1
|
Folahan JT, Barabutis N. NEK kinases in cell cycle regulation, DNA damage response, and cancer progression. Tissue Cell 2025; 94:102811. [PMID: 40037068 PMCID: PMC11912005 DOI: 10.1016/j.tice.2025.102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
The NIMA-related kinase (NEK) family of serine/threonine kinases is essential for the regulation of cell cycle progression, mitotic spindle assembly, and genomic stability. In this review, we explore the structural and functional diversity of NEK kinases, highlighting their roles in both canonical and non-canonical cellular processes. We examine recent preclinical findings on NEK inhibition, showcasing promising results for NEK-targeted therapies, particularly in cancer types characterized by high NEK expression. We discussed the therapeutic potential of targeting NEKs as modulators of cell cycle and DDR pathways, with a focus on identifying strategies to exploit NEK activity for enhanced treatment efficacy. Future research directions are proposed to further elucidate NEK-mediated mechanisms and to develop selective inhibitors that target NEK-related pathways.
Collapse
Affiliation(s)
- Joy T Folahan
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
2
|
Liu Z, Zhang X, Ben T, Li M, Jin Y, Wang T, Song Y. Focal adhesion in the tumour metastasis: from molecular mechanisms to therapeutic targets. Biomark Res 2025; 13:38. [PMID: 40045379 PMCID: PMC11884212 DOI: 10.1186/s40364-025-00745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
The tumour microenvironment is the "hotbed" of tumour cells, providing abundant extracellular support for growth and metastasis. However, the tumour microenvironment is not static and is constantly remodelled by a variety of cellular components, including tumour cells, through mechanical, biological and chemical means to promote metastasis. Focal adhesion plays an important role in cell-extracellular matrix adhesion. An in-depth exploration of the role of focal adhesion in tumour metastasis, especially their contribution at the biomechanical level, is an important direction of current research. In this review, we first summarize the assembly of focal adhesions and explore their kinetics in tumour cells. Then, we describe in detail the role of focal adhesion in various stages of tumour metastasis, especially its key functions in cell migration, invasion, and matrix remodelling. Finally, we describe the anti-tumour strategies targeting focal adhesion and the current progress in the development of some inhibitors against focal adhesion proteins. In this paper, we summarize for the first time that focal adhesion play a positive feedback role in pro-tumour metastatic matrix remodelling by summarizing the five processes of focal adhesion assembly in a multidimensional way. It is beneficial for researchers to have a deeper understanding of the role of focal adhesion in the biological behaviour of tumour metastasis and the potential of focal adhesion as a therapeutic target, providing new ideas for the prevention and treatment of metastases.
Collapse
Affiliation(s)
- Zonghao Liu
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaofang Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Tianru Ben
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Mo Li
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Yi Jin
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning Province, 110042, People's Republic of China.
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning Province, 116024, P. R. China.
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
| |
Collapse
|
3
|
Zhu Y, Lin J, Li Y, Luo Z. Prognostic value and immune infiltration of the NEK family in clear cell renal cell carcinoma. Medicine (Baltimore) 2024; 103:e38961. [PMID: 39029088 PMCID: PMC11398795 DOI: 10.1097/md.0000000000038961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a fatal urological malignancy. Members of the never-in mitosis gene A (NIMA)-related kinase (NEK) family have been found to participate in the progression of several cancers and could be used as target genes to treat corresponding diseases. Nonetheless, the prognostic value and immune infiltration levels of NEK family genes in ccRCC remain unknown. The GSCA, TIMER, and GEPIA databases were utilized to examine the differential expression of NEK family members in ccRCC, and the Kaplan-Meier plotter was utilized to analyze the prognosis. The STRING database was used to construct a protein-protein interaction network. Analysis of function was performed by the Sangerbox tool. In addition, the relationship between NEK family genes and immune cells was explored using the TIMER and TISIDB databases. Finally, we used quantitative real-time PCR (qPCR) and immunohistochemistry (IHC) for experimental verification. Transcriptional levels of NEK2, NEK3, NEK5, NEK6, and NEK11 significantly differed between ccRCC and normal tissues. Moreover, there was a significant correlation between NEK1, NEK2, NEK4, NEK8, NEK9, and NEK10 and their clinicopathological stages in patients with ccRCC. Based on survival analysis, ccRCC patients with high transcriptional levels of NEK2, NEK3, NEK8, and NEK10 and low transcriptional levels of NEK1, NEK4, NEK5, NEK6, NEK7, NEK9, NEK11 had shorter survival times. Additionally, a significant relationship was observed between NEK family members and immune cell infiltration, immune cell markers, and immune subtypes. These results indicate that NEK family members are significantly differentially expressed in ccRCC, and a significant correlation exists between the NEK family and prognosis and immune infiltration. NEK family members may act as therapeutic targets and prognostic indicators in ccRCC.
Collapse
Affiliation(s)
- Yingli Zhu
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | | | | |
Collapse
|
4
|
Abstract
The pathogenesis of breast cancer is driven by multiple hormones and growth factors. One of these, prolactin (PRL), contributes to both mammary differentiation and oncogenesis, and yet the basis for these disparate effects has remained unclear. The focus of this review is to examine and place into context 2 recent studies that have provided insight into the roles of PRL receptors and PRL in tumorigenesis and tumor progression. One study provides novel evidence for opposing actions of PRL in the breast being mediated in part by differential PRL receptor (PRLr) isoform utilization. Briefly, homomeric complexes of the long isoform of the PRLr (PRLrL-PRLrL) promotes mammary differentiation, while heteromeric complexes of the intermediate and long PRLr (PRLrI-PRLrL) isoforms trigger mammary oncogenesis. Another study describes an immunodeficient, prolactin-humanized mouse model, NSG-Pro, that facilitates growth of PRL receptor-expressing patient-derived breast cancer xenografts. Evidence obtained with this model supports the interactions of physiological levels of PRL with estrogen and ERBB2 gene networks, the modulatory effects of PRL on drug responsiveness, and the pro-metastatic effects of PRL on breast cancer. This recent progress provides novel concepts, mechanisms and experimental models expected to renew interest in harnessing/exploiting PRLr signaling for therapeutic effects in breast cancer.
Collapse
Affiliation(s)
- Charles V Clevenger
- Correspondence: Charles V. Clevenger, Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St, Sanger 4-006A, Richmond, VA, 23298-06629, USA.
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
Kavarthapu R, Dufau ML. Prolactin receptor gene transcriptional control, regulatory modalities relevant to breast cancer resistance and invasiveness. Front Endocrinol (Lausanne) 2022; 13:949396. [PMID: 36187116 PMCID: PMC9520000 DOI: 10.3389/fendo.2022.949396] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
The prolactin receptor (PRLR) is a member of the lactogen/cytokine receptor family, which mediates multiple actions of prolactin (PRL). PRL is a major hormone in the proliferation/differentiation of breast epithelium that is essential for lactation. It is also involved in breast cancer development, tumor growth and chemoresistance. Human PRLR expression is controlled at the transcriptional level by multiple promoters. Each promoter directs transcription/expression of a specific non-coding exon 1, a common non-coding exon 2 and coding exons E3-11. The identification of exon 11 of PRLR led to finding of alternative spliced products and two novel short forms (SF) that can inhibit the long form (LF) of PRLR activity with relevance in physiological regulation and breast cancer. Homo and heterodimers of LF and SF are formed in the absence of PRL that acts as a conformational modifier. Heterodimerization of SF with LF is a major mechanism through which SF inhibits some signaling pathways originating at the LF. Biochemical/molecular modeling approaches demonstrated that the human PRLR conformation stabilized by extracellular intramolecular S-S bonds and several amino acids in the extracellular D1 domain of PRLR SF are required for its inhibitory actions on PRLR LF-mediated functions. Studies in breast cancer cells demonstrated that the transcription of PRLR was directed by the preferentially utilized PIII promoter, which lacks an estrogen responsive element. Complex formation of non-DNA bound ERα dimer with Sp1 and C/EBPβ dimers bound to their sites at the PRLR promoter is required for basal activity. Estradiol induces transcriptional activation/expression of the PRLR gene, and subsequent studies revealed the essential role of autocrine PRL released by breast cancer cells and CDK7 in estradiol-induced PRLR promoter activation and upregulation. Other studies revealed stimulation of the PRLR promoter activity and PRLR LF protein by PRL in the absence of estrogen via the STAT5/phospho-ERα activation loop. Additionally, EGF/ERBB1 can induce the transcription of PRLR independent of estrogen and prolactin. The various regulatory modalities contributing to the upregulation of PRLR provide options for the development of therapeutic approaches to mitigate its participation in breast cancer progression and resistance.
Collapse
Affiliation(s)
| | - Maria L. Dufau
- Section on Molecular Endocrinology, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
In Mitosis You Are Not: The NIMA Family of Kinases in Aspergillus, Yeast, and Mammals. Int J Mol Sci 2022; 23:ijms23074041. [PMID: 35409400 PMCID: PMC8999480 DOI: 10.3390/ijms23074041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
The Never in mitosis gene A (NIMA) family of serine/threonine kinases is a diverse group of protein kinases implicated in a wide variety of cellular processes, including cilia regulation, microtubule dynamics, mitotic processes, cell growth, and DNA damage response. The founding member of this family was initially identified in Aspergillus and was found to play important roles in mitosis and cell division. The yeast family has one member each, Fin1p in fission yeast and Kin3p in budding yeast, also with functions in mitotic processes, but, overall, these are poorly studied kinases. The mammalian family, the main focus of this review, consists of 11 members named Nek1 to Nek11. With the exception of a few members, the functions of the mammalian Neks are poorly understood but appear to be quite diverse. Like the prototypical NIMA, many members appear to play important roles in mitosis and meiosis, but their functions in the cell go well beyond these well-established activities. In this review, we explore the roles of fungal and mammalian NIMA kinases and highlight the most recent findings in the field.
Collapse
|
7
|
Yang M, Guo Y, Guo X, Mao Y, Zhu S, Wang N, Lu D. Analysis of the effect of NEKs on the prognosis of patients with non-small-cell lung carcinoma based on bioinformatics. Sci Rep 2022; 12:1705. [PMID: 35105934 PMCID: PMC8807624 DOI: 10.1038/s41598-022-05728-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
NEKs are proteins that are involved in various cell processes and play important roles in the formation and development of cancer. However, few studies have examined the role of NEKs in the development of non-small-cell lung carcinoma (NSCLC). To address this problem, the Oncomine, UALCAN, and the Human Protein Atlas databases were used to analyze differential NEK expression and its clinicopathological parameters, while the Kaplan-Meier, cBioPortal, GEPIA, and DAVID databases were used to analyze survival, gene mutations, similar genes, and biological enrichments. The rate of NEK family gene mutation was high (> 50%) in patients with NSCLC, in which NEK2/4/6/8/ was overexpressed and significantly correlated with tumor stage and nodal metastasis status. In addition, the high expression of NEK2/3mRNA was significantly associated with poor prognosis in patients with NSCLC, while high expression of NEK1/4/6/7/8/9/10/11mRNA was associated with good prognosis. In summary, these results suggest that NEK2/4/6/8 may be a potential prognostic biomarker for the survival of patients with NSCLC.
Collapse
Affiliation(s)
- Mengxia Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Yikun Guo
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xiaofei Guo
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Yun Mao
- Department of Oncology, The Second Hospital of Hunan University of Chinese Medicine, Changsha, 410005, People's Republic of China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Ningjun Wang
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China.
| | - Dianrong Lu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China.
| |
Collapse
|
8
|
Ramírez-de-Arellano A, Villegas-Pineda JC, Hernández-Silva CD, Pereira-Suárez AL. The Relevant Participation of Prolactin in the Genesis and Progression of Gynecological Cancers. Front Endocrinol (Lausanne) 2021; 12:747810. [PMID: 34745013 PMCID: PMC8566755 DOI: 10.3389/fendo.2021.747810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022] Open
Abstract
Prolactin (PRL) is a hormone produced by the pituitary gland and multiple non-pituitary sites, vital in several physiological processes such as lactation, pregnancy, cell growth, and differentiation. However, PRL is nowadays known to have a strong implication in oncogenic processes, making it essential to delve into the mechanisms governing these actions. PRL and its receptor (PRLR) activate a series of effects such as survival, cellular proliferation, migration, invasion, metastasis, and resistance to treatment, being highly relevant in developing certain types of cancer. Because women produce high levels of PRL, its influence in gynecological cancers is herein reviewed. It is interesting that, other than the 23 kDa PRL, whose mechanism of action is endocrine, other variants of PRL have been observed to be produced by tumoral tissue, acting in a paracrine/autocrine manner. Because many components, including PRL, surround the microenvironment, it is interesting to understand the hormone's modulation in cancer cells. This work aims to review the most important findings regarding the PRL/PRLR axis in cervical, ovarian, and endometrial cancers and its molecular mechanisms to support carcinogenesis.
Collapse
Affiliation(s)
- Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Julio César Villegas-Pineda
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Christian David Hernández-Silva
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Laura Pereira-Suárez
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- *Correspondence: Ana Laura Pereira-Suárez,
| |
Collapse
|
9
|
Zhang Y, Chen W, Zeng W, Lu Z, Zhou X. Biallelic loss of function NEK3 mutations deacetylate α-tubulin and downregulate NUP205 that predispose individuals to cilia-related abnormal cardiac left-right patterning. Cell Death Dis 2020; 11:1005. [PMID: 33230144 PMCID: PMC7684299 DOI: 10.1038/s41419-020-03214-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
Abstract
Defective left–right (LR) organization involving abnormalities in cilia ultrastructure causes laterality disorders including situs inversus (SI) and heterotaxy (Htx) with the prevalence approximately 1/10,000 births. In this study, we describe two unrelated family trios with abnormal cardiac LR patterning. Through whole-exome sequencing (WES), we identified compound heterozygous mutations (c.805-1G >C; p. Ile269GlnfsTer8/c.1117dupA; p.Thr373AsnfsTer19) (c.29T>C; p.Ile10Thr/c.356A>G; p.His119Arg) of NEK3, encoding a NIMA (never in mitosis A)-related kinase, in two affected individuals, respectively. Protein levels of NEK3 were abrogated in Patient-1 with biallelic loss-of function (LoF) NEK3 mutations that causes premature stop codon. Subsequence transcriptome analysis revealed that NNMT (nicotinamide N-methyltransferase) and SIRT2 (sirtuin2) was upregulated by NEK3 knockdown in human retinal pigment epithelial (RPE) cells in vitro, which associates α-tubulin deacetylation by western blot and immunofluorescence. Transmission electron microscopy (TEM) analysis further identified defective ciliary ultrastructure in Patient-1. Furthermore, inner ring components of nuclear pore complex (NPC) including nucleoporin (NUP)205, NUP188, and NUP155 were significantly downregulated in NEK3-silenced cells. In conclusion, we identified biallelic mutations of NEK3 predispose individual to abnormal cardiac left–right patterning via SIRT2-mediated α-tubulin deacetylation and downregulation of inner ring nucleoporins. Our study suggested that NEK3 could be a candidate gene for human ciliopathies.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Assisted Reproduction, and Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China
| | - Weicheng Chen
- Pediatric Cardiovascular Center, Children's Hospital of Fudan University, 201102, Shanghai, China
| | - Weijia Zeng
- School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Zhouping Lu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China
| | - Xiangyu Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 201204, Shanghai, China.
| |
Collapse
|
10
|
van de Kooij B, Creixell P, van Vlimmeren A, Joughin BA, Miller CJ, Haider N, Simpson CD, Linding R, Stambolic V, Turk BE, Yaffe MB. Comprehensive substrate specificity profiling of the human Nek kinome reveals unexpected signaling outputs. eLife 2019; 8:44635. [PMID: 31124786 PMCID: PMC6570481 DOI: 10.7554/elife.44635] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/13/2019] [Indexed: 12/25/2022] Open
Abstract
Human NimA-related kinases (Neks) have multiple mitotic and non-mitotic functions, but few substrates are known. We systematically determined the phosphorylation-site motifs for the entire Nek kinase family, except for Nek11. While all Nek kinases strongly select for hydrophobic residues in the −3 position, the family separates into four distinct groups based on specificity for a serine versus threonine phospho-acceptor, and preference for basic or acidic residues in other positions. Unlike Nek1-Nek9, Nek10 is a dual-specificity kinase that efficiently phosphorylates itself and peptide substrates on serine and tyrosine, and its activity is enhanced by tyrosine auto-phosphorylation. Nek10 dual-specificity depends on residues in the HRD+2 and APE-4 positions that are uncommon in either serine/threonine or tyrosine kinases. Finally, we show that the phosphorylation-site motifs for the mitotic kinases Nek6, Nek7 and Nek9 are essentially identical to that of their upstream activator Plk1, suggesting that Nek6/7/9 function as phospho-motif amplifiers of Plk1 signaling.
Collapse
Affiliation(s)
- Bert van de Kooij
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States.,MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, United States
| | - Pau Creixell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States.,MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, United States
| | - Anne van Vlimmeren
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States.,MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, United States
| | - Brian A Joughin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States.,MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, United States
| | - Chad J Miller
- Department of Pharmacology, Yale School of Medicine, New Haven, United States
| | - Nasir Haider
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Craig D Simpson
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune Linding
- Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vuk Stambolic
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, United States
| | - Michael B Yaffe
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States.,MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, United States.,Department of Surgery, Beth Israel Deaconess Medical Center, Divisions of Acute Care Surgery, Trauma, and Critical Care and Surgical Oncology, Harvard Medical School, Boston, United States
| |
Collapse
|
11
|
Melo-Hanchuk TD, Slepicka PF, Pelegrini AL, Menck CFM, Kobarg J. NEK5 interacts with topoisomerase IIβ and is involved in the DNA damage response induced by etoposide. J Cell Biochem 2019; 120:16853-16866. [PMID: 31090963 DOI: 10.1002/jcb.28943] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
Cells are daily submitted to high levels of DNA lesions that trigger complex pathways and cellular responses by cell cycle arrest, apoptosis, alterations in transcriptional response, and the onset of DNA repair. Members of the NIMA-related kinase (NEK) family have been related to DNA damage response and repair and the first insight about NEK5 in this context is related to its role in centrosome separation resulting in defects in chromosome integrity. Here we investigate the potential correlation between NEK5 and the DNA damage repair index. The effect of NEK5 in double-strand breaks caused by etoposide was accessed by alkaline comet assay and revealed that NEK5-silenced cells are more sensitive to etoposide treatment. Topoisomerase IIβ (TOPIIβ) is a target of etoposide that leads to the production of DNA breaks. We demonstrate that NEK5 interacts with TOPIIβ, and the dynamics of this interaction is evaluated by proximity ligation assay. The complex NEK5/TOPIIβ is formed immediately after etoposide treatment. Taken together, the results of our study reveal that NEK5 depletion increases DNA damage and impairs proper DNA damage response, pointing out NEK5 as a potential kinase contributor to genomic stability.
Collapse
Affiliation(s)
- Talita Diniz Melo-Hanchuk
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Priscila Ferreira Slepicka
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo, Brazil
| | - Alessandra Luiza Pelegrini
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Jörg Kobarg
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
12
|
Bravo A, de Lucio H, Sánchez-Murcia PA, Jiménez-Ruiz A, Petrone PM, Gago F, Cortés Cabrera A. Identification of NEK3 and MOK as novel targets for lithium. Chem Biol Drug Des 2019; 93:965-969. [PMID: 30667602 DOI: 10.1111/cbdd.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/23/2018] [Accepted: 01/09/2019] [Indexed: 11/28/2022]
Abstract
Lithium ion, commonly used as the carbonate salt in the treatment of bipolar disorders, has been identified as an inhibitor of several kinases, including Glycogen Synthase Kinase-3β, for almost 20 years. However, both the exact mechanism of enzymatic inhibition and its apparent specificity for certain metalloenzymes are still a matter of debate. A data-driven hypothesis is presented that accounts for the specificity profile of kinase inhibition by lithium in terms of the presence of a unique protein environment in the magnesium-binding site. This hypothesis has been validated by the discovery of two novel potential targets for lithium, namely NEK3 and MOK, which are related to neuronal function.
Collapse
Affiliation(s)
- Ana Bravo
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Alcalá de Henares, Spain.,Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Héctor de Lucio
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Pedro A Sánchez-Murcia
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Antonio Jiménez-Ruiz
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Paula M Petrone
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Federico Gago
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Alvaro Cortés Cabrera
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al IQM-CSIC, Universidad de Alcalá, Alcalá de Henares, Spain.,Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
13
|
Maziveyi M, Alahari SK. Cell matrix adhesions in cancer: The proteins that form the glue. Oncotarget 2018; 8:48471-48487. [PMID: 28476046 PMCID: PMC5564663 DOI: 10.18632/oncotarget.17265] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/27/2017] [Indexed: 12/28/2022] Open
Abstract
The main purposes of Integrin-mediated cell contacts are to interpret bi-directional signals between the extracellular environment and intracellular proteins, as well as, anchor the cell to a matrix. Many cell adhesion molecules have been discovered with a wide spectrum of responsibilities, including recruiting, activating, elongating, and maintaining. This review will perlustrate some of the key incidences that precede focal adhesion formation. Tyrosine phosphorylation is a key signaling initiation event that leads to the recruitment of multiple proteins to focal adhesion sites. Recruitment and concentration of proteins such as Paxillin and Vinculin to Integrin clutches is necessary for focal adhesion development. The assembled networks are responsible for transmitting signals back and forth from the extracellular matrix (ECM) to Actin and its binding proteins. Cancer cells exhibit highly altered focal adhesion dynamics. This review will highlight some key discoveries in cancer cell adhesion, as well as, identify current gaps in knowledge.
Collapse
Affiliation(s)
- Mazvita Maziveyi
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
14
|
Leehy KA, Truong TH, Mauro LJ, Lange CA. Progesterone receptors (PR) mediate STAT actions: PR and prolactin receptor signaling crosstalk in breast cancer models. J Steroid Biochem Mol Biol 2018; 176:88-93. [PMID: 28442393 PMCID: PMC5653461 DOI: 10.1016/j.jsbmb.2017.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/28/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022]
Abstract
Estrogen is the major mitogenic stimulus of mammary gland development during puberty wherein ER signaling acts to induce abundant PR expression. PR signaling, in contrast, is the primary driver of mammary epithelial cell proliferation in adulthood. The high circulating levels of progesterone during pregnancy signal through PR, inducing expression of the prolactin receptor (PRLR). Cooperation between PR and prolactin (PRL) signaling, via regulation of downstream components in the PRL signaling pathway including JAKs and STATs, facilitates the alveolar morphogenesis observed during pregnancy. Indeed, these pathways are fully integrated via activation of shared signaling pathways (i.e. JAKs, MAPKs) as well as by the convergence of PRs and STATs at target genes relevant to both mammary gland biology and breast cancer progression (i.e. proliferation, stem cell outgrowth, tissue cell type heterogeneity). Thus, rather than a single mediator such as ER, transcription factor cascades (ER>PR>STATs) are responsible for rapid proliferative and developmental programming in the normal mammary gland. It is not surprising that these same mediators typify uncontrolled proliferation in a majority of breast cancers, where ER and PR are most often co-expressed and may cooperate to drive malignant tumor progression. This review will primarily focus on the integration of PR and PRL signaling in breast cancer models and the importance of this cross-talk in cancer progression in the context of mammographic density. Components of these PR/PRL signaling pathways could offer alternative drug targets and logical complements to anti-ER or anti-estrogen-based endocrine therapies.
Collapse
Affiliation(s)
- Katherine A Leehy
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Thu H Truong
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Laura J Mauro
- Department of Animal Sciences, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Carol A Lange
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States.
| |
Collapse
|
15
|
Cao Y, Song J, Chen J, Xiao J, Ni J, Wu C. Overexpression of NEK3 is associated with poor prognosis in patients with gastric cancer. Medicine (Baltimore) 2018; 97:e9630. [PMID: 29504992 PMCID: PMC5779761 DOI: 10.1097/md.0000000000009630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The NIMA-related kinase 3 (NEK3) plays an important role in cell migration, cell proliferation, and cell viability. Recently, NEK3 was reported to enhance the malignancy of breast cancer. However, its role in gastric cancer has not been completely characterized. In this study, we explored the prognostic significance of NEK3 in human gastric cancer. Reverse transcription-polymerase chain reaction and western blot were performed to detect the NEK3 mRNA and protein expression in 6 paired fresh human gastric cancer tissues and surrounding normal tissues. NEK3 levels in gastric cancer and its adjacent normal samples of 168 cases were detected by immunohistochemistry, and the relationships between the NEK3 level and various clinicopathological features were analyzed. NEK3 mRNA and protein were significantly overexpressed in gastric cancer tissues, compared with adjacent normal tissues. Immunohistochemistry staining assay showed the percentage of high NEK3 expression in gastric cancer samples was higher than that in adjacent normal samples. NEK3 overexpression was significantly correlated with pT stage, pathologic TNM stage, lymph node metastasis, and poor prognosis of gastric cancer. Cox multivariate regression analyses suggested that NEK3 was an independent prognostic factor for survival of patients with gastric cancer. The data demonstrate that NEK3 is overexpressed in gastric cancer, which promotes the malignancy of gastric cancer. NEK3 may be as a prognostic biomarker and a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yongfeng Cao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou
- Department of Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jiaye Song
- Department of Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jia Chen
- Department of Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jinzhang Xiao
- Department of Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jingyi Ni
- Department of Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Changping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou
| |
Collapse
|
16
|
Wells CI, Kapadia NR, Couñago RM, Drewry DH. In depth analysis of kinase cross screening data to identify chemical starting points for inhibition of the Nek family of kinases. MEDCHEMCOMM 2018; 9:44-66. [PMID: 30108900 PMCID: PMC6071746 DOI: 10.1039/c7md00510e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/01/2017] [Indexed: 01/11/2023]
Abstract
Potent, selective, and cell active small molecule kinase inhibitors are useful tools to help unravel the complexities of kinase signaling. As the biological functions of individual kinases become better understood, they can become targets of drug discovery efforts. The small molecules used to shed light on function can also then serve as chemical starting points in these drug discovery efforts. The Nek family of kinases has received very little attention, as judged by number of citations in PubMed, yet they appear to play many key roles and have been implicated in disease. Here we present our work to identify high quality chemical starting points that have emerged due to the increased incidence of broad kinome screening. We anticipate that this analysis will allow the community to progress towards the generation of chemical probes and eventually drugs that target members of the Nek family.
Collapse
Affiliation(s)
- C I Wells
- Structural Genomics Consortium , Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , 27599 USA .
| | - N R Kapadia
- Structural Genomics Consortium , Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , 27599 USA .
| | - R M Couñago
- Structural Genomics Consortium , Universidade Estadual de Campinas - UNICAMP , Campinas , SP , 13083 Brazil
| | - D H Drewry
- Structural Genomics Consortium , Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , NC , 27599 USA .
| |
Collapse
|
17
|
Goffin V. Prolactin receptor targeting in breast and prostate cancers: New insights into an old challenge. Pharmacol Ther 2017; 179:111-126. [DOI: 10.1016/j.pharmthera.2017.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Zhang C, Wang X, Li X, Zhao N, Wang Y, Han X, Ci C, Zhang J, Li M, Zhang Y. The landscape of DNA methylation-mediated regulation of long non-coding RNAs in breast cancer. Oncotarget 2017; 8:51134-51150. [PMID: 28881636 PMCID: PMC5584237 DOI: 10.18632/oncotarget.17705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
Although systematic studies have identified a host of long non-coding RNAs (lncRNAs) which are involved in breast cancer, the knowledge about the methyla-tion-mediated dysregulation of those lncRNAs remains limited. Here, we integrated multi-omics data to analyze the methylated alteration of lncRNAs in breast invasive carcinoma (BRCA). We found that lncRNAs showed diverse methylation patterns on promoter regions in BRCA. LncRNAs were divided into two categories and four subcategories based on their promoter methylation patterns and expression levels be-tween tumor and normal samples. Through cis-regulatory analysis and gene ontology network, abnormally methylated lncRNAs were identified to be associated with can-cer regulation, proliferation or expression of transcription factors. Competing endog-enous RNA network and functional enrichment analysis of abnormally methylated lncRNAs showed that lncRNAs with different methylation patterns were involved in several hallmarks and KEGG pathways of cancers significantly. Finally, survival analysis based on mRNA modules in networks revealed that lncRNAs silenced by high methylation were associated with prognosis significantly in BRCA. This study enhances the understanding of aberrantly methylated patterns of lncRNAs and pro-vides a novel insight for identifying cancer biomarkers and potential therapeutic tar-gets in breast cancer.
Collapse
Affiliation(s)
- Chunlong Zhang
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Xinyu Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xuecang Li
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Ning Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150081, China
| | - Yihan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaole Han
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Ce Ci
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jian Zhang
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Meng Li
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|