1
|
Ishii N, Inoue S, Sano K, Takahashi S, Matsuo I. Synthesis of a fluorescent probe for measuring the activity of endo-β-N-acetylglucosaminidases recognizing hybrid-type N-glycans. Bioorg Med Chem 2024; 100:117612. [PMID: 38290307 DOI: 10.1016/j.bmc.2024.117612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
A fluorescence-quenching-based assay system was constructed to determine the hydrolytic activity of endo-β-N-acetylglucosaminidases (ENGases) interacting with hybrid-type N-glycans. This was achieved using a dual-labeled fluorescent probe with a nonasaccharide structure. We produced the nonasaccharide skeleton by the stepwise glycosylation of the galactose residue on a galactosyl chitobiose derivative. Next, we introduced azido and acetoxy groups into the nonasaccharide derivative in a stepwise manner, which led to stereochemistry inversion at both the C-4 and C-2 hydroxy groups on its galactose residue. The protecting groups of the resulting nonasaccharide derivative were removed, and the derivative was labeled with an N-methylanthraniloyl group to obtain a reporter dye and a 2,4-dinitrophenyl group as a quenching molecule to obtain target probe 1. The use of this probe along with a microplate reader enabled a facile evaluation of the hydrolytic activities of ENGases Endo-H, Endo-M, Endo-F3, Endo-S, and Endo-CC. Furthermore, this probe could also assist in the search for novel ENGases that are specific to hybrid-type N-glycans.
Collapse
Affiliation(s)
- Nozomi Ishii
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Shusei Inoue
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Kanae Sano
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Satoshi Takahashi
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|
2
|
Ishii N, Muto H, Nagata M, Sano K, Sato I, Iino K, Matsuzaki Y, Katoh T, Yamamoto K, Matsuo I. A fluorogenic probe for core-fucosylated glycan-preferred ENGase. Carbohydr Res 2023; 523:108724. [PMID: 36435009 DOI: 10.1016/j.carres.2022.108724] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
A fluorescence-quenching-based assay system to determine the hydrolytic activity of endo-β-N-acetylglucosaminidases (ENGases), which act on the innermost N-acetylglucosamine (GlcNAc) residue of the chitobiose segment of core-fucosylated N-glycans, was constructed using a dual-labeled fluorescent probe with a hexasaccharide structure. The fluorogenic probe was evaluated using a variety of ENGases, including Endo-M W251N mutant, Endo-F3, and Endo-S, which recognize core fucosylated N-glycans. The occurrence of a hydrolysis reaction was detected by observing an increased fluorescence intensity, ultimately allowing the ENGase activities to be easily and quantitatively evaluated, with the exception of Endo-S. The obtained results clearly indicated the substrate specificities of the examined ENGases.
Collapse
Affiliation(s)
- Nozomi Ishii
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Hiroshi Muto
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan; Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd., 3-5-1, Nihonbashi-honcho, Tokyo, 103-8426, Japan
| | - Mitsuo Nagata
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kanae Sano
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Itsuki Sato
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Kenta Iino
- Glyco Synthetic Lab., Tokyo Chemical Industry Co., Ltd, 6-15-9 Toshima, Kita-ku, Tokyo, 114-0003, Japan
| | - Yuji Matsuzaki
- Glyco Synthetic Lab., Tokyo Chemical Industry Co., Ltd, 6-15-9 Toshima, Kita-ku, Tokyo, 114-0003, Japan
| | - Toshihiko Katoh
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kenji Yamamoto
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.
| |
Collapse
|
3
|
Bienes KM, Tautau FAP, Mitani A, Kinoshita T, Nakakita SI, Higuchi Y, Takegawa K. Characterization of novel endo-β-N-acetylglucosaminidase from Bacteroides nordii that hydrolyzes multi-branched complex type N-glycans. J Biosci Bioeng 2022; 134:7-13. [PMID: 35484013 DOI: 10.1016/j.jbiosc.2022.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
Endo-β-N-acetylglucosaminidases (ENGases) are enzymes that hydrolyze the N-linked oligosaccharides. Many ENGases have already been identified and characterized. However, there are still a few enzymes that have hydrolytic activity toward multibranched complex-type N-glycans on glycoproteins. In this study, one novel ENGase from Bacteroides nordii (Endo-BN) species was identified and characterized. The recombinant protein was prepared and expressed in Escherichia coli cells. This Endo-BN exhibited optimum hydrolytic activity at pH 4.0. High performance liquid chromatography (HPLC) analysis showed that Endo-BN preferred core-fucosylated complex-type N-glycans, with galactose or α2,6-linked sialic acid residues at their non-reducing ends. The hydrolytic activities of Endo-BN were also tested on different glycoproteins from high-mannose type to complex-type oligosaccharides. The reaction with human transferrin, fetuin, and α1-acid glycoprotein subsequently showed that Endo-BN is capable of releasing multi-branched complex-type N-glycans from these glycoproteins.
Collapse
Affiliation(s)
- Kristina Mae Bienes
- Laboratory of Applied Microbiology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Feunai Agape Papalii Tautau
- Laboratory of Applied Microbiology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ai Mitani
- Fushimi Pharmaceutical Co. Ltd., Marugame, Kagawa 763-8605, Japan
| | | | | | - Yujiro Higuchi
- Laboratory of Applied Microbiology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kaoru Takegawa
- Laboratory of Applied Microbiology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
4
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
5
|
Manabe S, Yamaguchi Y. Antibody Glycoengineering and Homogeneous Antibody‐Drug Conjugate Preparation. CHEM REC 2021; 21:3005-3014. [DOI: 10.1002/tcr.202100054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Shino Manabe
- Laboratory of Functional Molecule Chemistry Hoshi University 2-4-41 Ebara Shinagawa Tokyo 142-8501 Japan
- Research Center for Pharmaceutical Development Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences Tohoku University 6-3 Aoba Aramaki, Aoba-ku, Sendai Miyagi 980-8578 Japan
| | - Yoshiki Yamaguchi
- Tohoku Medical and Pharmaceutical University 4-4-1 Komatsushima Aobaku, Sendai Miyagi 981-8558 Japan
| |
Collapse
|
6
|
Katoh T, Yamamoto K. Innovative Preparation of Biopharmaceuticals Using Transglycosylation Activity of Microbial Endoglycosidases. J Appl Glycosci (1999) 2021; 68:1-9. [PMID: 34354540 PMCID: PMC8113915 DOI: 10.5458/jag.jag.jag-2020_0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/16/2020] [Indexed: 12/02/2022] Open
Abstract
Most functional biopharmaceuticals such as antibodies are glycoproteins carrying N-linked oligosaccharides (N-glycans). In animal cells, these glycans are generally expressed as heterogeneous glycoforms that are difficult to separate into a pure form. The structure of these glycans directly affects several biological aspects of the glycoproteins, especially binding affinity. Therefore, the preparation of glycoproteins with well-defined and homogeneous glycoforms is necessary for functional studies and improved efficacy, particularly for biopharmaceuticals. This review describes the recent remarkable progress in the development and production of biopharmaceutical glycan-modified antibodies, through the use of glycan remodeling using microbial endoglycosidases and sophisticated glycoengineering techniques utilizing microbial enzymatic reaction mechanisms.
Collapse
Affiliation(s)
| | - Kenji Yamamoto
- 2 Center for Innovative and Joint Research, Wakayama University
| |
Collapse
|
7
|
Takashima S, Kurogochi M, Osumi K, Sugawara SI, Mizuno M, Takada Y, Amano J, Matsuda A. Novel endo-β-N-acetylglucosaminidases from Tannerella species hydrolyze multibranched complex-type N-glycans with different specificities. Glycobiology 2020; 30:923-934. [PMID: 32337602 DOI: 10.1093/glycob/cwaa037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Endo-β-N-acetylglucosaminidases are enzymes that hydrolyze the N,N'-diacetylchitobiose unit of N-glycans. Many endo-β-N-acetylglucosaminidases also exhibit transglycosylation activity, which corresponds to the reverse of the hydrolysis reaction. Because of these activities, some of these enzymes have recently been used as powerful tools for glycan remodeling of glycoproteins. Although many endo-β-N-acetylglucosaminidases have been identified and characterized to date, there are few enzymes that exhibit hydrolysis activity toward multibranched (tetra-antennary or more) complex-type N-glycans on glycoproteins. Therefore, we searched for novel endo-β-N-acetylglucosaminidases that exhibit hydrolysis activity toward multibranched complex-type N-glycans in this study. From database searches, we selected three candidate enzymes from Tannerella species-Endo-Tsp1006, Endo-Tsp1263 and Endo-Tsp1457-and prepared them as recombinant proteins. We analyzed the hydrolysis activity of these enzymes toward N-glycans on glycoproteins and found that Endo-Tsp1006 and Endo-Tsp1263 exhibited hydrolysis activity toward complex-type N-glycans, including multibranched N-glycans, preferentially, whereas Endo-Tsp1457 exhibited hydrolysis activity toward high-mannose-type N-glycans exclusively. We further analyzed substrate specificities of Endo-Tsp1006 and Endo-Tsp1263 using 18 defined glycopeptides as substrates, each having a different N-glycan structure. We found that Endo-Tsp1006 preferred N-glycans with galactose or α2,6-linked sialic acid residues in their nonreducing ends as substrates, whereas Endo-Tsp1263 preferred N-glycans with N-acetylglucosamine residues in their nonreducing ends as substrates.
Collapse
Affiliation(s)
- Shou Takashima
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Masaki Kurogochi
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Kenji Osumi
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Shu-Ichi Sugawara
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Mamoru Mizuno
- Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Yoshio Takada
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Junko Amano
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Akio Matsuda
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan.,Laboratory of Glyco-Organic Chemistry, The Noguchi Institute, 1-9-7 Kaga, Itabashi, Tokyo 173-0003, Japan
| |
Collapse
|
8
|
Meng S, Bhetuwal BR, Nguyen H, Qi X, Fang C, Saybolt K, Li X, Liu P, Zhu J. β-Mannosylation via O-Alkylation of Anomeric Cesium Alkoxides: Mechanistic Studies and Synthesis of the Hexasaccharide Core of Complex Fucosylated N-Linked Glycans. European J Org Chem 2020; 2020:2291-2301. [PMID: 32431565 PMCID: PMC7236807 DOI: 10.1002/ejoc.202000313] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/11/2022]
Abstract
A number of structurally diverse D-mannose-derived lactols, including various deoxy-D-mannoses and conformationally restricted bicyclic D-mannoses, have been synthesized and investigated in mechanistic studies of β-mannosylation via Cs2CO3-mediated anomeric O-alkylation. It was found that deoxy mannoses or conformationally restricted bicyclic D-mannoses are not as reactive as their corresponding parent mannose. This type of β-mannosylation proceeds efficiently when the C2-OH is left free, and protection of that leads to inferior results. NMR studies of D-mannose-derived anomeric cesium alkoxides indicated the predominance of the equatorial β-anomer after deprotonation. Reaction progress kinetic analysis suggested that monomeric cesium alkoxides be the key reactive species for alkylation with electrophiles. DFT calculations supported that oxygen atoms at C2, C3, and C6 of mannose promote the deprotonation of the anomeric hydroxyl group by Cs2CO3 and chelating interactions between Cs and these oxygen atoms favour the formation of equatorial anomeric alkoxides, leading to the highly β-selective anomeric O-alkylation. Based on experimental data and computational results, a revised mechanism for this β-mannosylation is proposed. The utilization of this β-mannosylation was demonstrated by an efficient synthesis of the hexasaccharide core of complex fucosylated N-linked glycans.
Collapse
Affiliation(s)
- Shuai Meng
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Bishwa Raj Bhetuwal
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Hai Nguyen
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Xiaotian Qi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Cheng Fang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kevin Saybolt
- Department of Natural Sciences, University of Michigan‒Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Xiaohua Li
- Department of Natural Sciences, University of Michigan‒Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
9
|
Structural basis for the specific cleavage of core-fucosylated N-glycans by endo-β- N-acetylglucosaminidase from the fungus Cordyceps militaris. J Biol Chem 2019; 294:17143-17154. [PMID: 31548313 PMCID: PMC6851319 DOI: 10.1074/jbc.ra119.010842] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/20/2019] [Indexed: 01/07/2023] Open
Abstract
N-Linked glycans play important roles in various cellular and immunological events. Endo-β-N-acetylglucosaminidase (ENGase) can release or transglycosylate N-glycans and is a promising tool for the chemoenzymatic synthesis of glycoproteins with homogeneously modified glycans. The ability of ENGases to act on core-fucosylated glycans is a key factor determining their therapeutic utility because mammalian N-glycans are frequently α-1,6-fucosylated. Although the biochemistries and structures of various ENGases have been studied extensively, the structural basis for the recognition of the core fucose and the asparagine-linked GlcNAc is unclear. Herein, we determined the crystal structures of a core fucose-specific ENGase from the caterpillar fungus Cordyceps militaris (Endo-CoM), which belongs to glycoside hydrolase family 18. Structures complexed with fucose-containing ligands were determined at 1.75-2.35 Å resolutions. The fucose moiety linked to GlcNAc is extensively recognized by protein residues in a round-shaped pocket, whereas the asparagine moiety linked to the GlcNAc is exposed to the solvent. The N-glycan-binding cleft of Endo-CoM is Y-shaped, and several lysine and arginine residues are present at its terminal regions. These structural features were consistent with the activity of Endo-CoM on fucose-containing glycans on rituximab (IgG) and its preference for a sialobiantennary substrate. Comparisons with other ENGases provided structural insights into their core fucose tolerance and specificity. In particular, Endo-F3, a known core fucose-specific ENGase, has a similar fucose-binding pocket, but the surrounding residues are not shared with Endo-CoM. Our study provides a foothold for protein engineering to develop enzymatic tools for the preparation of more effective therapeutic antibodies.
Collapse
|
10
|
Ishii N, Sano K, Matsuo I. Fluorogenic probe for measuring high-mannose type glycan-specific endo-β-N-acetylglucosaminidase H activity. Bioorg Med Chem Lett 2019; 29:1643-1646. [PMID: 31076349 DOI: 10.1016/j.bmcl.2019.04.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
We synthesized a fluorogenic probe with a high-mannose type heptasaccharide structure to detect the hydrolytic activity of endo-β-N-acetylglucosaminidase from Streptomyces plicatus (Endo-H). The heptasaccharide derivative (1) was labeled with an N-methylanthraniloyl group as a reporter dye at the branching point of the β-mannoside residue and 2,4-dinitrophenyl group as a quencher molecule at the reducing end, which was hydrolyzed by Endo-H, resulting in increased fluorescence intensity. Thus, Endo-H activities could be evaluated easily and quantitatively by measuring the fluorescence signal. Using both this probe (1) and a previously synthesized pentasaccharide probe, the hydrolysis activity of Endo-H and Endo-M were investigated. The results clearly showed a correlation with the substrate specificity of each enzyme.
Collapse
Affiliation(s)
- Nozomi Ishii
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Kanae Sano
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|
11
|
Abstract
Glycosylation is one of the most prevalent posttranslational modifications that profoundly affects the structure and functions of proteins in a wide variety of biological recognition events. However, the structural complexity and heterogeneity of glycoproteins, usually resulting from the variations of glycan components and/or the sites of glycosylation, often complicates detailed structure-function relationship studies and hampers the therapeutic applications of glycoproteins. To address these challenges, various chemical and biological strategies have been developed for producing glycan-defined homogeneous glycoproteins. This review highlights recent advances in the development of chemoenzymatic methods for synthesizing homogeneous glycoproteins, including the generation of various glycosynthases for synthetic purposes, endoglycosidase-catalyzed glycoprotein synthesis and glycan remodeling, and direct enzymatic glycosylation of polypeptides and proteins. The scope, limitation, and future directions of each method are discussed.
Collapse
Affiliation(s)
- Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
12
|
Fairbanks AJ. The ENGases: versatile biocatalysts for the production of homogeneous N-linked glycopeptides and glycoproteins. Chem Soc Rev 2018; 46:5128-5146. [PMID: 28681051 DOI: 10.1039/c6cs00897f] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The endo-β-N-acetylglucosaminidases (ENGases) are an enzyme class (EC 3.2.1.96) produced by a range of organisms, ranging from bacteria, through fungi, to higher order species, including humans, comprising two-sub families of glycosidases which all cleave the chitobiose core of N-linked glycans. Synthetic applications of these enzymes, i.e. to catalyse the reverse of their natural hydrolytic mode of action, allow the attachment of N-glycans to a wide variety of substrates which contain an N-acetylglucosamine (GlcNAc) residue to act as an 'acceptor' handle. The use of N-glycan oxazolines, high energy intermediates on the hydrolytic pathway, as activated donors allows their high yielding attachment to almost any amino acid, peptide or protein that contains a GlcNAc residue as an acceptor. The synthetic effectiveness of these biocatalysts has been significantly increased by the production of mutant glycosynthases; enzymes which can still catalyse synthetic processes using oxazolines as donors, but which do not hydrolyse the reaction products. ENGase biocatalysts are now finding burgeoning application for the production of biologically active glycopeptides and glycoproteins, including therapeutic monoclonal antibodies (mAbs) for which the oligosaccharides have been remodelled to optimise effector functions.
Collapse
Affiliation(s)
- Antony J Fairbanks
- Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand.
| |
Collapse
|
13
|
Iwamoto M, Sekiguchi Y, Nakamura K, Kawaguchi Y, Honda T, Hasegawa J. Generation of efficient mutants of endoglycosidase from Streptococcus pyogenes and their application in a novel one-pot transglycosylation reaction for antibody modification. PLoS One 2018; 13:e0193534. [PMID: 29474426 PMCID: PMC5825150 DOI: 10.1371/journal.pone.0193534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/13/2018] [Indexed: 11/19/2022] Open
Abstract
The fine structures of Fc N-glycan modulate the biological functions and physicochemical properties of antibodies. By remodeling N-glycan to obtain a homogeneous glycoform or chemically modified glycan, antibody characteristics can be controlled or modified. Such remodeling can be achieved by transglycosylation reactions using a mutant of endoglycosidase from Streptococcus pyogenes (Endo-S) and glycan oxazoline. In this study, we generated improved mutants of Endo-S by introducing additional mutations to the D233Q mutant. Notably, Endo-S D233Q/Q303L, D233Q/E350Q, and several other mutations resulted in transglycosylation efficiencies exceeding 90%, with a single-digit donor-to-substrate ratio of five, and D233Q/Y402F/D405A and several other mutations resulted in slightly reduced transglycosylation efficiencies accompanied by no detectable hydrolysis activity for 48 h. We further demonstrated that the combined use of mutants of Endo-S with Endo-M or Endo-CC, endoglycosidases from Mucor hiemalis and Coprinopsis cinerea, enables one-pot transglycosylation from sialoglycopeptide to antibodies. This novel reaction enables glycosylation remodeling of antibodies, without the chemical synthesis of oxazoline in advance or in situ.
Collapse
Affiliation(s)
- Mitsuhiro Iwamoto
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yukiko Sekiguchi
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Kensuke Nakamura
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yoshirou Kawaguchi
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Takeshi Honda
- Medicinal Chemistry Management Group, Research Function Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Jun Hasegawa
- Modality Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
14
|
Characterization of novel endo-β-N-acetylglucosaminidases from Sphingobacterium species, Beauveria bassiana and Cordyceps militaris that specifically hydrolyze fucose-containing oligosaccharides and human IgG. Sci Rep 2018; 8:246. [PMID: 29321565 PMCID: PMC5762919 DOI: 10.1038/s41598-017-17467-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023] Open
Abstract
Endo-β-N-acetylglucosaminidase (ENGase) catalyzes hydrolysis of N-linked oligosaccharides. Although many ENGases have been characterized from various organisms, so far no fucose-containing oligosaccharides-specific ENGase has been identified in any organism. Here, we screened soil samples, using dansyl chloride (Dns)-labeled sialylglycan (Dns-SG) as a substrate, and discovered a strain that exhibits ENGase activity in the culture supernatant; this strain, named here as strain HMA12, was identified as a Sphingobacterium species by 16S ribosomal RNA gene analysis. By draft genome sequencing, five candidate ENGase encoding genes were identified in the genome of this strain. Among them, a recombinant protein purified from Escherichia coli expressing the candidate gene ORF1188 exhibited fucose-containing oligosaccharides-specific ENGase activity. The ENGase exhibited optimum activities at very acidic pHs (between pH 2.3–2.5). A BLAST search using the sequence of ORF1188 identified two fungal homologs, one in Beauveria bassiana and the other in Cordyceps militaris. Recombinant ORF1188, Beauveria and Cordyceps ENGases released the fucose-containing oligosaccharides residues from rituximab (immunoglobulin G) but not the high-mannose-containing oligosaccharides residues from RNase B, a result that not only confirmed the substrate specificity of these novel ENGases but also suggested that natural glycoproteins could be their substrates.
Collapse
|
15
|
Tomabechi Y, Katoh T, Kunishima M, Inazu T, Yamamoto K. Chemo-enzymatic synthesis of a glycosylated peptide containing a complex N-glycan based on unprotected oligosaccharides by using DMT-MM and Endo-M. Glycoconj J 2017; 34:481-487. [PMID: 28523604 DOI: 10.1007/s10719-017-9770-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 11/29/2022]
Abstract
For chemo-enzymatic synthesis of a glycosylated peptide, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) was used for the synthesis of a N-acetylglucosaminyl peptide and a pseudoglycopeptide by solid-phase peptide synthesis without the requirement of protecting groups on the carbohydrate. We also performed transglycosylation of an N-glycan to the N-acetylglucosaminyl peptide using endo-β-N-acetylglucosaminidase from Mucor hiemalis (Endo-M) to synthesize a glycopeptide containing a complex N-glycan.
Collapse
Affiliation(s)
- Yusuke Tomabechi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan.
| | - Toshihiko Katoh
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Munetaka Kunishima
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Toshiyuki Inazu
- Department of Applied Chemistry, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Kenji Yamamoto
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, 921-8836, Japan
| |
Collapse
|