1
|
Xian W, Tang Z, Zhang Q, Wang Y, Liu X. An Emerging Way for Bacteria to Engage with Host Cells via Protein ADP-riboxanation. Toxins (Basel) 2024; 16:467. [PMID: 39591223 PMCID: PMC11598138 DOI: 10.3390/toxins16110467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
Post-translational modifications (PTMs) are increasingly recognized as important strategies used by bacterial pathogens to modulate host cellular functions. Protein ADP-riboxanation, a derivative of ADP-ribosylation, has recently emerged as a new biochemical way by which bacterial pathogens interact with host cells. Recent studies have revealed that this modification has broad regulatory roles in host processes including cell death, protein translation, and stress granule formation. Given that the vast majority of bacterial ADP-riboxanases are still uncharacterized, in this review we also highlight the utility of advanced proteomic tools in the functional dissection of ADP-riboxanation events during bacterial infections.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (W.X.); (Z.T.); (Q.Z.); (Y.W.)
| |
Collapse
|
2
|
Mellouk N, Lensen A, Lopez-Montero N, Gil M, Valenzuela C, Klinkert K, Moneron G, Swistak L, DiGregorio D, Echard A, Enninga J. Post-translational targeting of Rab35 by the effector IcsB of Shigella determines intracellular bacterial niche formation. Cell Rep 2024; 43:114034. [PMID: 38568808 DOI: 10.1016/j.celrep.2024.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 11/12/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
Escape from the bacterial-containing vacuole (BCV) is a key step of Shigella host cell invasion. Rab GTPases subverted to in situ-formed macropinosomes in the vicinity of the BCV have been shown to promote its rupture. The involvement of the BCV itself has remained unclear. We demonstrate that Rab35 is non-canonically entrapped at the BCV. Stimulated emission depletion imaging localizes Rab35 directly on the BCV membranes before vacuolar rupture. The bacterial effector IcsB, a lysine Nε-fatty acylase, is a key regulator of Rab35-BCV recruitment, and we show post-translational acylation of Rab35 by IcsB in its polybasic region. While Rab35 and IcsB are dispensable for the first step of BCV breakage, they are needed for the unwrapping of damaged BCV remnants from Shigella. This provides a framework for understanding Shigella invasion implicating re-localization of a Rab GTPase via its bacteria-dependent post-translational modification to support the mechanical unpeeling of the BCV.
Collapse
Affiliation(s)
- Nora Mellouk
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, 75015 Paris, France.
| | - Arthur Lensen
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, 75015 Paris, France
| | - Noelia Lopez-Montero
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, 75015 Paris, France
| | - Magdalena Gil
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, 75015 Paris, France
| | - Camila Valenzuela
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, 75015 Paris, France
| | - Kerstin Klinkert
- Institut Pasteur, Université de Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 75015 Paris, France
| | - Gael Moneron
- Institut Pasteur, CNRS UMR3571, Synapse and Circuit Dynamics Unit, 75015 Paris, France
| | - Léa Swistak
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, 75015 Paris, France
| | - David DiGregorio
- Institut Pasteur, CNRS UMR3571, Synapse and Circuit Dynamics Unit, 75015 Paris, France
| | - Arnaud Echard
- Institut Pasteur, Université de Paris Cité, CNRS UMR3691, Membrane Traffic and Cell Division Unit, 75015 Paris, France
| | - Jost Enninga
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Dynamics of Host-Pathogen Interactions Unit, 75015 Paris, France.
| |
Collapse
|
3
|
Nandi I, Aroeti B. Mitogen-Activated Protein Kinases (MAPKs) and Enteric Bacterial Pathogens: A Complex Interplay. Int J Mol Sci 2023; 24:11905. [PMID: 37569283 PMCID: PMC10419152 DOI: 10.3390/ijms241511905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Diverse extracellular and intracellular cues activate mammalian mitogen-activated protein kinases (MAPKs). Canonically, the activation starts at cell surface receptors and continues via intracellular MAPK components, acting in the host cell nucleus as activators of transcriptional programs to regulate various cellular activities, including proinflammatory responses against bacterial pathogens. For instance, binding host pattern recognition receptors (PRRs) on the surface of intestinal epithelial cells to bacterial pathogen external components trigger the MAPK/NF-κB signaling cascade, eliciting cytokine production. This results in an innate immune response that can eliminate the bacterial pathogen. However, enteric bacterial pathogens evolved sophisticated mechanisms that interfere with such a response by delivering virulent proteins, termed effectors, and toxins into the host cells. These proteins act in numerous ways to inactivate or activate critical components of the MAPK signaling cascades and innate immunity. The consequence of such activities could lead to successful bacterial colonization, dissemination, and pathogenicity. This article will review enteric bacterial pathogens' strategies to modulate MAPKs and host responses. It will also discuss findings attempting to develop anti-microbial treatments by targeting MAPKs.
Collapse
Affiliation(s)
| | - Benjamin Aroeti
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190410, Israel;
| |
Collapse
|
4
|
Rolando M, Silvestre CD, Gomez-Valero L, Buchrieser C. Bacterial methyltransferases: from targeting bacterial genomes to host epigenetics. MICROLIFE 2022; 3:uqac014. [PMID: 37223361 PMCID: PMC10117894 DOI: 10.1093/femsml/uqac014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 05/25/2023]
Abstract
Methyltransferase (MTases) enzymes transfer methyl groups particularly on proteins and nucleotides, thereby participating in controlling the epigenetic information in both prokaryotes and eukaryotes. The concept of epigenetic regulation by DNA methylation has been extensively described for eukaryotes. However, recent studies have extended this concept to bacteria showing that DNA methylation can also exert epigenetic control on bacterial phenotypes. Indeed, the addition of epigenetic information to nucleotide sequences confers adaptive traits including virulence-related characteristics to bacterial cells. In eukaryotes, an additional layer of epigenetic regulation is obtained by post-translational modifications of histone proteins. Interestingly, in the last decades it was shown that bacterial MTases, besides playing an important role in epigenetic regulations at the microbe level by exerting an epigenetic control on their own gene expression, are also important players in host-microbe interactions. Indeed, secreted nucleomodulins, bacterial effectors that target the nucleus of infected cells, have been shown to directly modify the epigenetic landscape of the host. A subclass of nucleomodulins encodes MTase activities, targeting both host DNA and histone proteins, leading to important transcriptional changes in the host cell. In this review, we will focus on lysine and arginine MTases of bacteria and their hosts. The identification and characterization of these enzymes will help to fight bacterial pathogens as they may emerge as promising targets for the development of novel epigenetic inhibitors in both bacteria and the host cells they infect.
Collapse
Affiliation(s)
- Monica Rolando
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 28, Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Cristina Di Silvestre
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 28, Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Laura Gomez-Valero
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 28, Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 28, Rue du Dr. Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
5
|
Nasser A, Mosadegh M, Azimi T, Shariati A. Molecular mechanisms of Shigella effector proteins: a common pathogen among diarrheic pediatric population. Mol Cell Pediatr 2022; 9:12. [PMID: 35718793 PMCID: PMC9207015 DOI: 10.1186/s40348-022-00145-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
Different gastrointestinal pathogens cause diarrhea which is a very common problem in children aged under 5 years. Among bacterial pathogens, Shigella is one of the main causes of diarrhea among children, and it accounts for approximately 11% of all deaths among children aged under 5 years. The case-fatality rates for Shigella among the infants and children aged 1 to 4 years are 13.9% and 9.4%, respectively. Shigella uses unique effector proteins to modulate intracellular pathways. Shigella cannot invade epithelial cells on the apical site; therefore, it needs to pass epithelium through other cells rather than the epithelial cell. After passing epithelium, macrophage swallows Shigella, and the latter should prepare itself to exhibit at least two types of responses: (I) escaping phagocyte and (II) mediating invasion of and injury to the recurrent PMN. The presence of PMN and invitation to a greater degree resulted in gut membrane injuries and greater bacterial penetration. Infiltration of Shigella to the basolateral space mediates (A) cell attachment, (B) cell entry, (C) evasion of autophagy recognition, (D) vacuole formation and and vacuole rapture, (E) intracellular life, (F) Shiga toxin, and (G) immune response. In this review, an attempt is made to explain the role of each factor in Shigella infection.
Collapse
Affiliation(s)
- Ahmad Nasser
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aref Shariati
- Molecular and medicine research center, Khomein University of Medical Sciences, Khomein, Iran
| |
Collapse
|
6
|
Stévenin V, Neefjes J. Control of host PTMs by intracellular bacteria: An opportunity toward novel anti-infective agents. Cell Chem Biol 2022; 29:741-756. [PMID: 35512694 DOI: 10.1016/j.chembiol.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 04/15/2022] [Indexed: 02/08/2023]
Abstract
Intracellular bacteria have developed a multitude of mechanisms to influence the post-translational modifications (PTMs) of host proteins to pathogen advantages. The recent explosion of insights into the diversity and sophistication of host PTMs and their manipulation by infectious agents challenges us to formulate a comprehensive vision of this complex and dynamic facet of the host-pathogen interaction landscape. As new discoveries continue to shed light on the central roles of PTMs in infectious diseases, technological advances foster our capacity to detect old and new PTMs and investigate their control and impact during pathogenesis, opening new possibilities for chemical intervention and infection treatment. Here, we present a comprehensive overview of these pathogenic mechanisms and offer perspectives on how these insights may contribute to the development of a new class of therapeutics that are urgently needed to face rising antibiotic resistances.
Collapse
Affiliation(s)
- Virginie Stévenin
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center (LUMC), Leiden 2333 ZC, the Netherlands.
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center (LUMC), Leiden 2333 ZC, the Netherlands
| |
Collapse
|
7
|
Woida PJ, Satchell KJF. Bacterial Toxin and Effector Regulation of Intestinal Immune Signaling. Front Cell Dev Biol 2022; 10:837691. [PMID: 35252199 PMCID: PMC8888934 DOI: 10.3389/fcell.2022.837691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
The host immune response is highly effective to detect and clear infecting bacterial pathogens. Given the elaborate surveillance systems of the host, it is evident that in order to productively infect a host, the bacteria often coordinate virulence factors to fine-tune the host response during infection. These coordinated events can include either suppressing or activating the signaling pathways that control the immune response and thereby promote bacterial colonization and infection. This review will cover the surveillance and signaling systems for detection of bacteria in the intestine and a sample of the toxins and effectors that have been characterized that cirumvent these signaling pathways. These factors that promote infection and disease progression have also been redirected as tools or therapeutics. Thus, these toxins are enemies deployed to enhance infection, but can also be redeployed as allies to enable research and protect against infection.
Collapse
Affiliation(s)
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
8
|
Giogha C, Scott NE, Wong Fok Lung T, Pollock GL, Harper M, Goddard-Borger ED, Pearson JS, Hartland EL. NleB2 from enteropathogenic Escherichia coli is a novel arginine-glucose transferase effector. PLoS Pathog 2021; 17:e1009658. [PMID: 34133469 PMCID: PMC8238200 DOI: 10.1371/journal.ppat.1009658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/28/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
During infection, enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) directly manipulate various aspects of host cell function through the translocation of type III secretion system (T3SS) effector proteins directly into the host cell. Many T3SS effector proteins are enzymes that mediate post-translational modifications of host proteins, such as the glycosyltransferase NleB1, which transfers a single N-acetylglucosamine (GlcNAc) to arginine residues, creating an Arg-GlcNAc linkage. NleB1 glycosylates death-domain containing proteins including FADD, TRADD and RIPK1 to block host cell death. The NleB1 paralogue, NleB2, is found in many EPEC and EHEC strains but to date its enzymatic activity has not been described. Using in vitro glycosylation assays combined with mass spectrometry, we found that NleB2 can utilize multiple sugar donors including UDP-glucose, UDP-GlcNAc and UDP-galactose during glycosylation of the death domain protein, RIPK1. Sugar donor competition assays demonstrated that UDP-glucose was the preferred substrate of NleB2 and peptide sequencing identified the glycosylation site within RIPK1 as Arg603, indicating that NleB2 catalyses arginine glucosylation. We also confirmed that NleB2 catalysed arginine-hexose modification of Flag-RIPK1 during infection of HEK293T cells with EPEC E2348/69. Using site-directed mutagenesis and in vitro glycosylation assays, we identified that residue Ser252 in NleB2 contributes to the specificity of this distinct catalytic activity. Substitution of Ser252 in NleB2 to Gly, or substitution of the corresponding Gly255 in NleB1 to Ser switches sugar donor preference between UDP-GlcNAc and UDP-glucose. However, this switch did not affect the ability of the NleB variants to inhibit inflammatory or cell death signalling during HeLa cell transfection or EPEC infection. NleB2 is thus the first identified bacterial Arg-glucose transferase that, similar to the NleB1 Arg-GlcNAc transferase, inhibits host protein function by arginine glycosylation. Bacterial gut pathogens including enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC), manipulate host cell function by using a type III secretion system to inject ‘effector’ proteins directly into the host cell cytoplasm. We and others have shown that many of these effectors are novel enzymes, including NleB1, which transfers a single N-acetylglucosamine (GlcNAc) sugar to arginine residues, mediating Arg-GlcNAc glycosylation. Here, we found that a close homologue of NleB1 that is also present in EPEC and EHEC termed NleB2, uses a different sugar during glycosylation. We demonstrated that in contrast to NleB1, the preferred nucleotide-sugar substrate of NleB2 is UDP-glucose and we identified the amino acid residue within NleB2 that dictates this unique catalytic activity. Substitution of this residue in NleB2 and NleB1 switches the sugar donor usage of these enzymes but does not affect their ability to inhibit host cell signalling. Thus, NleB2 is the first identified bacterial arginine-glucose transferase, an activity which has previously only been described in plants and algae.
Collapse
Affiliation(s)
- Cristina Giogha
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Nichollas E. Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Tania Wong Fok Lung
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Georgina L. Pollock
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Marina Harper
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ethan D. Goddard-Borger
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Jaclyn S. Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Elizabeth L. Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
9
|
Xu YR, Lei CQ. TAK1-TABs Complex: A Central Signalosome in Inflammatory Responses. Front Immunol 2021; 11:608976. [PMID: 33469458 PMCID: PMC7813674 DOI: 10.3389/fimmu.2020.608976] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range of physiological and pathological processes. TAK1 functions through assembling with its binding partners TAK1-binding proteins (TAB1, TAB2, and TAB3) and can be activated by a variety of stimuli such as tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and toll-like receptor ligands, and they play essential roles in the activation of NF-κB and MAPKs. Numerous studies have demonstrated that post-translational modifications play important roles in properly controlling the activity, stability, and assembly of TAK1-TABs complex according to the indicated cellular environment. This review focuses on the recent advances in TAK1-TABs-mediated signaling and the regulations of TAK1-TABs complex by post-translational modifications.
Collapse
Affiliation(s)
- Yan-Ran Xu
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Cao-Qi Lei
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Bacterial virulence mediated by orthogonal post-translational modification. Nat Chem Biol 2020; 16:1043-1051. [PMID: 32943788 DOI: 10.1038/s41589-020-0638-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/30/2020] [Indexed: 12/28/2022]
Abstract
Many bacterial pathogens secrete virulence factors, also known as effector proteins, directly into host cells. These effectors suppress pro-inflammatory host signaling while promoting bacterial infection. A particularly interesting subset of effectors post-translationally modify host proteins using novel chemistry that is not otherwise found in the mammalian proteome, which we refer to as 'orthogonal post-translational modification' (oPTM). In this Review, we profile oPTM chemistry for effectors that catalyze serine/threonine acetylation, phosphate β-elimination, phosphoribosyl-linked ubiquitination, glutamine deamidation, phosphocholination, cysteine methylation, arginine N-acetylglucosaminylation, and glutamine ADP-ribosylation on host proteins. AMPylation, a PTM that could be considered orthogonal until only recently, is also discussed. We further highlight known cellular targets of oPTMs and their resulting biological consequences. Developing a complete understanding of oPTMs and the host cell processes they hijack will illuminate critical steps in the infection process, which can be harnessed for a variety of therapeutic, diagnostic, and synthetic applications.
Collapse
|
11
|
Riebisch AK, Mühlen S. Attaching and effacing pathogens: the effector ABC of immune subversion. Future Microbiol 2020; 15:945-958. [PMID: 32716209 DOI: 10.2217/fmb-2019-0274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The innate immune response resembles an essential barrier to bacterial infection. Many bacterial pathogens have, therefore, evolved mechanisms to evade from or subvert the host immune response in order to colonize, survive and multiply. The attaching and effacing pathogens enteropathogenic Escherichia coli, enterohaemorrhagic E. coli, Escherichia albertii and Citrobacter rodentium are Gram-negative extracellular gastrointestinal pathogens. They use a type III secretion system to inject effector proteins into the host cell to manipulate a variety of cellular processes. Over the last decade, considerable progress was made in identifying and characterizing the effector proteins of attaching and effacing pathogens that are involved in the inhibition of innate immune signaling pathways, in determining their host cell targets and elucidating the mechanisms they employ. Their functions will be reviewed here.
Collapse
Affiliation(s)
- Anna Katharina Riebisch
- Systems-Oriented Immunology & Inflammation Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.,Institute for Molecular & Clinical Immunology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany.,Department of Molecular Immunology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Sabrina Mühlen
- Institute for Infectiology, University of Münster, 48149 Münster, Germany.,German Center for Infection Research (DZIF), Associated Site University of Münster, 48149 Münster, Germany
| |
Collapse
|
12
|
Revealing eukaryotic histone-modifying mechanisms through bacterial infection. Semin Immunopathol 2020; 42:201-213. [DOI: 10.1007/s00281-019-00778-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022]
|
13
|
Sharma A, Sharma D, Verma SK. Zinc binding proteome of a phytopathogen Xanthomonas translucens pv. undulosa. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190369. [PMID: 31598288 PMCID: PMC6774946 DOI: 10.1098/rsos.190369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/21/2019] [Indexed: 05/15/2023]
Abstract
Xanthomonas translucens pv. undulosa (Xtu) is a proteobacteria which causes bacterial leaf streak (BLS) or bacterial chaff disease in wheat and barley. The constant competition for zinc (Zn) metal nutrients contributes significantly in plant-pathogen interactions. In this study, we have employed a systematic in silico approach to study the Zn-binding proteins of Xtu. From the whole proteome of Xtu, we have identified approximately 7.9% of proteins having Zn-binding sequence and structural motifs. Further, 115 proteins were found homologous to plant-pathogen interaction database. Among these 115 proteins, 11 were predicted as putative secretory proteins. The functional diversity in Zn-binding proteins was revealed by functional domain, gene ontology and subcellular localization analysis. The roles of Zn-binding proteins were found to be varied in the range from metabolism, proteolysis, protein biosynthesis, transport, cell signalling, protein folding, transcription regulation, DNA repair, response to oxidative stress, RNA processing, antimicrobial resistance, DNA replication and DNA integration. This study provides preliminary information on putative Zn-binding proteins of Xtu which may further help in designing new metal-based antimicrobial agents for controlling BLS and bacterial chaff infections on staple crops.
Collapse
|
14
|
Schnupf P, Sansonetti PJ. Shigella Pathogenesis: New Insights through Advanced Methodologies. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0023-2019. [PMID: 30953429 PMCID: PMC11588159 DOI: 10.1128/microbiolspec.bai-0023-2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Shigella is a genus of Gram-negative enteropathogens that have long been, and continue to be, an important public health concern worldwide. Over the past several decades, Shigella spp. have also served as model pathogens in the study of bacterial pathogenesis, and Shigella flexneri has become one of the best-studied pathogens on a molecular, cellular, and tissue level. In the arms race between Shigella and the host immune system, Shigella has developed highly sophisticated mechanisms to subvert host cell processes in order to promote infection, escape immune detection, and prevent bacterial clearance. Here, we give an overview of Shigella pathogenesis while highlighting innovative techniques and methods whose application has significantly advanced our understanding of Shigella pathogenesis in recent years.
Collapse
Affiliation(s)
- Pamela Schnupf
- Institut Imagine, Laboratory of Intestinal Immunity, INSERM UMR1163; Institut Necker Enfants Malades, Laboratory of Host-Microbiota Interaction, INSERM U1151; and Université Paris Descartes-Sorbonne, 75006 Paris, France
| | - Philippe J Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, and College de France, Paris, France
| |
Collapse
|
15
|
Dorman MJ, Dorman CJ. Regulatory Hierarchies Controlling Virulence Gene Expression in Shigella flexneri and Vibrio cholerae. Front Microbiol 2018; 9:2686. [PMID: 30473684 PMCID: PMC6237886 DOI: 10.3389/fmicb.2018.02686] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Gram-negative enteropathogenic bacteria use a variety of strategies to cause disease in the human host and gene regulation in some form is typically a part of the strategy. This article will compare the toxin-based infection strategy used by the non-invasive pathogen Vibrio cholerae, the etiological agent in human cholera, with the invasive approach used by Shigella flexneri, the cause of bacillary dysentery. Despite the differences in the mechanisms by which the two pathogens cause disease, they use environmentally-responsive regulatory hierarchies to control the expression of genes that have some features, and even some components, in common. The involvement of AraC-like transcription factors, the integration host factor, the Factor for inversion stimulation, small regulatory RNAs, the RNA chaperone Hfq, horizontal gene transfer, variable DNA topology and the need to overcome the pervasive silencing of transcription by H-NS of horizontally acquired genes are all shared features. A comparison of the regulatory hierarchies in these two pathogens illustrates some striking cross-species similarities and differences among mechanisms coordinating virulence gene expression. S. flexneri, with its low infectious dose, appears to use a strategy that is centered on the individual bacterial cell, whereas V. cholerae, with a community-based, quorum-dependent approach and an infectious dose that is several orders of magnitude higher, seems to rely more on the actions of a bacterial collective.
Collapse
Affiliation(s)
- Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Clarke SG. The ribosome: A hot spot for the identification of new types of protein methyltransferases. J Biol Chem 2018; 293:10438-10446. [PMID: 29743234 DOI: 10.1074/jbc.aw118.003235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular physiology depends on the alteration of protein structures by covalent modification reactions. Using a combination of bioinformatic, genetic, biochemical, and mass spectrometric approaches, it has been possible to probe ribosomal proteins from the yeast Saccharomyces cerevisiae for post-translationally methylated amino acid residues and for the enzymes that catalyze these modifications. These efforts have resulted in the identification and characterization of the first protein histidine methyltransferase, the first N-terminal protein methyltransferase, two unusual types of protein arginine methyltransferases, and a new type of cysteine methylation. Two of these enzymes may modify their substrates during ribosomal assembly because the final methylated histidine and arginine residues are buried deep within the ribosome with contacts only with RNA. Two of these modifications occur broadly in eukaryotes, including humans, whereas the others demonstrate a more limited phylogenetic range. Analysis of strains where the methyltransferase genes are deleted has given insight into the physiological roles of these modifications. These reactions described here add diversity to the modifications that generate the typical methylated lysine and arginine residues previously described in histones and other proteins.
Collapse
Affiliation(s)
- Steven G Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
17
|
Cooperative Immune Suppression by Escherichia coli and Shigella Effector Proteins. Infect Immun 2018; 86:IAI.00560-17. [PMID: 29339461 DOI: 10.1128/iai.00560-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The enteric attaching and effacing (A/E) pathogens enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) and the invasive pathogens enteroinvasive E. coli (EIEC) and Shigella encode type III secretion systems (T3SS) used to inject effector proteins into human host cells during infection. Among these are a group of effectors required for NF-κB-mediated host immune evasion. Recent studies have identified several effector proteins from A/E pathogens and EIEC/Shigella that are involved in suppression of NF-κB and have uncovered their cellular and molecular functions. A novel mechanism among these effectors from both groups of pathogens is to coordinate effector function during infection. This cooperativity among effector proteins explains how bacterial pathogens are able to effectively suppress innate immune defense mechanisms in response to diverse classes of immune receptor signaling complexes (RSCs) stimulated during infection.
Collapse
|
18
|
Scott NE, Hartland EL. Post-translational Mechanisms of Host Subversion by Bacterial Effectors. Trends Mol Med 2017; 23:1088-1102. [PMID: 29150361 DOI: 10.1016/j.molmed.2017.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022]
Abstract
Bacterial effector proteins are a specialized class of secreted proteins that are translocated directly into the host cytoplasm by bacterial pathogens. Effector proteins have diverse activities and targets, and many mediate post-translational modifications of host proteins. Effector proteins offer potential in novel biotechnological and medical applications as enzymes that may modify human proteins. Here, we discuss the mechanisms used by effectors to subvert the human host through blocking, blunting, or subverting immune mechanisms. This capacity allows bacteria to control host cell function to support pathogen survival, replication and dissemination to other hosts. In addition, we highlight that knowledge of effector protein activity may be used to develop chemical inhibitors as a new approach to treat bacterial infections.
Collapse
Affiliation(s)
- Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton 3168, Australia.
| |
Collapse
|
19
|
Friedrich A, Pechstein J, Berens C, Lührmann A. Modulation of host cell apoptotic pathways by intracellular pathogens. Curr Opin Microbiol 2017; 35:88-99. [DOI: 10.1016/j.mib.2017.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/03/2016] [Accepted: 03/01/2017] [Indexed: 12/13/2022]
|
20
|
Hirata Y, Takahashi M, Morishita T, Noguchi T, Matsuzawa A. Post-Translational Modifications of the TAK1-TAB Complex. Int J Mol Sci 2017; 18:ijms18010205. [PMID: 28106845 PMCID: PMC5297835 DOI: 10.3390/ijms18010205] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family that is activated by growth factors and cytokines such as TGF-β, IL-1β, and TNF-α, and mediates a wide range of biological processes through activation of the nuclear factor-κB (NF-κB) and the mitogen-activated protein (MAP) kinase signaling pathways. It is well established that activation status of TAK1 is tightly regulated by forming a complex with its binding partners, TAK1-binding proteins (TAB1, TAB2, and TAB3). Interestingly, recent evidence indicates the importance of post-translational modifications (PTMs) of TAK1 and TABs in the regulation of TAK1 activation. To date, a number of PTMs of TAK1 and TABs have been revealed, and these PTMs appear to fine-tune and coordinate TAK1 activities depending on the cellular context. This review therefore focuses on recent advances in the understanding of the PTMs of the TAK1-TAB complex.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Miki Takahashi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Tohru Morishita
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|