1
|
Ding R, Zhuang Z, Qiu Y, Wang X, Wu J, Zhou S, Ruan D, Xu C, Hong L, Gu T, Zheng E, Cai G, Huang W, Wu Z, Yang J. A composite strategy of genome-wide association study and copy number variation analysis for carcass traits in a Duroc pig population. BMC Genomics 2022; 23:590. [PMID: 35964005 PMCID: PMC9375371 DOI: 10.1186/s12864-022-08804-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Carcass traits are important in pig breeding programs for improving pork production. Understanding the genetic variants underlies complex phenotypes can help explain trait variation in pigs. In this study, we integrated a weighted single-step genome-wide association study (wssGWAS) and copy number variation (CNV) analyses to map genetic variations and genes associated with loin muscle area (LMA), loin muscle depth (LMD) and lean meat percentage (LMP) in Duroc pigs. RESULTS Firstly, we performed a genome-wide analysis for CNV detection using GeneSeek Porcine SNP50 Bead chip data of 3770 pigs. A total of 11,100 CNVs were detected, which were aggregated by overlapping 695 CNV regions (CNVRs). Next, we investigated CNVs of pigs from the same population by whole-genome resequencing. A genome-wide analysis of 21 pigs revealed 23,856 CNVRs that were further divided into three categories (851 gain, 22,279 loss, and 726 mixed), which covered 190.8 Mb (~ 8.42%) of the pig autosomal genome. Further, the identified CNVRs were used to determine an overall validation rate of 68.5% for the CNV detection accuracy of chip data. CNVR association analyses identified one CNVR associated with LMA, one with LMD and eight with LMP after applying stringent Bonferroni correction. The wssGWAS identified eight, six and five regions explaining more than 1% of the additive genetic variance for LMA, LMD and LMP, respectively. The CNVR analyses and wssGWAS identified five common regions, of which three regions were associated with LMA and two with LMP. Four genes (DOK7, ARAP1, ELMO2 and SLC13A3) were highlighted as promising candidates according to their function. CONCLUSIONS We determined an overall validation rate for the CNV detection accuracy of low-density chip data and constructed a genomic CNV map for Duroc pigs using resequencing, thereby proving a value genetic variation resource for pig genome research. Furthermore, our study utilized a composite genetic strategy for complex traits in pigs, which will contribute to the study for elucidating the genetic architecture that may be influenced and regulated by multiple forms of variations.
Collapse
Affiliation(s)
- Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Guangdong Wens Breeding Swine Technology Co., Ltd, Guangdong, 527439, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Xingwang Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Cineng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Linjun Hong
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Ting Gu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China.,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China. .,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, 510642, P.R. China. .,Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Boger M, Bennewitz K, Wohlfart DP, Hausser I, Sticht C, Poschet G, Kroll J. Comparative Morphological, Metabolic and Transcriptome Analyses in elmo1−/−, elmo2−/−, and elmo3−/− Zebrafish Mutants Identified a Functional Non-Redundancy of the Elmo Proteins. Front Cell Dev Biol 2022; 10:918529. [PMID: 35874819 PMCID: PMC9304559 DOI: 10.3389/fcell.2022.918529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The ELMO protein family consists of the homologues ELMO1, ELMO2 and ELMO3. Several studies have shown that the individual ELMO proteins are involved in a variety of cellular and developmental processes. However, it has poorly been understood whether the Elmo proteins show similar functions and act redundantly. To address this question, elmo1−/−, elmo2−/− and elmo3−/− zebrafish were generated and a comprehensive comparison of the phenotypic changes in organ morphology, transcriptome and metabolome was performed in these mutants. The results showed decreased fasting and increased postprandial blood glucose levels in adult elmo1−/−, as well as a decreased vascular formation in the adult retina in elmo1−/−, but an increased vascular formation in the adult elmo3−/− retina. The phenotypical comparison provided few similarities, as increased Bowman space areas in adult elmo1−/− and elmo2−/− kidneys, an increased hyaloid vessel diameter in elmo1−/− and elmo3−/− and a transcriptional downregulation of the vascular development in elmo1−/−, elmo2−/−, and elmo3−/− zebrafish larvae. Besides this, elmo1−/−, elmo2−/−, and elmo3−/− zebrafish exhibited several distinct changes in the vascular and glomerular structure and in the metabolome and the transcriptome. Especially, elmo3−/− zebrafish showed extensive differences in the larval transcriptome and an impaired survivability. Together, the data demonstrated that the three zebrafish Elmo proteins regulate not only similar but also divergent biological processes and mechanisms and show a low functional redundancy.
Collapse
Affiliation(s)
- Mike Boger
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - David Philipp Wohlfart
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ingrid Hausser
- Institute of Pathology IPH, EM Lab, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- *Correspondence: Jens Kroll,
| |
Collapse
|
3
|
Stefanowicz M, Nikołajuk A, Matulewicz N, Strączkowski M, Karczewska-Kupczewska M. Skeletal muscle RUNX1 is related to insulin sensitivity through its effect on myogenic potential. Eur J Endocrinol 2022; 187:143-157. [PMID: 35521787 DOI: 10.1530/eje-21-0776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 05/04/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Skeletal muscle is the major site of insulin action. There are limited data on the relationship between insulin action and skeletal muscle myogenic/regenerative potential. RUNX1 is a transcription factor which plays a role in muscle development and regeneration. The aim of our study was to assess the role of skeletal muscle myogenic/regenerative potential in the development of insulin resistance through the studies on RUNX1 transcription factor. DESIGN This study is a cross-sectional study. Experimental part with myoblast cell line culture. METHODS We examined 41 young healthy volunteers, 21 normal weight and 20 with overweight or obesity. Hyperinsulinemic-euglycemic clamp and vastus lateralis muscle biopsy were performed. In L6 myoblast and human skeletal muscle myoblasts (hSkMM) cell cultures, RUNX1 was silenced at two stages of development. Cell growth, the expression of markers of myogenesis, nuclei fusion index, Akt phosphorylation and glucose uptake were measured. RESULTS Skeletal muscle RUNX1 expression was decreased in overweight/obese individuals in comparison with normal-weight individuals and was positively related to insulin sensitivity, independently of BMI. Runx1 loss-of-function at the stage of myoblast inhibited myoblast proliferation and differentiation and reduced insulin-stimulated Akt phosphorylation and insulin-stimulated glucose uptake. In contrast, Runx1 knockdown in myotubes did not affect Akt phosphorylation, glucose uptake and other parameters studied. CONCLUSIONS Myogenic/regenerative potential of adult skeletal muscle may be an important determinant of insulin action. Our data suggest that muscle RUNX1 may play a role in the modulation of insulin action through its effect on myogenesis.
Collapse
Affiliation(s)
- Magdalena Stefanowicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Agnieszka Nikołajuk
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Natalia Matulewicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Marek Strączkowski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | |
Collapse
|
4
|
Gendaszewska-Darmach E, Garstka MA, Błażewska KM. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. J Med Chem 2021; 64:9677-9710. [PMID: 34236862 PMCID: PMC8389838 DOI: 10.1021/acs.jmedchem.1c00410] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
A fundamental role
of pancreatic β-cells to maintain proper
blood glucose level is controlled by the Ras superfamily of small
GTPases that undergo post-translational modifications, including prenylation.
This covalent attachment with either a farnesyl or a geranylgeranyl
group controls their localization, activity, and protein–protein
interactions. Small GTPases are critical in maintaining glucose homeostasis
acting in the pancreas and metabolically active tissues such as skeletal
muscles, liver, or adipocytes. Hyperglycemia-induced upregulation
of small GTPases suggests that inhibition of these pathways deserves
to be considered as a potential therapeutic approach in treating T2D.
This Perspective presents how inhibition of various points in the
mevalonate pathway might affect protein prenylation and functioning
of diabetes-affected tissues and contribute to chronic inflammation
involved in diabetes mellitus (T2D) development. We also demonstrate
the currently available molecular tools to decipher the mechanisms
linking the mevalonate pathway’s enzymes and GTPases with diabetes.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Malgorzata A Garstka
- Core Research Laboratory, Department of Endocrinology, Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, DaMingGong, Jian Qiang Road, Wei Yang district, Xi'an 710016, China
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
5
|
Pilli T, Cardinale S, Cantara S, Dalmazio G, Forleo R, Capezzone M, Bassi C, Negrini M, Ferracin M, Castagna MG. Preliminary results from whole-genome expression analysis in patients with secondary adrenal insufficiency treated with modified-release hydrocortisone. Endocrine 2021; 73:177-185. [PMID: 33417142 DOI: 10.1007/s12020-020-02578-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/26/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Conventional (CONV) treatment of adrenal insufficiency (AI) is associated with risk of overtreatment: glyco-metabolic impairment, bone loss, and reduced quality of life. Recent findings suggest that modified-release hydrocortisone (MOD) may restore a more physiological cortisol profile. Our aims were: (1) to compare the gene expression profile of peripheral blood mononuclear cells derived from patients, with secondary AI (SAI), under CONV (cortisone acetate or hydrocortisone) or MOD versus healthy controls; and (2) to evaluate MOD effects on serum cortisol profile, glucose, lipid, bone, and clinical parameters. METHODS Thirteen patients with SAI were switched from CONV to MOD at equivalent dose. Area under curve (AUC) of both formulations was calculated in six patients. Clinical, metabolic and bone parameters were measured at baseline and 3 months after MOD in all patients. In six patients and six age- and sex-matched healthy controls, a whole-genome expression analysis was performed at baseline, 1 month, and 3 months after MOD. RESULTS (1) The number of genes differentially expressed (n = 235; mainly involved in immune response and metabolism) in SAI patients compared to controls progressively and significantly decreased switching from CONV to MOD (n = 78 at 3 months). (2) Under MOD: AUC of cortisol exposure tended to be smaller and cortisol levels showed a more physiological profile; no significant changes of clinical, metabolic and bone parameters were observed, likely due to the short follow-up, but triglycerides tended slightly to increase. CONCLUSIONS MOD may restore a normal gene expression profile as soon as 1 month after switching from CONV.
Collapse
Affiliation(s)
- Tania Pilli
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Sandro Cardinale
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Silvia Cantara
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Gilda Dalmazio
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Raffaella Forleo
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Marco Capezzone
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Cristian Bassi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Grazia Castagna
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy.
| |
Collapse
|
6
|
Liu Z, Zhu H, He C, He T, Pan S, Zhao N, Zhu L, Guan G, Liu P, Zhang Y, Wang J. Nicorandil attenuates high glucose-induced insulin resistance by suppressing oxidative stress-mediated ER stress PERK signaling pathway. BMJ Open Diabetes Res Care 2021; 9:9/1/e001884. [PMID: 33888540 PMCID: PMC8070885 DOI: 10.1136/bmjdrc-2020-001884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/03/2021] [Accepted: 03/28/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Glucose-induced insulin resistance is a typical character of diabetes. Nicorandil is now widely used in ischemic heart disease. Nicorandil shows protective effects against oxidative and endoplasmic reticulum (ER) stress, which are involved in insulin resistance. Here, we investigated mechanisms of nicorandil's novel pharmacological activity on insulin resistance in diabetes. RESEARCH DESIGN AND METHODS Nicorandil was administrated to streptozotocin-induced animals with diabetes and high glucose exposed skeletal muscle cells. Insulin resistance and glucose tolerance were evaluated. Molecular mechanisms concerning oxidative stress, ER stress signaling activation and glucose uptake were assessed. RESULTS Nicorandil attenuated high glucose-induced insulin resistance without affecting fasting blood glucose and glucose tolerance in whole body and skeletal muscle in rats with diabetes. Nicorandil treatment suppressed protein kinase C/nicotinamide adenine dinucleotide phosphate oxidases system activities by reducing cytoplasmic free calcium level in skeletal muscle cells exposed to high glucose. As a result, the oxidative stress-mediated ER stress protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2α/activating transcription factor 4/CEBP homologous protein/tribbles homolog (TRB)3 signaling pathway activation was inhibited. Nicorandil downregulated expression of TRB3 and thus facilitated Akt phosphorylation in response to insulin stimulation, leading to glucose transporter4 plasma membrane translocation which promoted glucose uptake capability of skeletal muscle cells. CONCLUSIONS By reducing cytoplasmic calcium, nicorandil alleviated high glucose-induced insulin resistance by inhibiting oxidative stress-mediated ER stress PERK pathway.
Collapse
Affiliation(s)
- Zhongwei Liu
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, China
| | - Haitao Zhu
- Department of Pediatrics, Northwest Women's and Children's Hospital, Xi'an, China
| | - Chunhui He
- Department of Cardiology, Fuwai Hospital State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Ting He
- Department of Cardiology, Fuwai Hospital State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Shuo Pan
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, China
| | - Na Zhao
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, China
| | - Ling Zhu
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, China
| | - Gongchang Guan
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, China
| | - Peng Liu
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, China
| | - Yong Zhang
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, China
| | - Junkui Wang
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
7
|
Comparative gene expression analysis of the engulfment and cell motility (ELMO) protein family in the mouse brain. Gene Expr Patterns 2019; 34:119070. [PMID: 31521773 DOI: 10.1016/j.gep.2019.119070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 11/20/2022]
Abstract
Engulfment and cell motility (ELMO) proteins bind to Dock180, a guanine nucleotide exchange factor (GEF) of the Rac family, and regulate GEF activity. The resultant ELMO/Dock180/Rac module regulates cytoskeletal reorganization responsible for the engulfment of apoptotic cells, cell migration, and neurite extension. The expression and function of Elmo family proteins in the nervous system, however, are not yet fully understood. Here, we characterize the comparative gene expression profiles of three Elmo family members (Elmo1, Elmo2, and Elmo3) in the brain of C57BL/6J mice, a widely used inbred strain, together with reeler mutant mice to understand gene expression in normal laminated brain areas compared with abnormal areas. Although all three Elmo genes showed widespread mRNA expression over various mouse tissues tested, Elmo1 and Elmo2 were the major types expressed in the brain, and three Elmo genes were up-regulated between the first postnatal week (infant stage) and the third postnatal week (juvenile, weaning stage). In addition, the mRNAs of Elmo genes showed distinct distribution patterns in various brain areas and cell-types; such as neurons including inhibitory interneurons as well as some non-neuronal cells. In the cerebral cortex, the three Elmo genes were widely expressed over many cortical regions, but the predominant areas of Elmo1 and Elmo2 expression tended to be distributed unevenly in the deep (a lower part of the VI) and superficial (II/III) layers, respectively, which also changed depending on the cortical areas and postnatal stages. In the dentate gyrus of the hippocampus, Elmo2 was expressed in dentate granule cells more in the mature stage rather than the immature-differentiating stage. In the thalamus, Elmo1 but not the other members was highly expressed in many nuclei. In the medial habenula, Elmo2 and Elmo3 were expressed at intermediate levels. In the cerebellar cortex, Elmo1 and Elmo2 were expressed in differentiating-mature granule cells and mature granule cells, respectively. In the Purkinje cell layer, Elmo1 and Elmo2 were expressed in Purkinje cells and Bergmann glia, respectively. Disturbed cellular distributions and laminar structures caused by the reeler mutation did not severely change expression in these cell types despite the disturbed cellular distributions and laminar structures, including those of the cerebrum, hippocampus, and cerebellum. Taken together, these results suggested that these three Elmo family members share their functional roles in various brain regions during prenatal-postnatal development.
Collapse
|
8
|
Xu X, Jin T. ELMO proteins transduce G protein-coupled receptor signal to control reorganization of actin cytoskeleton in chemotaxis of eukaryotic cells. Small GTPases 2017. [PMID: 28641070 PMCID: PMC6548286 DOI: 10.1080/21541248.2017.1318816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chemotaxis, which is chemoattractant-guided directional cell migration, plays major roles in recruitment of neutrophils, the metastasis of cancer cells, and the development of the model organism Dictyostelium discoideum. These cells share remarkable similarities in the signaling pathways by which they control chemotaxis. They all use a G protein-coupled receptor (GPCR)-mediated signal transduction pathway to sense the chemotactic gradient to guide cell migration. Diverse chemokines activate Rac through conserved GPCR signaling pathways. ELMO proteins are an evolutionarily conserved, essential component of the ELMO/Dock complex, which functions as a guanine nucleotide exchange factor (GEF) for small G protein Rac activation. The linkages between the GPCR-initiated gradient sensing compass and the Rac-mediated migrating machinery have long been missing. Here, we summarize recent findings on ELMO proteins that directly interact with G protein and transduce GPCR signaling to control the reorganization of actin-based cytoskeleton through regulating Rac activation during chemotaxis, first in D. discoideum and then in mammalian cancer cells. This represents an evolutionarily conserved signaling shortcut from GPCR to the actin cytoskeleton.
Collapse
Affiliation(s)
- Xuehua Xu
- a Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Rockville , MD , USA
| | - Tian Jin
- a Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Rockville , MD , USA
| |
Collapse
|
9
|
Jaldin-Fincati JR, Pavarotti M, Frendo-Cumbo S, Bilan PJ, Klip A. Update on GLUT4 Vesicle Traffic: A Cornerstone of Insulin Action. Trends Endocrinol Metab 2017; 28:597-611. [PMID: 28602209 DOI: 10.1016/j.tem.2017.05.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
Glucose transport is rate limiting for dietary glucose utilization by muscle and fat. The glucose transporter GLUT4 is dynamically sorted and retained intracellularly and redistributes to the plasma membrane (PM) by insulin-regulated vesicular traffic, or 'GLUT4 translocation'. Here we emphasize recent findings in GLUT4 translocation research. The application of total internal reflection fluorescence microscopy (TIRFM) has increased our understanding of insulin-regulated events beneath the PM, such as vesicle tethering and membrane fusion. We describe recent findings on Akt-targeted Rab GTPase-activating proteins (GAPs) (TBC1D1, TBC1D4, TBC1D13) and downstream Rab GTPases (Rab8a, Rab10, Rab13, Rab14, and their effectors) along with the input of Rac1 and actin filaments, molecular motors [myosinVa (MyoVa), myosin1c (Myo1c), myosinIIA (MyoIIA)], and membrane fusion regulators (syntaxin4, munc18c, Doc2b). Collectively these findings reveal novel events in insulin-regulated GLUT4 traffic.
Collapse
Affiliation(s)
| | - Martin Pavarotti
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada; IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza 5500, Argentina
| | - Scott Frendo-Cumbo
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5J 2L4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|