaceuticals. Utilizing advancements in mass spectrometry, we have created a high definition approach that fuses conventional high-resolution MS-MS with ion mobility spectrometry (HDMSE) to elucidate these primary structure characteristics. We investigated venom from ten species of "tiger" spider (Genus: Poecilotheria) and discovered they contain isobaric conformers originating from non-enzymatic Asp isomerization. One conformer pair conserved in five of ten species examined, denominated PcaTX-1a and PcaTX-1b, was found to be a 36-residue peptide with a cysteine knot, an amidated C-terminus, and isoAsp33Asp substitution. Although the isomerization of Asp has been implicated in many pathologies, this is the first characterization of Asp isomerization in a toxin and demonstrates the isomerized product's diminished physiological effects. This study establishes the value of a HDMSE approach to toxin screening and characterization.
Collapse
Affiliation(s)
- Stephen R. Johnson
- Carbon Dynamics Institute LLC, Sherman, IL 62684, USA
- Chemistry Department, University of Illinois Springfield, Springfield, IL 62703, USA
| | - Hillary G. Rikli
- College of Liberal Arts & Sciences, University of Illinois Springfield, Springfield, IL 62703, USA;
| |
Collapse
|
19
|
Abstract
Snake and spider venoms have been developed by nature as a defense mechanism against predators or to immobilize their prey by blocking the cardiovascular, respiratory, and/or nervous systems. Consequently, predators are deterred from approaching their prey by painful sensations. At a molecular level, the targeted physiological systems are blocked or stimulated by peptide toxins which, once injected into the body, modulate, though not exclusively, important cell membrane ion channels and receptors. Millions of years of constant evolution have led to the evolvement of complex venom libraries of optimized protein toxins, making them more potent, more selective, resistant to proteases, less immunogenic, and improved in terms of pharmacokinetic (PK) properties. The resulting advantage is that they induce long-term and potent pharmacodynamic (PD) effects toward unique molecular targets of therapeutic importance such as coagulation cascade proteins, receptors, and ionic channels. This optimization process has been enabled by the diversification of peptide sequences (mainly by gene duplication) and an upscaling of the complexity of toxin peptide scaffold structures, through implementation of multiple disulfide bridges and sequence-active motif diversification, leading to a wide diversity of chemical structures. This combination of pharmaceutical properties has made venom toxins valuable both as pharmacological tools and as leads for drug development. These highly tunable molecules can be tailored to achieve desirable biocompatibility and biodegradability with simultaneously selective and potent therapeutic effects. This brief overview provides basic definitions, rules, and methodologies and describes successful examples of a few drugs developed from snake toxins that are currently used in the clinic for therapy of several diseases as well as new molecular entities in clinical development based on spider-venom-derived peptide toxins.
Collapse
|
20
|
Spider Knottin Pharmacology at Voltage-Gated Sodium Channels and Their Potential to Modulate Pain Pathways. Toxins (Basel) 2019; 11:toxins11110626. [PMID: 31671792 PMCID: PMC6891507 DOI: 10.3390/toxins11110626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels (NaVs) are a key determinant of neuronal signalling. Neurotoxins from diverse taxa that selectively activate or inhibit NaV channels have helped unravel the role of NaV channels in diseases, including chronic pain. Spider venoms contain the most diverse array of inhibitor cystine knot (ICK) toxins (knottins). This review provides an overview on how spider knottins modulate NaV channels and describes the structural features and molecular determinants that influence their affinity and subtype selectivity. Genetic and functional evidence support a major involvement of NaV subtypes in various chronic pain conditions. The exquisite inhibitory properties of spider knottins over key NaV subtypes make them the best lead molecules for the development of novel analgesics to treat chronic pain.
Collapse
|
21
|
Evaluation of the Spider ( Phlogiellus genus) Phlotoxin 1 and Synthetic Variants as Antinociceptive Drug Candidates. Toxins (Basel) 2019; 11:toxins11090484. [PMID: 31443554 PMCID: PMC6784069 DOI: 10.3390/toxins11090484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 11/16/2022] Open
Abstract
Over the two last decades, venom toxins have been explored as alternatives to opioids to treat chronic debilitating pain. At present, approximately 20 potential analgesic toxins, mainly from spider venoms, are known to inhibit with high affinity the NaV1.7 subtype of voltage-gated sodium (NaV) channels, the most promising genetically validated antinociceptive target identified so far. The present study aimed to consolidate the development of phlotoxin 1 (PhlTx1), a 34-amino acid and 3-disulfide bridge peptide of a Phlogiellus genus spider, as an antinociceptive agent by improving its affinity and selectivity for the human (h) NaV1.7 subtype. The synthetic homologue of PhlTx1 was generated and equilibrated between two conformers on reverse-phase liquid chromatography and exhibited potent analgesic effects in a mouse model of NaV1.7-mediated pain. The effects of PhlTx1 and 8 successfully synthetized alanine-substituted variants were studied (by automated whole-cell patch-clamp electrophysiology) on cell lines stably overexpressing hNaV subtypes, as well as two cardiac targets, the hCaV1.2 and hKV11.1 subtypes of voltage-gated calcium (CaV) and potassium (KV) channels, respectively. PhlTx1 and D7A-PhlTx1 were shown to inhibit hNaV1.1-1.3 and 1.5-1.7 subtypes at hundred nanomolar concentrations, while their affinities for hNaV1.4 and 1.8, hCaV1.2 and hKV11.1 subtypes were over micromolar concentrations. Despite similar analgesic effects in the mouse model of NaV1.7-mediated pain and selectivity profiles, the affinity of D7A-PhlTx1 for the NaV1.7 subtype was at least five times higher than that of the wild-type peptide. Computational modelling was performed to deduce the 3D-structure of PhlTx1 and to suggest the amino acids involved in the efficiency of the molecule. In conclusion, the present structure-activity relationship study of PhlTx1 results in a low improved affinity of the molecule for the NaV1.7 subtype, but without any marked change in the molecule selectivity against the other studied ion channel subtypes. Further experiments are therefore necessary before considering the development of PhlTx1 or synthetic variants as antinociceptive drug candidates.
Collapse
|
22
|
µ-TRTX-Ca1a: a novel neurotoxin from Cyriopagopus albostriatus with analgesic effects. Acta Pharmacol Sin 2019; 40:859-866. [PMID: 30382183 DOI: 10.1038/s41401-018-0181-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/30/2018] [Indexed: 12/16/2022] Open
Abstract
Human genetic and pharmacological studies have demonstrated that voltage-gated sodium channels (VGSCs) are promising therapeutic targets for the treatment of pain. Spider venom contains many toxins that modulate the activity of VGSCs. To date, only 0.01% of such spider toxins has been explored, and thus there is a great potential for discovery of novel VGSC modulators as useful pharmacological tools or potential therapeutics. In the current study, we identified a novel peptide, µ-TRTX-Ca1a (Ca1a), in the venom of the tarantula Cyriopagopus albostriatus. This peptide consisted of 38 residues, including 6 cysteines, i.e. IFECSISCEIEKEGNGKKCKPKKCKGGWKCKFNICVKV. In HEK293T or ND7/23 cells expressing mammalian VGSCs, this peptide exhibited the strongest inhibitory activity on Nav1.7 (IC50 378 nM), followed by Nav1.6 (IC50 547 nM), Nav1.2 (IC50 728 nM), Nav1.3 (IC50 2.2 µM) and Nav1.4 (IC50 3.2 µM), and produced negligible inhibitory effect on Nav1.5, Nav1.8, and Nav1.9, even at high concentrations of up to 10 µM. Furthermore, this peptide did not significantly affect the activation and inactivation of Nav1.7. Using site-directed mutagenesis of Nav1.7 and Nav1.4, we revealed that its binding site was localized to the DIIS3-S4 linker region involving the D816 and E818 residues. In three different mouse models of pain, pretreatment with Cala (100, 200, 500 µg/kg) dose-dependently suppressed the nociceptive responses induced by formalin, acetic acid or heat. These results suggest that Ca1a is a novel neurotoxin against VGSCs and has a potential to be developed as a novel analgesic.
Collapse
|
23
|
Roa JA, Guevara A, Guevara C, Guevara-Aguirre J. Physician's role in prescribing opioids in developing countries. BMJ Case Rep 2019; 12:12/6/e227072. [PMID: 31160299 DOI: 10.1136/bcr-2018-227072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In developed countries, addressing the growing opioid addiction epidemic is focused on preventive measures, developing better overdose-reversal medications and designing newer strategies to treat addiction. Primary prescribers of the therapeutic use of opioids might play a definite role in the aetiology of the epidemics. Developing countries could be affected by similar issues; however, given that no updated statistics are available, it is possible that their populations undergo problems similar to those for which current data is available. Concerns have arisen regarding synthetic opioid tramadol which, given its fast and potent analgesic effects, low cost and easy availability is widely prescribed. A debate remains as to whether tramadol induces addictive effects like those of stronger analogues such as oxycodone or fentanyl. Here we present a case of tramadol dependence in an Ecuadorian patient and find that substance abuse can occur in normal individuals affected by chronic pain, otherwise treatable with standard methods.
Collapse
Affiliation(s)
- Jorge A Roa
- Department of Diabetes and Endocrinology, College of Medicine, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Alexandra Guevara
- Instituto de Endocrinologia y Metabolismo, IEMYR, Quito, Pichincha, Ecuador
| | - Carolina Guevara
- Instituto de Endocrinologia y Metabolismo, IEMYR, Quito, Pichincha, Ecuador
| | - Jaime Guevara-Aguirre
- Department of Diabetes and Endocrinology, College of Medicine, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador.,Instituto de Endocrinologia y Metabolismo, IEMYR, Quito, Pichincha, Ecuador.,Maastricht University Faculty of Health Medicine and Life Sciences, Maastricht, Limburg, The Netherlands
| |
Collapse
|
24
|
Cardoso FC, Lewis RJ. Structure-Function and Therapeutic Potential of Spider Venom-Derived Cysteine Knot Peptides Targeting Sodium Channels. Front Pharmacol 2019; 10:366. [PMID: 31031623 PMCID: PMC6470632 DOI: 10.3389/fphar.2019.00366] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Spider venom-derived cysteine knot peptides are a mega-diverse class of molecules that exhibit unique pharmacological properties to modulate key membrane protein targets. Voltage-gated sodium channels (NaV) are often targeted by these peptides to allosterically promote opening or closing of the channel by binding to structural domains outside the channel pore. These effects can result in modified pain responses, muscle paralysis, cardiac arrest, priapism, and numbness. Although such effects are often deleterious, subtype selective spider venom peptides are showing potential to treat a range of neurological disorders, including chronic pain and epilepsy. This review examines the structure–activity relationships of cysteine knot peptides from spider venoms that modulate NaV and discusses their potential as leads to novel therapies for neurological disorders.
Collapse
Affiliation(s)
- Fernanda C Cardoso
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
25
|
Gonçalves TC, Benoit E, Kurz M, Lucarain L, Fouconnier S, Combemale S, Jaquillard L, Schombert B, Chambard JM, Boukaiba R, Hessler G, Bohme A, Bialy L, Hourcade S, Béroud R, De Waard M, Servent D, Partiseti M. From identification to functional characterization of cyriotoxin-1a, an antinociceptive toxin from the spider Cyriopagopus schioedtei. Br J Pharmacol 2019; 176:1298-1314. [PMID: 30784059 DOI: 10.1111/bph.14628] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE The NaV 1.7 channel is highly expressed in dorsal root ganglia of the sensory nervous system and plays a central role in the pain signalling process. We investigated a library prepared from original venoms of 117 different animals to identify new selective inhibitors of this target. EXPERIMENTAL APPROACH We used high throughput screening of a large venom collection using automated patch-clamp experiments on human voltage-gated sodium channel subtypes and then in vitro and in vivo electrophysiological experiments to characterize the active peptides that have been purified, sequenced, and chemically synthesized. Analgesic effects were evaluated in vivo in mice models. KEY RESULTS We identified cyriotoxin-1a (CyrTx-1a), a novel peptide isolated from Cyriopagopus schioedtei spider venom, as a candidate for further characterization. This 33 amino acids toxin belongs to the inhibitor cystine knot structural family and inhibits hNaV 1.1-1.3 and 1.6-1.7 channels in the low nanomolar range, compared to the micromolar range for hNaV 1.4-1.5 and 1.8 channels. CyrTx-1a was 920 times more efficient at inhibiting tetrodotoxin (TTX)-sensitive than TTX-resistant sodium currents recorded from adult mouse dorsal root ganglia neurons and in vivo electrophysiological experiments showed that CyrTx-1a was approximately 170 times less efficient than huwentoxin-IV at altering mouse skeletal neuromuscular excitability properties. CyrTx-1a exhibited an analgesic effect in mice by increasing reaction time in the hot-plate assay. CONCLUSIONS AND IMPLICATIONS The pharmacological profile of CyrTx-1a paves the way for further molecular engineering aimed to optimize the potential antinociceptive properties of this peptide.
Collapse
Affiliation(s)
- Tânia C Gonçalves
- Integrated Drug Discovery-High Content Biology, Sanofi R&D, Vitry-sur-Seine, France.,Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Evelyne Benoit
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, Gif-sur-Yvette, France.,Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR CNRS/Université Paris-Sud 9197, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michael Kurz
- Integrated Drug Discovery-Synthetic Molecular Design, Sanofi R&D, Frankfurt, Germany
| | - Laetitia Lucarain
- Integrated Drug Discovery-High Content Biology, Sanofi R&D, Vitry-sur-Seine, France
| | - Sophie Fouconnier
- Integrated Drug Discovery-High Content Biology, Sanofi R&D, Vitry-sur-Seine, France
| | | | | | - Brigitte Schombert
- Integrated Drug Discovery-High Content Biology, Sanofi R&D, Vitry-sur-Seine, France
| | - Jean-Marie Chambard
- Integrated Drug Discovery-High Content Biology, Sanofi R&D, Vitry-sur-Seine, France
| | - Rachid Boukaiba
- Integrated Drug Discovery-High Content Biology, Sanofi R&D, Vitry-sur-Seine, France
| | - Gerhard Hessler
- Integrated Drug Discovery-Synthetic Molecular Design, Sanofi R&D, Frankfurt, Germany
| | - Andrees Bohme
- Integrated Drug Discovery-High Content Biology, Sanofi R&D, Vitry-sur-Seine, France
| | - Laurent Bialy
- Integrated Drug Discovery-Synthetic Molecular Design, Sanofi R&D, Frankfurt, Germany
| | - Stéphane Hourcade
- Neuroscience Therapeutic Area, Neurodegeneration Research, Sanofi R&D, Chilly-Mazarin, France
| | | | - Michel De Waard
- Smartox Biotechnology, Saint-Egrève, France.,Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, LabEx "Ion Channels, Science and Therapeutics", Nantes, France
| | - Denis Servent
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Partiseti
- Integrated Drug Discovery-High Content Biology, Sanofi R&D, Vitry-sur-Seine, France
| |
Collapse
|
26
|
Saez NJ, Herzig V. Versatile spider venom peptides and their medical and agricultural applications. Toxicon 2018; 158:109-126. [PMID: 30543821 DOI: 10.1016/j.toxicon.2018.11.298] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023]
Abstract
Spiders have been evolving complex and diverse repertoires of peptides in their venoms with vast pharmacological activities for more than 300 million years. Spiders use their venoms for prey capture and defense, hence they contain peptides that target both prey (mainly arthropods) and predators (other arthropods or vertebrates). This includes peptides that potently and selectively modulate a range of targets such as ion channels, receptors and signaling pathways involved in physiological processes. The contribution of these targets in particular disease pathophysiologies makes spider venoms a valuable source of peptides with potential therapeutic use. In addition, peptides with insecticidal activities, used for prey capture, can be exploited for the development of novel bioinsecticides for agricultural use. Although we have already reviewed potential applications of spider venom peptides as therapeutics (in 2010) and as bioinsecticides (in 2012), a considerable number of research articles on both topics have been published since, warranting an updated review. Here we explore the most recent research on the use of spider venom peptides for both medical and agricultural applications.
Collapse
Affiliation(s)
- Natalie J Saez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
27
|
Engineering Gain-of-Function Analogues of the Spider Venom Peptide HNTX-I, A Potent Blocker of the hNa V1.7 Sodium Channel. Toxins (Basel) 2018; 10:toxins10090358. [PMID: 30181499 PMCID: PMC6162447 DOI: 10.3390/toxins10090358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 11/17/2022] Open
Abstract
Pain is a medical condition that interferes with normal human life and work and reduces human well-being worldwide. The voltage-gated sodium channel (VGSC) human NaV1.7 (hNaV1.7) is a compelling target that plays a key role in human pain signaling. The 33-residue peptide µ-TRTX-Hhn2b (HNTX-I), a member of NaV-targeting spider toxin (NaSpTx) family 1, has shown negligible activity on mammalian VGSCs, including the hNaV1.7 channel. We engineered analogues of HNTX-I based on sequence conservation in NaSpTx family 1. Substitution of Asn for Ser at position 23 or Asp for His at position 26 conferred potent activity against hNaV1.7. Moreover, multiple site mutations combined together afforded improvements in potency. Ultimately, we generated an analogue E1G⁻N23S⁻D26H⁻L32W with >300-fold improved potency compared with wild-type HNTX-1 on hNaV1.7 (IC50 0.036 ± 0.007 µM). Structural simulation suggested that the charged surface and the hydrophobic surface of the modified peptide are responsible for binding affinity to the hNaV1.7 channel, while variable residues may determine pharmacological specificity. Therefore, this study provides a profile for drug design targeting the hNaV1.7 channel.
Collapse
|
28
|
Structural diversity of arthropod venom toxins. Toxicon 2018; 152:46-56. [DOI: 10.1016/j.toxicon.2018.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/29/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022]
|
29
|
Agwa AJ, Blomster LV, Craik DJ, King GF, Schroeder CI. Efficient Enzymatic Ligation of Inhibitor Cystine Knot Spider Venom Peptides: Using Sortase A To Form Double-Knottins That Probe Voltage-Gated Sodium Channel NaV1.7. Bioconjug Chem 2018; 29:3309-3319. [DOI: 10.1021/acs.bioconjchem.8b00505] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Akello J. Agwa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Linda V. Blomster
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christina I. Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
30
|
Moyer BD, Murray JK, Ligutti J, Andrews K, Favreau P, Jordan JB, Lee JH, Liu D, Long J, Sham K, Shi L, Stöcklin R, Wu B, Yin R, Yu V, Zou A, Biswas K, Miranda LP. Pharmacological characterization of potent and selective NaV1.7 inhibitors engineered from Chilobrachys jingzhao tarantula venom peptide JzTx-V. PLoS One 2018; 13:e0196791. [PMID: 29723257 PMCID: PMC5933747 DOI: 10.1371/journal.pone.0196791] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/19/2018] [Indexed: 11/18/2022] Open
Abstract
Identification of voltage-gated sodium channel NaV1.7 inhibitors for chronic pain therapeutic development is an area of vigorous pursuit. In an effort to identify more potent leads compared to our previously reported GpTx-1 peptide series, electrophysiology screening of fractionated tarantula venom discovered the NaV1.7 inhibitory peptide JzTx-V from the Chinese earth tiger tarantula Chilobrachys jingzhao. The parent peptide displayed nominal selectivity over the skeletal muscle NaV1.4 channel. Attribute-based positional scan analoging identified a key Ile28Glu mutation that improved NaV1.4 selectivity over 100-fold, and further optimization yielded the potent and selective peptide leads AM-8145 and AM-0422. NMR analyses revealed that the Ile28Glu substitution changed peptide conformation, pointing to a structural rationale for the selectivity gains. AM-8145 and AM-0422 as well as GpTx-1 and HwTx-IV competed for ProTx-II binding in HEK293 cells expressing human NaV1.7, suggesting that these NaV1.7 inhibitory peptides interact with a similar binding site. AM-8145 potently blocked native tetrodotoxin-sensitive (TTX-S) channels in mouse dorsal root ganglia (DRG) neurons, exhibited 30- to 120-fold selectivity over other human TTX-S channels and exhibited over 1,000-fold selectivity over other human tetrodotoxin-resistant (TTX-R) channels. Leveraging NaV1.7-NaV1.5 chimeras containing various voltage-sensor and pore regions, AM-8145 mapped to the second voltage-sensor domain of NaV1.7. AM-0422, but not the inactive peptide analog AM-8374, dose-dependently blocked capsaicin-induced DRG neuron action potential firing using a multi-electrode array readout and mechanically-induced C-fiber spiking in a saphenous skin-nerve preparation. Collectively, AM-8145 and AM-0422 represent potent, new engineered NaV1.7 inhibitory peptides derived from the JzTx-V scaffold with improved NaV selectivity and biological activity in blocking action potential firing in both DRG neurons and C-fibers.
Collapse
Affiliation(s)
- Bryan D. Moyer
- Neuroscience, Amgen Discovery Research, Thousand Oaks, California, United States of America
- * E-mail:
| | - Justin K. Murray
- Therapeutic Discovery, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Joseph Ligutti
- Neuroscience, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Kristin Andrews
- Molecular Engineering, Amgen Discovery Research, Cambridge, Massachusetts, United States of America
| | | | - John B. Jordan
- Discovery Attribute Sciences, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Josie H. Lee
- Neuroscience, Amgen Discovery Research, Cambridge, Massachusetts, United States of America
| | - Dong Liu
- Neuroscience, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Jason Long
- Therapeutic Discovery, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Kelvin Sham
- Therapeutic Discovery, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Licheng Shi
- Neuroscience, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Reto Stöcklin
- Atheris Laboratories, CH Bernex, Geneva, Switzerland
| | - Bin Wu
- Therapeutic Discovery, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Ruoyuan Yin
- Neuroscience, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Violeta Yu
- Neuroscience, Amgen Discovery Research, Cambridge, Massachusetts, United States of America
| | - Anruo Zou
- Neuroscience, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Kaustav Biswas
- Therapeutic Discovery, Amgen Discovery Research, Thousand Oaks, California, United States of America
| | - Les P. Miranda
- Therapeutic Discovery, Amgen Discovery Research, Thousand Oaks, California, United States of America
| |
Collapse
|
31
|
Na V 1.7 as a Pharmacogenomic Target for Pain: Moving Toward Precision Medicine. Trends Pharmacol Sci 2018; 39:258-275. [DOI: 10.1016/j.tips.2017.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 01/15/2023]
|
32
|
Wu Y, Ma H, Zhang F, Zhang C, Zou X, Cao Z. Selective Voltage-Gated Sodium Channel Peptide Toxins from Animal Venom: Pharmacological Probes and Analgesic Drug Development. ACS Chem Neurosci 2018; 9:187-197. [PMID: 29161016 DOI: 10.1021/acschemneuro.7b00406] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) play critical roles in action potential generation and propagation. Nav channelopathy as well as pathological sensitization contribute to allodynia and hyperalgesia. Recent evidence has demonstrated the significant roles of Nav subtypes (Nav1.3, 1.7, 1.8, and 1.9) in nociceptive transduction, and therefore these Navs may represent attractive targets for analgesic drug discovery. Animal toxins are structurally diverse peptides that are highly potent yet selective on ion channel subtypes and therefore represent valuable probes to elucidate the structures, gating properties, and cellular functions of ion channels. In this review, we summarize recent advances on peptide toxins from animal venom that selectively target Nav1.3, 1.7, 1.8, and 1.9, along with their potential in analgesic drug discovery.
Collapse
Affiliation(s)
- Ying Wu
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Ma
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Fan Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Chunlei Zhang
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaohan Zou
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Zhengyu Cao
- Jiangsu Provincial Key Laboratory for TCM Evaluation
and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
33
|
Zeng X, Li P, Chen B, Huang J, Lai R, Liu J, Rong M. Selective Closed-State Nav1.7 Blocker JZTX-34 Exhibits Analgesic Effects against Pain. Toxins (Basel) 2018; 10:toxins10020064. [PMID: 29393892 PMCID: PMC5848165 DOI: 10.3390/toxins10020064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022] Open
Abstract
Jingzhaotoxin-34 (JZTX-34) is a selective inhibitor of tetrodotoxin-sensitive (TTX-S) sodium channels. In this study, we found that JZTX-34 selectively acted on Nav1.7 with little effect on other sodium channel subtypes including Nav1.5. If the DIIS3-S4 linker of Nav1.5 is substituted by the correspond linker of Nav1.7, the sensitivity of Nav1.5 to JZTX-34 extremely increases to 1.05 µM. Meanwhile, a mutant D816R in the DIIS3-S4 linker of Nav1.7 decreases binding affinity of Nav1.7 to JZTX-34 about 32-fold. The reverse mutant R800D at the corresponding position in Nav1.5 greatly increased its binding affinity to JZTX-34. This implies that JZTX-34 binds to DIIS3-S4 linker of Nav1.7 and the critical residue of Nav1.7 is D816. Unlike β-scorpion toxin trapping sodium channel in an open state, activity of JZTX-34 requires the sodium channel to be in a resting state. JZTX-34 exhibits an obvious analgesic effect in a rodent pain model. Especially, it shows a longer duration and is more effective than morphine in hot pain models. In a formalin-induced pain model, JZTX-34 at dose of 2 mg/kg is equipotent with morphine (5 mg/kg) in the first phase and several-fold more effective than morphine in second phase. Taken together, our data indicate that JZTX-34 releases pain by selectively binding to the domain II voltage sensor of Nav1.7 in a closed configuration.
Collapse
Affiliation(s)
- Xiongzhi Zeng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Pengpeng Li
- Life Sciences College of Nanjing Agricultural University, 210095, Jiangsu, China.
| | - Bo Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Juan Huang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Ren Lai
- Life Sciences College of Nanjing Agricultural University, 210095, Jiangsu, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, Yunnan, China.
| | - Jingze Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
| | - Mingqiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
34
|
Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: Current status and potential. Bioorg Med Chem 2017; 26:2738-2758. [PMID: 28988749 DOI: 10.1016/j.bmc.2017.09.029] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022]
Abstract
Peptides are recognized as being highly selective, potent and relatively safe as potential therapeutics. Peptides isolated from the venom of different animals satisfy most of these criteria with the possible exception of safety, but when isolated as single compounds and used at appropriate concentrations, venom-derived peptides can become useful drugs. Although the number of venom-derived peptides that have successfully progressed to the clinic is currently limited, the prospects for venom-derived peptides look very optimistic. As proteomic and transcriptomic approaches continue to identify new sequences, the potential of venom-derived peptides to find applications as therapeutics, cosmetics and insecticides grows accordingly.
Collapse
Affiliation(s)
| | - Andrzej Czerwinski
- Peptides International, Inc., 11621 Electron Drive, Louisville, KY 40299, USA
| | - Raymond S Norton
- Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Monash University, Parkville, 3052, Australia
| |
Collapse
|
35
|
Wright ZVF, McCarthy S, Dickman R, Reyes FE, Sanchez-Martinez S, Cryar A, Kilford I, Hall A, Takle AK, Topf M, Gonen T, Thalassinos K, Tabor AB. The Role of Disulfide Bond Replacements in Analogues of the Tarantula Toxin ProTx-II and Their Effects on Inhibition of the Voltage-Gated Sodium Ion Channel Na v1.7. J Am Chem Soc 2017; 139:13063-13075. [PMID: 28880078 PMCID: PMC5618157 DOI: 10.1021/jacs.7b06506] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Spider
venom toxins, such as Protoxin-II (ProTx-II), have recently
received much attention as selective Nav1.7 channel blockers,
with potential to be developed as leads for the treatment of chronic
nocioceptive pain. ProTx-II is a 30-amino acid peptide with three
disulfide bonds that has been reported to adopt a well-defined inhibitory
cystine knot (ICK) scaffold structure. Potential drawbacks with such
peptides include poor pharmacodynamics and potential scrambling of
the disulfide bonds in vivo. In order to address
these issues, in the present study we report the solid-phase synthesis
of lanthionine-bridged analogues of ProTx-II, in which one of the
three disulfide bridges is replaced with a thioether linkage, and
evaluate the biological properties of these analogues. We have also
investigated the folding and disulfide bridging patterns arising from
different methods of oxidation of the linear peptide precursor. Finally,
we report the X-ray crystal structure of ProTx-II to atomic resolution;
to our knowledge this is the first crystal structure of an ICK spider
venom peptide not bound to a substrate.
Collapse
Affiliation(s)
- Zoë V F Wright
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Stephen McCarthy
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Rachael Dickman
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Francis E Reyes
- Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia 20147, United States
| | - Silvia Sanchez-Martinez
- Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia 20147, United States
| | - Adam Cryar
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London , Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London , London WC1E 7HX, United Kingdom
| | - Ian Kilford
- European Knowledge Centre, Eisai Limited , Mosquito Way, Hatfield, Hertfordshire AL10 9SN, United Kingdom
| | - Adrian Hall
- European Knowledge Centre, Eisai Limited , Mosquito Way, Hatfield, Hertfordshire AL10 9SN, United Kingdom
| | - Andrew K Takle
- European Knowledge Centre, Eisai Limited , Mosquito Way, Hatfield, Hertfordshire AL10 9SN, United Kingdom
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London , London WC1E 7HX, United Kingdom
| | - Tamir Gonen
- Janelia Research Campus, Howard Hughes Medical Institute , Ashburn, Virginia 20147, United States
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London , Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London , London WC1E 7HX, United Kingdom
| | - Alethea B Tabor
- Department of Chemistry, University College London , 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
36
|
Bell DC, Dallas ML. Using automated patch clamp electrophysiology platforms in pain-related ion channel research: insights from industry and academia. Br J Pharmacol 2017. [PMID: 28622411 DOI: 10.1111/bph.13916] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Automated patch clamp (APC) technology was first developed at the turn of the millennium. The increased throughput it afforded promised a new paradigm in ion channel recordings, offering the potential to overcome the time-consuming, low-throughput bottleneck, arising from manual patch clamp investigations. This has relevance to the fast-paced development of novel therapies for chronic pain. This review highlights the advances in technology, using select examples that have facilitated APC usage in both industry and academia. It covers both first generation and the latest developments in second-generation platforms. In addition, it also provides an overview of the pain research field and how APC platforms have furthered our understanding of ion channel research and the development of pharmacological tools and therapeutics. APC platforms have much to offer to the ion channel research community, and this review highlights areas of best practice for both academia and industry. The impact of APC platforms and the prospects of ion channel research and improved therapeutics for chronic pain will be evaluated. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
| | - Mark L Dallas
- School of Pharmacy, University of Reading, Reading, UK
| |
Collapse
|
37
|
Wingerd JS, Mozar CA, Ussing CA, Murali SS, Chin YKY, Cristofori-Armstrong B, Durek T, Gilchrist J, Vaughan CW, Bosmans F, Adams DJ, Lewis RJ, Alewood PF, Mobli M, Christie MJ, Rash LD. The tarantula toxin β/δ-TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity. Sci Rep 2017; 7:974. [PMID: 28428547 PMCID: PMC5430537 DOI: 10.1038/s41598-017-01129-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/27/2017] [Indexed: 11/09/2022] Open
Abstract
Voltage-gated sodium (NaV) channels are essential for the transmission of pain signals in humans making them prime targets for the development of new analgesics. Spider venoms are a rich source of peptide modulators useful to study ion channel structure and function. Here we describe β/δ-TRTX-Pre1a, a 35-residue tarantula peptide that selectively interacts with neuronal NaV channels inhibiting peak current of hNaV1.1, rNaV1.2, hNaV1.6, and hNaV1.7 while concurrently inhibiting fast inactivation of hNaV1.1 and rNaV1.3. The DII and DIV S3-S4 loops of NaV channel voltage sensors are important for the interaction of Pre1a with NaV channels but cannot account for its unique subtype selectivity. Through analysis of the binding regions we ascertained that the variability of the S1-S2 loops between NaV channels contributes substantially to the selectivity profile observed for Pre1a, particularly with regards to fast inactivation. A serine residue on the DIV S2 helix was found to be sufficient to explain Pre1a’s potent and selective inhibitory effect on the fast inactivation process of NaV1.1 and 1.3. This work highlights that interactions with both S1-S2 and S3-S4 of NaV channels may be necessary for functional modulation, and that targeting the diverse S1-S2 region within voltage-sensing domains provides an avenue to develop subtype selective tools.
Collapse
Affiliation(s)
- Joshua S Wingerd
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christine A Mozar
- Discipline of Pharmacology, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Christine A Ussing
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.,Novo Nordisk A/S, Copenhagen Area, Capital Region, Denmark
| | - Swetha S Murali
- Discipline of Pharmacology, University of Sydney, Camperdown, NSW, 2006, Australia.,Harvard Medical School, Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, United States
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ben Cristofori-Armstrong
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - John Gilchrist
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Christopher W Vaughan
- Pain Management Research Institute, University of Sydney, St Leonards, NSW, 2006, Australia
| | - Frank Bosmans
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging & School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Macdonald J Christie
- Discipline of Pharmacology, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Lachlan D Rash
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia. .,School of Biomedical Sciences, The University of Queensland, St Lucia, 4072, QLD, Australia.
| |
Collapse
|
38
|
|
39
|
Agwa AJ, Henriques ST, Schroeder CI. Gating modifier toxin interactions with ion channels and lipid bilayers: Is the trimolecular complex real? Neuropharmacology 2017; 127:32-45. [PMID: 28400258 DOI: 10.1016/j.neuropharm.2017.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 11/15/2022]
Abstract
Spider peptide toxins have attracted attention because of their ability to target voltage-gated ion channels, which are involved in several pathologies including chronic pain and some cardiovascular conditions. A class of these peptides acts by modulating the gating mechanism of voltage-gated ion channels and are thus called gating modifier toxins (GMTs). In addition to their interactions with voltage-gated ion channels, some GMTs have affinity for lipid bilayers. This review discusses the potential importance of the cell membrane on the mode of action of GMTs. We propose that peptide-membrane interactions can anchor GMTs at the cell surface, thereby increasing GMT concentration in the vicinity of the channel binding site. We also propose that modulating peptide-membrane interactions might be useful for increasing the therapeutic potential of spider toxins. Furthermore, we explore the advantages and limitations of the methodologies currently used to examine peptide-membrane interactions. Although GMT-lipid membrane binding does not appear to be a requirement for the activity of all GMTs, it is an important feature, and future studies with GMTs should consider the trimolecular peptide-lipid membrane-channel complex. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Akello J Agwa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sónia T Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
40
|
Netirojjanakul C, Miranda LP. Progress and challenges in the optimization of toxin peptides for development as pain therapeutics. Curr Opin Chem Biol 2017; 38:70-79. [PMID: 28376346 DOI: 10.1016/j.cbpa.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/25/2017] [Accepted: 03/13/2017] [Indexed: 02/05/2023]
Abstract
The number of new toxin peptide discoveries has been rapidly growing in the past few decades. Because of progress in proteomics, sequencing technologies, and high throughput bioassays, the search for new toxin peptides from venom collections and potency optimization has become manageable. However, to date, only six toxin peptide-derived therapeutics have been approved by the USFDA, with only one, ziconotide, for a pain indication. The challenge of venom-derived peptide therapeutic development remains in improving selectivity to the target and more importantly, in delivery of these peptides to the sites of action in the central and peripheral nervous system. In this review, we highlight peptide toxins that target major therapeutic targets for pain and discuss the challenges of developing toxin peptides as potential therapeutics.
Collapse
Affiliation(s)
- Chawita Netirojjanakul
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - Les P Miranda
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| |
Collapse
|
41
|
Rahnama S, Deuis JR, Cardoso FC, Ramanujam V, Lewis RJ, Rash LD, King GF, Vetter I, Mobli M. The structure, dynamics and selectivity profile of a NaV1.7 potency-optimised huwentoxin-IV variant. PLoS One 2017; 12:e0173551. [PMID: 28301520 PMCID: PMC5354290 DOI: 10.1371/journal.pone.0173551] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/23/2017] [Indexed: 12/19/2022] Open
Abstract
Venom-derived peptides have attracted much attention as potential lead molecules for pharmaceutical development. A well-known example is Huwentoxin-IV (HwTx-IV), a peptide toxin isolated from the venom of the Chinese bird-eating spider Haplopelma schmitdi. HwTx-IV was identified as a potent blocker of a human voltage-gated sodium channel (hNaV1.7), which is a genetically validated analgesic target. The peptide was promising as it showed high potency at NaV1.7 (IC50 ~26 nM) and selectivity over the cardiac NaV subtype (NaV1.5). Mutagenesis studies aimed at optimising the potency of the peptide resulted in the development of a triple-mutant of HwTx-IV (E1G, E4G, Y33W, m3-HwTx-IV) with significantly increased potency against hNaV1.7 (IC50 = 0.4 ± 0.1 nM) without increased potency against hNaV1.5. The activity of m3-HwTx-IV against other NaV subtypes was, however, not investigated. Similarly, the structure of the mutant peptide was not characterised, limiting the interpretation of the observed increase in potency. In this study we produced isotope-labelled recombinant m3-HwTx-IV in E. coli, which enabled us to characterise the atomic-resolution structure and dynamics of the peptide by NMR spectroscopy. The results show that the structure of the peptide is not perturbed by the mutations, whilst the relaxation studies reveal that residues in the active site of the peptide undergo conformational exchange. Additionally, the NaV subtype selectivity of the recombinant peptide was characterised, revealing potent inhibition of neuronal NaV subtypes 1.1, 1.2, 1.3, 1.6 and 1.7. In parallel to the in vitro studies, we investigated NaV1.7 target engagement of the peptide in vivo using a rodent pain model, where m3-HwTx-IV dose-dependently suppressed spontaneous pain induced by the NaV1.7 activator OD1. Thus, our results provide further insight into the structure and dynamics of this class of peptides that may prove useful in guiding the development of inhibitors with improved selectivity for analgesic NaV subtypes.
Collapse
Affiliation(s)
- Sassan Rahnama
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jennifer R. Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Fernanda C. Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | | | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Lachlan D. Rash
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia
- * E-mail:
| |
Collapse
|
42
|
Israel MR, Tay B, Deuis JR, Vetter I. Sodium Channels and Venom Peptide Pharmacology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 79:67-116. [PMID: 28528674 DOI: 10.1016/bs.apha.2017.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Venomous animals including cone snails, spiders, scorpions, anemones, and snakes have evolved a myriad of components in their venoms that target the opening and/or closing of voltage-gated sodium channels to cause devastating effects on the neuromuscular systems of predators and prey. These venom peptides, through design and serendipity, have not only contributed significantly to our understanding of sodium channel pharmacology and structure, but they also represent some of the most phyla- and isoform-selective molecules that are useful as valuable tool compounds and drug leads. Here, we review our understanding of the basic function of mammalian voltage-gated sodium channel isoforms as well as the pharmacology of venom peptides that act at these key transmembrane proteins.
Collapse
Affiliation(s)
- Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Bryan Tay
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
43
|
Lau CHY, King GF, Mobli M. Molecular basis of the interaction between gating modifier spider toxins and the voltage sensor of voltage-gated ion channels. Sci Rep 2016; 6:34333. [PMID: 27677715 PMCID: PMC5039624 DOI: 10.1038/srep34333] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/12/2016] [Indexed: 01/02/2023] Open
Abstract
Voltage-sensor domains (VSDs) are modular transmembrane domains of voltage-gated ion channels that respond to changes in membrane potential by undergoing conformational changes that are coupled to gating of the ion-conducting pore. Most spider-venom peptides function as gating modifiers by binding to the VSDs of voltage-gated channels and trapping them in a closed or open state. To understand the molecular basis underlying this mode of action, we used nuclear magnetic resonance to delineate the atomic details of the interaction between the VSD of the voltage-gated potassium channel KvAP and the spider-venom peptide VSTx1. Our data reveal that the toxin interacts with residues in an aqueous cleft formed between the extracellular S1-S2 and S3-S4 loops of the VSD whilst maintaining lipid interactions in the gaps formed between the S1-S4 and S2-S3 helices. The resulting network of interactions increases the energetic barrier to the conformational changes required for channel gating, and we propose that this is the mechanism by which gating modifier toxins inhibit voltage-gated ion channels.
Collapse
Affiliation(s)
- Carus H Y Lau
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|