1
|
Wirth F, Zoeller C, Lubosch A, Schroeder-Braunstein J, Wabnitz G, Nakchbandi IA. Insights into the metastatic bone marrow niche gained from fibronectin and β1 integrin transgenic mice. Neoplasia 2024; 58:101058. [PMID: 39413671 PMCID: PMC11530925 DOI: 10.1016/j.neo.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/18/2024]
Abstract
Tumor cells can migrate from a primary cancer and form metastases by localizing to niches within other organs including the bone marrow, where tumor cells may exploit the hematopoietic stem cell niche. The precise composition of the premetastatic and the hematopoietic niches and the degree of overlap between them remain elusive. Because the extracellular matrix protein fibronectin is expressed in the pre-metastatic lung microenvironment, we evaluated the implications of its loss, as well as those of loss of its primary receptor subunit, β1 integrin, in various bone marrow cell types both in breast cancer bone metastasis and hematopoiesis. Using eight transgenic mouse models, we established that fibronectin production by osterix-expressing marrow cells, or β1 integrin expression (on vav, mx, or leptin receptor expressing cells), affects MDA-MB-231 breast cancer cell numbers in the bone marrow. Additionally, we identified stromal subpopulations that modulate transmigration through blood vessel walls. Not the number of tumor cells, but rather the changes in the microenvironment dictated whether the tumor progresses. Furthermore, hematopoiesis, particularly myelopoiesis, was affected in some of the models showing changes in tumor homing. In conclusion, there is partial overlap between the pre-metastatic and the hematopoietic niches in the bone marrow. Moreover, we have delineated a cascade starting with fibronectin secreted by pre-osteoblastic cells, which potentially acts on β1 integrin in specific stromal cell subsets, thereby inhibiting the formation of new breast cancer lesions in the bone marrow. This work therefore sheds light on the role of various stromal cell subpopulations that influence tumor behavior and affect hematopoiesis.
Collapse
Affiliation(s)
- Franziska Wirth
- Institute of Immunology, Heidelberg University, 69120, Heidelberg, Germany
| | - Caren Zoeller
- Institute of Immunology, Heidelberg University, 69120, Heidelberg, Germany
| | - Alexander Lubosch
- Institute of Immunology, Heidelberg University, 69120, Heidelberg, Germany
| | | | - Guido Wabnitz
- Institute of Immunology, Heidelberg University, 69120, Heidelberg, Germany
| | - Inaam A Nakchbandi
- Institute of Immunology, Heidelberg University, 69120, Heidelberg, Germany; Max-Planck Institute for Biochemistry, 82152, Martinsried, Germany; Max-Planck Institute for Medical Research, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Yu S, Wang S, Wang X, Xu X. The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis. Cancer Cell Int 2024; 24:335. [PMID: 39375726 PMCID: PMC11459962 DOI: 10.1186/s12935-024-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The extracellular matrix (ECM) is a complex, dynamic network of multiple macromolecules that serve as a crucial structural and physical scaffold for neighboring cells. In the tumor microenvironment (TME), ECM proteins play a significant role in mediating cellular communication between cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Revealing the ECM modification of the TME necessitates the intricate signaling cascades that transpire among diverse cell populations and ECM proteins. The advent of single-cell sequencing has enabled the identification and refinement of specific cellular subpopulations, which has substantially enhanced our comprehension of the intricate milieu and given us a high-resolution perspective on the diversity of ECM proteins. However, it is essential to integrate single-cell data and establish a coherent framework. In this regard, we present a comprehensive review of the relationships among ECM, TAMs, and CAFs. This encompasses insights into the ECM proteins released by TAMs and CAFs, signaling integration in the TAM-ECM-CAF axis, and the potential applications and limitations of targeted therapies for CAFs. This review serves as a reliable resource for focused therapeutic strategies while highlighting the crucial role of ECM proteins as intermediates in the TME.
Collapse
Affiliation(s)
- Shuhong Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Siyu Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
3
|
Hummersgaard Hansen A, Wallem Breisnes H, Skovhus Prior T, Hilberg O, Guldager Kring Rasmussen D, Genovese F, Vestergaard Lukassen M, Svensson B, Løcke Langholm L, Manon-Jensen T, Asser Karsdal M, Julie Leeming D, Bendstrup E, Marie Bülow Sand J. A serologically assessed neo-epitope biomarker of cellular fibronectin degradation is related to pulmonary fibrosis. Clin Biochem 2023; 118:110599. [PMID: 37343745 DOI: 10.1016/j.clinbiochem.2023.110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/19/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is characterized by excessive extracellular matrix (ECM) remodeling, herein ECM degradation. Fibronectin (FN) is an important component of the ECM that is produced by multiple cell types, including fibroblasts. Extra domain B (EDB) is specific for a cellular FN isoform which is found in the ECM. We sought to develop a non-invasive test to investigate whether matrix metalloproteinase 8 (MMP-8) degradation of EDB in cellular FN results in a specific protein fragment that can be assessed serologically and if levels relate to pulmonary fibrosis. METHOD Cellular FN was cleaved in vitro by MMP-8 and a protein fragment was identified by mass spectrometry. A monoclonal antibody (mAb) was generated, targeting a neo-epitope originating from EDB in cellular FN. Utilizing this mAb, a neo-epitope specific enzyme-linked immunosorbent assay (FN-EDB) was developed and technically validated. Serum FN-EDB was assessed in an IPF cohort (n=98), registered at clinicaltrials.gov (NCT02818712), and in healthy controls (n=35). RESULTS The FN-EDB assay had high specificity for the MMP-8 degraded neo-epitope and was technically robust. FN-EDB serum levels were not influenced by age, sex, ethnicity, or BMI. Moreover, FN-EDB serum levels were significantly higher in IPF patients (median 31.38 [IQR 25.79-46.84] ng/mL) as compared to healthy controls (median 28.05 [IQR 21.58-33.88] ng/mL, p=0.023). CONCLUSION We developed the neo-epitope specific FN-EDB assay, a competitive ELISA, as a tool for serological assessment of MMP-8 mediated degradation of EDB in cellular FN. This study indicates that degradation of EDB in cellular FN is elevated in IPF and warrants further investigation.
Collapse
Affiliation(s)
- Annika Hummersgaard Hansen
- Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Helene Wallem Breisnes
- Hepatic and Pulmonary Research, Nordic Bioscience, Herlev, Denmark; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Skovhus Prior
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus Denmark
| | - Ole Hilberg
- Medical Department Vejle Hospital, Southern Danish University Hospital, Vejle, Denmark
| | | | | | | | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| | | | | | | | | | - Elisabeth Bendstrup
- Center for Rare Lung Diseases, Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus Denmark
| | | |
Collapse
|
4
|
Altrock E, Sens-Albert C, Hofmann F, Riabov V, Schmitt N, Xu Q, Jann JC, Rapp F, Steiner L, Streuer A, Nowak V, Obländer J, Weimer N, Palme I, Göl M, Darwich A, Wuchter P, Metzgeroth G, Jawhar M, Hofmann WK, Nowak D. Significant improvement of bone marrow-derived MSC expansion from MDS patients by defined xeno-free medium. Stem Cell Res Ther 2023; 14:156. [PMID: 37287056 PMCID: PMC10249283 DOI: 10.1186/s13287-023-03386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Robust and reliable in vitro and in vivo models of primary cells are necessary to study the pathomechanisms of Myelodysplastic Neoplasms (MDS) and identify novel therapeutic strategies. MDS-derived hematopoietic stem and progenitor cells (HSPCs) are reliant on the support of bone marrow (BM) derived mesenchymal stroma cells (MSCs). Therefore, isolation and expansion of MCSs are essential for successfully modeling this disease. For the clinical use of healthy MSCs isolated from human BM, umbilical cord blood or adipose tissue, several studies showed that xeno-free (XF) culture conditions resulted in superior growth kinetics compared to MSCs cultured in the presence of fetal bovine serum (FBS). In this present study, we investigate, whether the replacement of a commercially available MSC expansion medium containing FBS with a XF medium is beneficial for the expansion of MSCs derived from BM of MDS patients which are often difficult to cultivate. METHODS MSCs isolated from BM of MDS patients were cultured and expanded in MSC expansion medium with FBS or XF supplement. Subsequently, the impact of culture media on growth kinetics, morphology, immunophenotype, clonogenic potential, differentiation capacity, gene expression profiles and ability to engraft in immunodeficient mouse models was evaluated. RESULTS Significant higher cell numbers with an increase in clonogenic potential were observed during culture of MDS MSCs with XF medium compared to medium containing FBS. Differential gene expression showed an increase in transcripts associated with MSC stemness after expansion with XF. Furthermore, immunophenotypes of the MSCs and their ability to differentiate into osteoblasts, adipocytes or chondroblasts remained stable. MSCs expanded with XF media were similarly supportive for creating MDS xenografts in vivo as MSCs expanded with FBS. CONCLUSION Our data indicate that with XF media, higher cell numbers of MDS MSCs can be obtained with overall improved characteristics in in vitro and in vivo experimental models.
Collapse
Affiliation(s)
- Eva Altrock
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Carla Sens-Albert
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Franziska Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Nanni Schmitt
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Qingyu Xu
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Felicitas Rapp
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Laurenz Steiner
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Alexander Streuer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Verena Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Julia Obländer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Nadine Weimer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Iris Palme
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Melda Göl
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Ali Darwich
- Department of Orthopedics and Traumatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, Friedrich-Ebert-Str. 107, 68167, Mannheim, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Mohamad Jawhar
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
5
|
Mao L, Wang L, Xu J, Zou J. The role of integrin family in bone metabolism and tumor bone metastasis. Cell Death Discov 2023; 9:119. [PMID: 37037822 PMCID: PMC10086008 DOI: 10.1038/s41420-023-01417-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023] Open
Abstract
Integrins have been the research focus of cell-extracellular matrix adhesion (ECM) and cytokine receptor signal transduction. They are involved in the regulation of bone metabolism of bone precursor cells, mesenchymal stem cells (MSCs), osteoblasts (OBs), osteoclasts (OCs), and osteocytes. Recent studies expanded and updated the role of integrin in bone metabolism, and a large number of novel cytokines were found to activate bone metabolism pathways through interaction with integrin receptors. Integrins act as transducers that mediate the regulation of bone-related cells by mechanical stress, fluid shear stress (FSS), microgravity, hypergravity, extracellular pressure, and a variety of physical factors. Integrins mediate bone metastasis of breast, prostate, and lung cancer by promoting cancer cell adhesion, migration, and survival. Integrin-mediated targeted therapy showed promising prospects in bone metabolic diseases. This review emphasizes the latest research results of integrins in bone metabolism and bone metastasis and provides a vision for treatment strategies.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China
| | - Lian Wang
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, WA, 6009, Perth, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China.
| |
Collapse
|
6
|
Karagianni A, Matsuura S, Gerstenfeld LC, Ravid K. Inhibition of Osteoblast Differentiation by JAK2V617F Megakaryocytes Derived From Male Mice With Primary Myelofibrosis. Front Oncol 2022; 12:929498. [PMID: 35880162 PMCID: PMC9307716 DOI: 10.3389/fonc.2022.929498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Past studies described interactions between normal megakaryocytes, the platelet precursors, and bone cell precursors in the bone marrow. This relationship has also been studied in context of various mutations associated with increased number of megakaryocytes. The current study is the first to examine the effects of megakaryocytes from transgenic mice carrying the most common mutation that causes primary myelofibrosis (PMF) in humans (JAK2V617F) on bone cell differentiation. Organ level assessments of mice using micro-computed tomography showed decreased bone volume in JAK2V617F males, compared to matching controls. Tissue level histology revealed increased deposition of osteoid (bone matrix prior mineralization) in these mutated mice, suggesting an effect on osteoblast differentiation. Mechanistic studies using a megakaryocyte-osteoblast co-culture system, showed that both wild type or JAK2V617F megakaryocytes derived from male mice inhibited osteoblast differentiation, but JAK2V617F cells exerted a more significant inhibitory effect. A mouse mRNA osteogenesis array showed increased expression of Noggin, Chordin, Alpha-2-HS-glycoprotein, Collagen type IV alpha 1 and Collagen type XIV alpha 1 (mostly known to inhibit bone differentiation), and decreased expression of alkaline phosphatase, Vascular cell adhesion molecule 1, Sclerostin, Distal-less homeobox 5 and Collagen type III alpha 1 (associated with osteogenesis) in JAK2V617F megakaryocytes, compared to controls. This suggested that the mutation re-programs megakaryocytes to express a cluster of genes, which together could orchestrate greater suppression of osteogenesis in male mice. These findings provide mechanistic insight into the effect of JAK2V617F mutation on bone, encouraging future examination of patients with this or other PMF-inducing mutations.
Collapse
Affiliation(s)
- Aikaterini Karagianni
- Department of Internal Medicine, University of Crete, School of Medicine, Heraklion, Greece
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, United States
| | - Shinobu Matsuura
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, United States
| | - Louis C. Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| | - Katya Ravid
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Katya Ravid,
| |
Collapse
|
7
|
Sojan JM, Gundappa MK, Carletti A, Gaspar V, Gavaia P, Maradonna F, Carnevali O. Zebrafish as a Model to Unveil the Pro-Osteogenic Effects of Boron-Vitamin D3 Synergism. Front Nutr 2022; 9:868805. [PMID: 35571926 PMCID: PMC9105455 DOI: 10.3389/fnut.2022.868805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
The micronutrient boron (B) plays a key role during the ossification process as suggested by various in vitro and in vivo studies. To deepen our understanding of the molecular mechanism involved in the osteogenicity of B and its possible interaction with vitamin D3 (VD), wild-type AB zebrafish (Danio rerio) were used for morphometric analysis and transcriptomic analysis in addition to taking advantage of the availability of specific zebrafish osteoblast reporter lines. First, osteoactive concentrations of B, VD, and their combinations were established by morphometric analysis of the opercular bone in alizarin red-stained zebrafish larvae exposed to two selected concentrations of B (10 and 100 ng/ml), one concentration of VD (10 pg/ml), and their respective combinations. Bone formation, as measured by opercular bone growth, was significantly increased in the two combination treatments than VD alone. Subsequently, a transcriptomic approach was adopted to unveil the molecular key regulators involved in the synergy. Clustering of differentially expressed genes revealed enrichment toward bone and skeletal functions in the groups co-treated with B and VD. Downstream analysis confirmed mitogen-activated protein kinase as the most regulated pathway by the synergy groups in addition to transforming growth factor-β signaling, focal adhesion, and calcium signaling. The best-performing synergistic treatment, B at 10 ng/ml and VD at 10 pg/ml, was applied to two zebrafish transgenic lines, Tg(sp7:mCherry) and Tg(bglap:EGFP), at multiple time points to further explore the results of the transcriptomic analysis. The synergistic treatment with B and VD induced enrichment of intermediate (sp7+) osteoblast at 6 and 9 days post fertilization (dpf) and of mature (bglap +) osteoblasts at 15 dpf. The results obtained validate the role of B in VD-dependent control over bone mineralization and can help to widen the spectrum of therapeutic approaches to alleviate pathological conditions caused by VD deficiency by using low concentrations of B as a nutritional additive.
Collapse
Affiliation(s)
- Jerry Maria Sojan
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
| | - Alessio Carletti
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Vasco Gaspar
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Paulo Gavaia
- Centro de Ciências do Mar (CCMAR), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Francesca Maradonna
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Oliana Carnevali
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
8
|
Xiong T, Han S, Pu L, Zhang TC, Zhan X, Fu T, Dai YH, Li YX. Bioinformatics and Machine Learning Methods to Identify FN1 as a Novel Biomarker of Aortic Valve Calcification. Front Cardiovasc Med 2022; 9:832591. [PMID: 35295271 PMCID: PMC8918776 DOI: 10.3389/fcvm.2022.832591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
AimThe purpose of this study was to identify potential diagnostic markers for aortic valve calcification (AVC) and to investigate the function of immune cell infiltration in this disease.MethodsThe AVC data sets were obtained from the Gene Expression Omnibus. The identification of differentially expressed genes (DEGs) and the performance of functional correlation analysis were carried out using the R software. To explore hub genes related to AVC, a protein–protein interaction network was created. Diagnostic markers for AVC were then screened and verified using the least absolute shrinkage and selection operator, logistic regression, support vector machine-recursive feature elimination algorithms, and hub genes. The infiltration of immune cells into AVC tissues was evaluated using CIBERSORT, and the correlation between diagnostic markers and infiltrating immune cells was analyzed. Finally, the Connectivity Map database was used to forecast the candidate small molecule drugs that might be used as prospective medications to treat AVC.ResultsA total of 337 DEGs were screened. The DEGs that were discovered were mostly related with atherosclerosis and arteriosclerotic cardiovascular disease, according to the analyses. Gene sets involved in the chemokine signaling pathway and cytokine–cytokine receptor interaction were differently active in AVC compared with control. As the diagnostic marker for AVC, fibronectin 1 (FN1) (area the curve = 0.958) was discovered. Immune cell infiltration analysis revealed that the AVC process may be mediated by naïve B cells, memory B cells, plasma cells, activated natural killer cells, monocytes, and macrophages M0. Additionally, FN1 expression was associated with memory B cells, M0 macrophages, activated mast cells, resting mast cells, monocytes, and activated natural killer cells. AVC may be reversed with the use of yohimbic acid, the most promising small molecule discovered so far.ConclusionFN1 can be used as a diagnostic marker for AVC. It has been shown that immune cell infiltration is important in the onset and progression of AVC, which may benefit in the improvement of AVC diagnosis and treatment.
Collapse
Affiliation(s)
- Tao Xiong
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Shen Han
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Lei Pu
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Tian-Chen Zhang
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Xu Zhan
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Fu
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Ying-Hai Dai
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Ya-Xiong Li
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- *Correspondence: Ya-Xiong Li ;
| |
Collapse
|
9
|
Wirth F, Huck K, Lubosch A, Zoeller C, Ghura H, Porubsky S, Nakchbandi IA. Cdc42 in osterix-expressing cells alters osteoblast behavior and myeloid lineage commitment. Bone 2021; 153:116150. [PMID: 34400384 DOI: 10.1016/j.bone.2021.116150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023]
Abstract
Osteoblasts are not only responsible for bone formation. They also support hematopoiesis. This requires responding to cues originating from several signaling pathways, a task performed by Rho GTPases. We therefore examined several transgenic mouse models and used inhibitors of Cdc42 in vitro. Deletion of Cdc42 in vivo using the Osterix promoter suppressed osteoblast function, while its deletion in differentiating osteoblasts using the Collagen-α1(I) promoter decreased osteoblast numbers. In both cases, bone mineral density diminished confirming the importance of Cdc42. Evaluation of hematopoiesis revealed that deletion of Cdc42 using the Osterix, but not the Collagen-α1(I) promoter increased the common myeloid progenitors (CMPs) in the bone marrow as well as the erythrocytes and the thrombocytes/platelets in peripheral blood. Causality between Cdc42 loss in early osteoblasts and increased myelopoiesis was confirmed in vitro. Work in vitro supported the conclusion that interleukin-4 mediated the increase in myelopoiesis. Thus, Cdc42 is required for healthy bone through regulation of bone formation in Osterix-expressing osteoblasts and the number of osteoblasts in differentiating osteoblasts. In addition, its expression in early osteoblasts/stromal cells modulates myelopoiesis. This highlights the importance of osteoblasts in regulating hematopoiesis.
Collapse
Affiliation(s)
- Franziska Wirth
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Katrin Huck
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Alexander Lubosch
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Caren Zoeller
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Hiba Ghura
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Stefan Porubsky
- Institute of Pathology, University of Mainz, 55131 Mainz, Germany
| | - Inaam A Nakchbandi
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; Max-Planck Institute for Medical Research, 69120 Heidelberg, Germany; Max-Planck Institute for Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
10
|
Estrogen depletion alters osteogenic differentiation and matrix production by osteoblasts in vitro. Exp Cell Res 2021; 408:112814. [PMID: 34492267 DOI: 10.1016/j.yexcr.2021.112814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022]
Abstract
Recent studies have revealed that the effects of estrogen deficiency are not restricted to osteoclasts and bone resorption, but that bone matrix composition is altered and osteoblasts exhibit an impaired response to mechanical stimulation. In this study, we test the hypothesis that estrogen depletion alters osteogenic differentiation and matrix production by mechanically stimulated osteoblasts in vitro. MC3T3-E1 cells were pre-treated with estrogen for 14 days, after which estrogen was withdrawn or inhibited with Fulvestrant up to 14 days. Fluid shear stress (FSS) was applied using an orbital shaker. Under estrogen depletion in static culture, osteogenic marker (ALP) and gene expression (Runx2) were decreased at 2 and after 7 days of estrogen depletion, respectively. In addition, up to 7 day the inhibition of the estrogen receptor significantly decreased fibronectin expression (FN1) under static conditions. Under estrogen depletion and daily mechanical stimulation, changes in expression of Runx2 occurred earlier (4 days) and by 14 days, changes in matrix production (Col1a1) were reported. We propose that changes in osteoblast differentiation and impaired matrix production during estrogen depletion may contribute to the altered quality of the bone and act as a contributing factor to increased bone fragility in postmenopausal osteoporosis.
Collapse
|
11
|
Liao KC, Chuo V, Fagg WS, Modahl CM, Widen S, Garcia-Blanco MA. The RNA binding protein Quaking represses splicing of the Fibronectin EDA exon and downregulates the interferon response. Nucleic Acids Res 2021; 49:10034-10045. [PMID: 34428287 PMCID: PMC8464043 DOI: 10.1093/nar/gkab732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
Quaking (QKI) controls RNA metabolism in many biological processes including innate immunity, where its roles remain incompletely understood. To illuminate these roles, we performed genome scale transcriptome profiling in QKI knockout cells with or without poly(I:C) transfection, a double-stranded RNA analog that mimics viral infection. Analysis of RNA-sequencing data shows that QKI knockout upregulates genes induced by interferons, suggesting that QKI is an immune suppressor. Furthermore, differential splicing analysis shows that QKI primarily controls cassette exons, and among these events, we noted that QKI silences splicing of the extra domain A (EDA) exon in fibronectin (FN1) transcripts. QKI knockout results in elevated production and secretion of FN1-EDA protein, which is a known activator of interferons. Consistent with an upregulation of the interferon response in QKI knockout cells, our results show reduced production of dengue virus-2 and Japanese encephalitis virus in these cells. In conclusion, we demonstrate that QKI downregulates the interferon system and attenuates the antiviral state.
Collapse
Affiliation(s)
- Kuo-Chieh Liao
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Vanessa Chuo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - W Samuel Fagg
- Transplant Division, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cassandra M Modahl
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore
| | - Steven Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mariano A Garcia-Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
12
|
Dalton CJ, Lemmon CA. Fibronectin: Molecular Structure, Fibrillar Structure and Mechanochemical Signaling. Cells 2021; 10:2443. [PMID: 34572092 PMCID: PMC8471655 DOI: 10.3390/cells10092443] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) plays a key role as both structural scaffold and regulator of cell signal transduction in tissues. In times of ECM assembly and turnover, cells upregulate assembly of the ECM protein, fibronectin (FN). FN is assembled by cells into viscoelastic fibrils that can bind upward of 40 distinct growth factors and cytokines. These fibrils play a key role in assembling a provisional ECM during embryonic development and wound healing. Fibril assembly is also often upregulated during disease states, including cancer and fibrotic diseases. FN fibrils have unique mechanical properties, which allow them to alter mechanotransduction signals sensed and relayed by cells. Binding of soluble growth factors to FN fibrils alters signal transduction from these proteins, while binding of other ECM proteins, including collagens, elastins, and proteoglycans, to FN fibrils facilitates the maturation and tissue specificity of the ECM. In this review, we will discuss the assembly of FN fibrils from individual FN molecules; the composition, structure, and mechanics of FN fibrils; the interaction of FN fibrils with other ECM proteins and growth factors; the role of FN in transmitting mechanobiology signaling events; and approaches for studying the mechanics of FN fibrils.
Collapse
Affiliation(s)
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA 23284, USA;
| |
Collapse
|
13
|
Hofbauer LC, Bozec A, Rauner M, Jakob F, Perner S, Pantel K. Novel approaches to target the microenvironment of bone metastasis. Nat Rev Clin Oncol 2021; 18:488-505. [PMID: 33875860 DOI: 10.1038/s41571-021-00499-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Bone metastases are a frequent and severe complication of advanced-stage cancers. Breast and prostate cancers, the most common malignancies in women and men, respectively, have a particularly high propensity to metastasize to bone. Conceptually, circulating tumour cells (CTCs) in the bloodstream and disseminated tumour cells (DTCs) in the bone marrow provide a snapshot of the dissemination and colonization process en route to clinically apparent bone metastases. Many cell types that constitute the bone microenvironment, including osteoblasts, osteocytes, osteoclasts, adipocytes, endothelial cells, haematopoietic stem cells and immune cells, engage in a dialogue with tumour cells. Some of these cells modify tumour biology, while others are disrupted and out-competed by tumour cells, thus leading to distinct phases of tumour cell migration, dormancy and latency, and therapy resistance and progression to overt bone metastases. Several current bone-protective therapies act by interrupting these interactions, mainly by targeting tumour cell-osteoclast interactions. In this Review, we describe the functional roles of the bone microenvironment and its components in the initiation and propagation of skeletal metastases, outline the biology and clinical relevance of CTCs and DTCs, and discuss established and future therapeutic approaches that specifically target defined components of the bone microenvironment to prevent or treat skeletal metastases.
Collapse
Affiliation(s)
- Lorenz C Hofbauer
- University Center for Healthy Aging, Dresden University of Technology, Dresden, Germany. .,Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) partner site Dresden, Dresden, Germany.
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Martina Rauner
- University Center for Healthy Aging, Dresden University of Technology, Dresden, Germany.,Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Franz Jakob
- Department of Orthopedic Surgery, Julius Maximilians University of Würzburg, Würzburg, Germany.,Department of Functional Materials in Medicine and Dentistry, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Klaus Pantel
- Department of Tumor Biology, Center of Experimental Medicine, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
14
|
Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules 2021; 11:biom11081095. [PMID: 34439762 PMCID: PMC8391320 DOI: 10.3390/biom11081095] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Myofibroblasts are contractile, α-smooth muscle actin-positive cells with multiple roles in pathophysiological processes. Myofibroblasts mediate wound contractions, but their persistent presence in tissues is central to driving fibrosis, making them attractive cell targets for the development of therapeutic treatments. However, due to shared cellular markers with several other phenotypes, the specific targeting of myofibroblasts has long presented a scientific and clinical challenge. In recent years, myofibroblasts have drawn much attention among scientific research communities from multiple disciplines and specialisations. As further research uncovers the characterisations of myofibroblast formation, function, and regulation, the realisation of novel interventional routes for myofibroblasts within pathologies has emerged. The research community is approaching the means to finally target these cells, to prevent fibrosis, accelerate scarless wound healing, and attenuate associated disease-processes in clinical settings. This comprehensive review article describes the myofibroblast cell phenotype, their origins, and their diverse physiological and pathological functionality. Special attention has been given to mechanisms and molecular pathways governing myofibroblast differentiation, and updates in molecular interventions.
Collapse
|
15
|
Ghura H, Keimer M, von Au A, Hackl N, Klemis V, Nakchbandi IA. Inhibition of fibronectin accumulation suppresses tumor growth. Neoplasia 2021; 23:837-850. [PMID: 34298233 PMCID: PMC8322122 DOI: 10.1016/j.neo.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Understanding how the extracellular matrix affects cancer development constitutes an emerging research field. Fibronectin and collagen are two intriguing matrix components found in cancer. Large concentrations of fibronectin or collagen type I have been implicated in poor prognosis in patients. In a mouse model, we had shown that genetically decreasing circulating fibronectin resulted in smaller tumors. We therefore aimed to manipulate fibronectin pharmacologically and determine how cancer development is affected. Deletion of fibronectin in human breast cancer cells (MDA-MB-231) using shRNA (knockdown: Kd) improved survival and diminished tumor burden in a model of metastatic lesions and in a model of local growth. Based on these findings, it seemed reasonable to attempt to prevent fibronectin accumulation using a bacterial derived peptide called pUR4. Treatment with this peptide for 10 days in the breast cancer local growth model or for 5 days in a melanoma skin cancer model (B16) was associated with a significant suppression of cancer growth. Treatment aimed at inhibiting collagen type I accumulation without interfering with fibronectin could not affect any changes in vivo. In the absence of fibronectin, diminished cancer progression was due to inhibition of proliferation, even though changes in blood vessels were also detected. Decreased proliferation could be attributed to decreased ERK phosphorylation and diminished YAP expression. In summary, manipulating fibronectin diminishes cancer progression, mostly by suppressing cell proliferation. This suggests that matrix modulation could be used as an adjuvant to conventional therapy as long as a decrease in fibronectin is obtained.
Collapse
Affiliation(s)
- Hiba Ghura
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Marin Keimer
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Anja von Au
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Norman Hackl
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Verena Klemis
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Inaam A Nakchbandi
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany; Max-Planck Institute for Medical Research, Heidelberg, Germany; Max-Planck Institute for Biochemistry, Martinsried, Germany.
| |
Collapse
|
16
|
Fibronectin in development and wound healing. Adv Drug Deliv Rev 2021; 170:353-368. [PMID: 32961203 DOI: 10.1016/j.addr.2020.09.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 01/15/2023]
Abstract
Fibronectin structure and composition regulate contextual cell signaling. Recent advances have been made in understanding fibronectin and its role in tissue organization and repair. This review outlines fibronectin splice variants and their functions, evaluates potential therapeutic strategies targeting or utilizing fibronectin, and concludes by discussing potential future directions to modulate fibronectin function in development and wound healing.
Collapse
|
17
|
Zhang L, Yan H, Tai Y, Xue Y, Wei Y, Wang K, Zhao Q, Wang S, Kong D, Midgley AC. Design and Evaluation of a Polypeptide that Mimics the Integrin Binding Site for EDA Fibronectin to Block Profibrotic Cell Activity. Int J Mol Sci 2021; 22:ijms22041575. [PMID: 33557232 PMCID: PMC7913925 DOI: 10.3390/ijms22041575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is characterized by excessive production of disorganized collagen- and fibronectin-rich extracellular matrices (ECMs) and is driven by the persistence of myofibroblasts within tissues. A key protein contributing to myofibroblast differentiation is extra domain A fibronectin (EDA-FN). We sought to target and interfere with interactions between EDA-FN and its integrin receptors to effectively inhibit profibrotic activity and myofibroblast formation. Molecular docking was used to assist in the design of a blocking polypeptide (antifibrotic 38-amino-acid polypeptide, AF38Pep) for specific inhibition of EDA-FN associations with the fibroblast-expressed integrins α4β1 and α4β7. Blocking peptides were designed and evaluated in silico before synthesis, confirmation of binding specificity, and evaluation in vitro. We identified the high-affinity EDA-FN C-C′ loop binding cleft within integrins α4β1 and α4β7. The polypeptide with the highest predicted binding affinity, AF38Pep, was synthesized and could achieve specific binding to myofibroblast fibronectin-rich ECM and EDA-FN C-C′ loop peptides. AF38Pep demonstrated potent myofibroblast inhibitory activity at 10 µg/mL and was not cytotoxic. Treatment with AF38Pep prevented integrin α4β1-mediated focal adhesion kinase (FAK) activation and early signaling through extracellular-signal-regulated kinases 1 and 2 (ERK1/2), attenuated the expression of pro-matrix metalloproteinase 9 (MMP9) and pro-MMP2, and inhibited collagen synthesis and deposition. Immunocytochemistry staining revealed an inhibition of α-smooth muscle actin (α-SMA) incorporation into actin stress fibers and attenuated cell contraction. Increases in the expression of mRNA associated with fibrosis and downstream from integrin signaling were inhibited by treatment with AF38Pep. Our study suggested that AF38Pep could successfully interfere with EDA-FN C-C′ loop-specific integrin interactions and could act as an effective inhibitor of fibroblast of myofibroblast differentiation.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
| | - Yifan Tai
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
| | - Yueming Xue
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
| | - Yongzhen Wei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
| | - Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
| | - Qiang Zhao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
| | - Shufang Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
- Correspondence: (S.W.); (A.C.M.); Tel.: +86-1562-004-7851 (A.C.M.)
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
- Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; (L.Z.); (H.Y.); (Y.T.); (Y.X.); (Y.W.); (K.W.); (Q.Z.); (D.K.)
- Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Correspondence: (S.W.); (A.C.M.); Tel.: +86-1562-004-7851 (A.C.M.)
| |
Collapse
|
18
|
Amin A, Mokhdomi TA, Bukhari S, Wani Z, Chikan NA, Shah BA, Koul AM, Majeed U, Farooq F, Qadri A, Qadri RA. Lung cancer cell-derived EDA-containing fibronectin induces an inflammatory response from monocytes and promotes metastatic tumor microenvironment. J Cell Biochem 2021; 122:562-576. [PMID: 33393138 DOI: 10.1002/jcb.29883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/25/2020] [Accepted: 12/22/2020] [Indexed: 12/31/2022]
Abstract
Tumor-associated macrophages (TAMs) play a pivotal role in facilitating tumor growth and metastasis. This tumor-promoting propensity of TAMs sets in as a result of their complex cross-talk with tumor cells mediated primarily by tumor cell-secreted proteins in the tumor microenvironment. To explore such interactions, we employed an immunoscreening approach involving the immunization of Balb-c mice with model human lung carcinoma cell line, A549. From serological examination combined with mass spectrometric analysis, EDA-containing fibronectin (EDAFN ) was identified as a conspicuous immunogenic protein in A549 cell secretome. We showed that A549 secreted EDAFN engages TLR-4 on THP-1 monocytes to drive the proinflammatory response via NF-κB signaling cascade. Conversely, A549 derived EDAFN potentiates their metastatic capacity by inducing epithelial-mesenchymal transition through its autocrine activity. In conclusion, the study proposes a possible mechanism of cellular cross-talk between lung cancer cells and associated monocytes mediated by lung cancer-derived EDAFN and resulting in the establishment of proinflammatory and metastatic tumor microenvironment.
Collapse
Affiliation(s)
- Asif Amin
- Department of Biotechnology, University of Kashmir, Srinagar, India.,Hybridoma Lab, National Institute of Immunology, New Delhi, India
| | - Taseem A Mokhdomi
- Department of Biotechnology, University of Kashmir, Srinagar, India.,Daskdān Innovations Pvt. Ltd., Srinagar, India
| | - Shoiab Bukhari
- Department of Biotechnology, University of Kashmir, Srinagar, India.,The Columbia Center for Translational Immunology, Columbia University Medical Center, New York, USA
| | - Zubair Wani
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | | | - Basit A Shah
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Aabid M Koul
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Umer Majeed
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Faizah Farooq
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Ayub Qadri
- Hybridoma Lab, National Institute of Immunology, New Delhi, India
| | - Raies A Qadri
- Department of Biotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
19
|
Wirth F, Lubosch A, Hamelmann S, Nakchbandi IA. Fibronectin and Its Receptors in Hematopoiesis. Cells 2020; 9:cells9122717. [PMID: 33353083 PMCID: PMC7765895 DOI: 10.3390/cells9122717] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Fibronectin is a ubiquitous extracellular matrix protein that is produced by many cell types in the bone marrow and distributed throughout it. Cells of the stem cell niche produce the various isoforms of this protein. Fibronectin not only provides the cells a scaffold to bind to, but it also modulates their behavior by binding to receptors on the adjacent hematopoietic stem cells and stromal cells. These receptors, which include integrins such as α4β1, α9β1, α4β7, α5β1, αvβ3, Toll-like receptor-4 (TLR-4), and CD44, are found on the hematopoietic stem cell. Because the knockout of fibronectin is lethal during embryonal development and because fibronectin is produced by almost all cell types in mammals, the study of its role in hematopoiesis is difficult. Nevertheless, strong and direct evidence exists for its stimulation of myelopoiesis and thrombopoiesis using in vivo models. Other reviewed effects can be deduced from the study of fibronectin receptors, which showed their activation modifies the behavior of hematopoietic stem cells. Erythropoiesis was only stimulated under hemolytic stress, and mostly late stages of lymphocytic differentiation were modulated. Because fibronectin is ubiquitously expressed, these interactions in health and disease need to be taken into account whenever any molecule is evaluated in hematopoiesis.
Collapse
Affiliation(s)
- Franziska Wirth
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (F.W.); (A.L.); (S.H.)
| | - Alexander Lubosch
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (F.W.); (A.L.); (S.H.)
| | - Stefan Hamelmann
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (F.W.); (A.L.); (S.H.)
| | - Inaam A. Nakchbandi
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (F.W.); (A.L.); (S.H.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-622-156-8744
| |
Collapse
|
20
|
Feng Y, Jiang Z, Zhang Y, Miao X, Yu Q, Xie Z, Yang G. Stem-cell-derived ECM sheet-implant complexes for enhancing osseointegration. Biomater Sci 2020; 8:6647-6656. [PMID: 33074268 DOI: 10.1039/d0bm00980f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Numerous treatment methods have been developed to modify the surface of dental implants to improve cell migration and proliferation, removal torque, and osseointegration. Recent studies have constructed cell sheet-implant complexes with enhanced osteogenic capabilities. However, these complexes have some limitations, such as requirements for complex preparation processes, cell vitality maintenance, strict preservation conditions, and the induction of immunogenicity. Extracellular matrix (ECM) sheets without cells may be a more desirable material. To date, the effect of ECM sheets on implant osseointegration has not been reported. In this study, we fabricated ECM sheet-implant complexes through the combination of rat bone marrow mesenchymal stem cell (BMSC)-derived ECM sheets with sandblasted, large-grit, acid-etched (SLA) implants. These complexes were characterized by light microscopy, scanning electron microscopy (SEM), and immunofluorescence (IF) assays. The adhesion, proliferation, and osteogenic differentiation of BMSCs cultured on ECM sheets were detected in vitro. Then, the ECM sheet-implant complexes were transplanted into the metaphysis of the tibias of rats to evaluate the implant osseointegration in vivo. The results showed that ECM sheets were successfully constructed and showed significantly improved adhesion and proliferation. BMSCs cultured on ECM sheets upregulated the expression levels of the osteogenic-related genes alkaline phosphatase (ALP), bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (Runx2) compared to controls. In vivo, ECM sheet-implant complexes demonstrated superior new bone formation. Our findings proved that the BMSC-derived ECM sheets promoted osseointegration in vitro and in vivo. The current study indicated that the ECM sheet could be an ideal tissue engineering material, and ECM sheet-implant complexes could provide a strategy with low immunogenicity and easy storage and transportation. This research provides a novel strategy for the development of implant surface modification approaches.
Collapse
Affiliation(s)
- Yuting Feng
- Department of Implantology, Affiliated Hospital of Stomatology, Medical College, Zhejiang University, No. 395, Yan'an Road, Xia-Cheng Region, Hangzhou, Zhejiang 310006, China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Fibronectin 1 activates WNT/β-catenin signaling to induce osteogenic differentiation via integrin β1 interaction. J Transl Med 2020; 100:1494-1502. [PMID: 32561820 DOI: 10.1038/s41374-020-0451-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disease leading to fragility fractures and is a major health issue globally. WNT/β-catenin signaling regulates bone-remodeling processes and plays vital roles in OP development. However, the underlying regulatory mechanisms behind WNT/β-catenin signaling in OP requires clarification, as further studies are required to identify novel alternate therapeutic agents to improve OP. Here we report that fibronectin 1 (FN-1) promoted differentiation and mineralization of osteoblasts by activating WNT/β-catenin pathway, in cultured pre-osteoblasts. With isobaric tags for relative and absolute quantitation labeling proteomics analysis, we investigated protein changes in bone samples from OP patients and normal controls. FN-1 accumulated in osteoblasts in bone samples from OP patients and age-related OP mice compared to control group. In addition, we observed that integrin β1 (ITGB1) acts as an indispensable signaling molecule for the interplay between FN-1 and β-catenin, and that FN-1 expression increased, but ITGB1 expression decreased in osteoblasts during OP progression. Therefore, our study reveals a novel explanation for WNT/β-catenin pathway inactivation in OP pathology. Supplying of FN-1 and ITGB1 may provide a potential therapeutic strategy in improving bone formation during OP.
Collapse
|
22
|
Adachi T, Boschetto F, Miyamoto N, Yamamoto T, Marin E, Zhu W, Kanamura N, Tahara Y, Akiyoshi K, Mazda O, Nishimura I, Pezzotti G. In Vivo Regeneration of Large Bone Defects by Cross-Linked Porous Hydrogel: A Pilot Study in Mice Combining Micro Tomography, Histological Analyses, Raman Spectroscopy and Synchrotron Infrared Imaging. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4275. [PMID: 32992758 PMCID: PMC7579234 DOI: 10.3390/ma13194275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 01/25/2023]
Abstract
The transplantation of engineered three-dimensional (3D) bone graft substitutes is a viable approach to the regeneration of severe bone defects. For large bone defects, an appropriate 3D scaffold may be necessary to support and stimulate bone regeneration, even when a sufficient number of cells and cell cytokines are available. In this study, we evaluated the in vivo performance of a nanogel tectonic 3D scaffold specifically developed for bone tissue engineering, referred to as nanogel cross-linked porous-freeze-dry (NanoCliP-FD) gel. Samples were characterized by a combination of micro-computed tomography scanning, Raman spectroscopy, histological analyses, and synchrotron radiation-based Fourier transform infrared spectroscopy. NanoCliP-FD gel is a modified version of a previously developed nanogel cross-linked porous (NanoCliP) gel and was designed to achieve highly improved functionality in bone mineralization. Spectroscopic imaging of the bone tissue grown in vivo upon application of NanoCliP-FD gel enables an evaluation of bone quality and can be employed to judge the feasibility of NanoCliP-FD gel scaffolding as a therapeutic modality for bone diseases associated with large bone defects.
Collapse
Affiliation(s)
- Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
| | - Francesco Boschetto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (W.Z.); (G.P.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Nao Miyamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
| | - Elia Marin
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (W.Z.); (G.P.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (W.Z.); (G.P.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (F.B.); (N.M.); (T.Y.); (E.M.); (N.K.)
| | - Yoshiro Tahara
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto-fu 610-0394, Japan;
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Ichiro Nishimura
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA;
- Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Re-constructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (W.Z.); (G.P.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| |
Collapse
|
23
|
Efthymiou G, Saint A, Ruff M, Rekad Z, Ciais D, Van Obberghen-Schilling E. Shaping Up the Tumor Microenvironment With Cellular Fibronectin. Front Oncol 2020; 10:641. [PMID: 32426283 PMCID: PMC7203475 DOI: 10.3389/fonc.2020.00641] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
Normal tissue homeostasis and architecture restrain tumor growth. Thus, for a tumor to develop and spread, malignant cells must overcome growth-repressive inputs from surrounding tissue and escape immune surveillance mechanisms that curb cancer progression. This is achieved by promoting the conversion of a physiological microenvironment to a pro-tumoral state and it requires a constant dialog between malignant cells and ostensibly normal cells of adjacent tissue. Pro-tumoral reprogramming of the stroma is accompanied by an upregulation of certain extracellular matrix (ECM) proteins and their cognate receptors. Fibronectin (FN) is one such component of the tumor matrisome. This large multidomain glycoprotein dimer expressed over a wide range of human cancers is assembled by cell-driven forces into a fibrillar array that provides an obligate scaffold for the deposition of other matrix proteins and binding sites for functionalization by soluble factors in the tumor microenvironment. Encoded by a single gene, FN regulates the proliferation, motile behavior and fate of multiple cell types, largely through mechanisms that involve integrin-mediated signaling. These processes are coordinated by distinct isoforms of FN, collectively known as cellular FN (as opposed to circulating plasma FN) that arise through alternative splicing of the FN1 gene. Cellular FN isoforms differ in their solubility, receptor binding ability and spatiotemporal expression, and functions that have yet to be fully defined. FN induction at tumor sites constitutes an important step in the acquisition of biological capabilities required for several cancer hallmarks such as sustaining proliferative signaling, promoting angiogenesis, facilitating invasion and metastasis, modulating growth suppressor activity and regulating anti-tumoral immunity. In this review, we will first provide an overview of ECM reprogramming through tumor-stroma crosstalk, then focus on the role of cellular FN in tumor progression with respect to these hallmarks. Last, we will discuss the impact of dysregulated ECM on clinical efficacy of classical (radio-/chemo-) therapies and emerging treatments that target immune checkpoints and explore how our expanding knowledge of the tumor ECM and the central role of FN can be leveraged for therapeutic benefit.
Collapse
Affiliation(s)
| | - Angélique Saint
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.,Centre Antoine Lacassagne, Nice, France
| | - Michaël Ruff
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | - Zeinab Rekad
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | | | | |
Collapse
|
24
|
TLR3 agonists induce fibronectin aggregation by activated astrocytes: a role of pro-inflammatory cytokines and fibronectin splice variants. Sci Rep 2020; 10:532. [PMID: 31953424 PMCID: PMC6969115 DOI: 10.1038/s41598-019-57069-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/21/2019] [Indexed: 01/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system which eventually results in axonal loss mainly due to failure of remyelination. Previously we have shown that the persistent presence of stable astrocyte-derived fibronectin aggregates in MS lesions impairs OPC differentiation, and thereby remyelination. Here we set out to discern whether and, if so, how inflammatory mediators as present in MS lesions trigger astrocytes to form fibronectin aggregates. Our findings revealed that in slice cultures only upon demyelination, the TLR3 agonist Poly(I:C) evoked astrocytes to form fibronectin aggregates. Consistently, pro-inflammatory cytokine-pretreated astrocytes were more susceptible to Poly(I:C)-induced fibronectin aggregation, indicating that astrocytes form fibronectin aggregates upon a double hit by inflammatory mediators. The underlying mechanism involves disrupted fibronectin fibrillogenesis at the cell surface as a result of a cytokine-induced increase in relative mRNA levels of EIIIApos-Fn over EIIIBpos-Fn and a Poly(I:C)-mediated decrease in integrin affinity. Remarkably, fibronectin aggregation is exacerbated by white matter astrocytes compared to grey matter astrocytes, which may be a reflection of higher expression levels of EIIIApos-fibronectin in white matter astrocytes. Hence, interfering with alternative fibronectin splicing and/or TLR3-mediated signaling may prevent fibronectin aggregation and overcome remyelination failure in MS lesions.
Collapse
|
25
|
Huck K, Sens C, Wuerfel C, Zoeller C, A. Nakchbandi I. The Rho GTPase RAC1 in Osteoblasts Controls Their Function. Int J Mol Sci 2020; 21:ijms21020385. [PMID: 31936261 PMCID: PMC7014472 DOI: 10.3390/ijms21020385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/25/2022] Open
Abstract
The regulation of the differentiation of the bone-forming cells, the osteoblasts, is complex. Many signaling pathways converge on the master regulator of osteoblast differentiation Runx2. The role of molecules that integrate several signaling pathways such as the Rho GTPases need to be better understood. We, therefore, asked at which stage Rac1, one of the Rho GTPase, is needed for osteoblast differentiation and whether it is involved in two pathways, the anabolic response to parathyroid hormone and the stimulatory effect of fibronectin isoforms on integrins. Genetic deletion of Rac1 in preosteoblasts using the osterix promoter diminished osteoblast differentiation in vitro. This effect was however similar to the presence of the promoter by itself. We, therefore, applied a Rac1 inhibitor and confirmed a decrease in differentiation. In vivo, Rac1 deletion using the osterix promoter decreased bone mineral density as well as histomorphometric measures of osteoblast function. In contrast, deleting Rac1 in differentiating osteoblasts using the collagen α1(I) promoter had no effects. We then evaluated whether intermittent parathyroid hormone (PTH) was able to affect bone mineral density in the absence of Rac1 in preosteoblasts. The increase in bone mineral density was similar in control animals and in mice in which Rac1 was deleted using the osterix promoter. Furthermore, stimulation of integrin by integrin isoforms was able to enhance osteoblast differentiation, despite the deletion of Rac1. In summary, Rac1 in preosteoblasts is required for normal osteoblast function and bone density, but it is neither needed for PTH-mediated anabolic effects nor for integrin-mediated enhancement of differentiation.
Collapse
Affiliation(s)
- Katrin Huck
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (K.H.); (C.S.); (C.W.); (C.Z.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, and for Biochemistry, 82152 Martinsried, Germany
| | - Carla Sens
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (K.H.); (C.S.); (C.W.); (C.Z.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, and for Biochemistry, 82152 Martinsried, Germany
| | - Carina Wuerfel
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (K.H.); (C.S.); (C.W.); (C.Z.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, and for Biochemistry, 82152 Martinsried, Germany
| | - Caren Zoeller
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (K.H.); (C.S.); (C.W.); (C.Z.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, and for Biochemistry, 82152 Martinsried, Germany
| | - Inaam A. Nakchbandi
- Institute of Immunology, University of Heidelberg, 69120 Heidelberg, Germany; (K.H.); (C.S.); (C.W.); (C.Z.)
- Max-Planck Institute for Medical Research, 69120 Heidelberg, and for Biochemistry, 82152 Martinsried, Germany
- Correspondence: ; Tel.: +49-6221-56-8744; Fax: +49-6221-56-5611
| |
Collapse
|
26
|
Stoetzer M, Alevizakos V, Rahlf B, Gellrich NC, Kampmann A, von See C. The Impact of Different Augmentative Methods on the Expression of Inflammatory Factors. J ORAL IMPLANTOL 2019; 45:356-361. [PMID: 31536443 DOI: 10.1563/aaid-joi-d-19-00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many animal studies show that an intact periosteum plays an important role in osseous regeneration. The potential effect of an in vivo periosteal barrier membrane on the expression of specific proteins has not been examined sufficiently. The aim of the present study is to investigate the influence of the flap preparation method and collagen membrane on the emission of inflammatory factors. This study examines 20 patients with dental implants who had previously undergone an augmentation. A soft tissue sample was taken during augmentation and 3 months later from the same location. Samples were always taken from the margins of a previously prepared mucoperiosteal flap. The flap was raised with a conventional periosteal elevator in the control group and with a piezoelectric device in the test group. In both groups, we covered half of the augmented bone with a native collagen membrane (NCM; Geistlich Bio-Gide). This allowed us to examine the same incision area with and without a membrane. An immunohistochemical analysis was performed for collagen IV, fibronectin, and inflammatory factors such as cluster of differentiation 31 (CD31), cyclooxygenase-2 (COX-2), and interleukin 6 (IL-6). There was a clear difference in the expression of specific proteins after the piezoelectric device and the periosteal elevator were used. The expression of fibronectin, IL-6, and COX-2 was higher after preparation with the periosteal elevator than after piezoelectric periosteum dissection. The expression of collagen IV was higher after the piezoelectric procedure. No difference was observed for CD31. The membrane had no effect on the expression of collagen IV, fibronectin, IL-6, and COX-2. The type of periosteal preparation influences the expression of specific proteins. With regard to the factors examined here, NCM did not appear to influence the wound healing cascade.
Collapse
Affiliation(s)
| | - Vasilios Alevizakos
- Danube Private University, Center for Digital Technologies in Dentistry and CAD/CAM, Krems an der Donau, Austria
| | | | | | | | - Constantin von See
- Danube Private University, Center for Digital Technologies in Dentistry and CAD/CAM, Krems an der Donau, Austria
| |
Collapse
|
27
|
Chen YY, Fang WH, Wang CC, Kao TW, Chang YW, Yang HF, Wu CJ, Sun YS, Chen WL. Crosssectional Assessment of Bone Mass Density in Adults with Hepatitis B Virus and Hepatitis C Virus Infection. Sci Rep 2019; 9:5069. [PMID: 30911051 PMCID: PMC6433944 DOI: 10.1038/s41598-019-41674-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is one of the major complications in chronic hepatitis B virus (HBV) and hepatitis C (HCV) infection. However, few studies had examined the relationship between hepatic viral infection with bone loss. Our aim was to investigate the association between hepatic viral infection with bone mineral density (BMD) in a cross-sectional study. Participants who attended the health examinations at the Tri-Service General Hospital (TSGH), Taiwan, were enrolled in the study. Diagnosis of viral hepatitis was confirmed by the serum viral markers of hepatitis B surface antigen (HBsAg) and anti-HCV, and BMD measurement was performed by the bone densitometry. Subjects were divided into four groups by the presence of viral markers. The association between hepatic viral infection and BMD was examined by a multivariate linear regression model. HBV infection was inversely associated with BMD after full adjusting with β values of -0.17 (95% CI: -0.29, -0.05) (p < 0.05). The relationship remained significant in males (β = -0.16, 95% CI = -0.31, -0.01) (p < 0.05). In subjects with body mass index less than 30 HBV infection was associated with reduced BMD (β = -0.16, 95% CI = -0.29, -0.02) (p < 0.05). However, HCV infection was only associated with an increase in BMD in patients with BMI less than 30 (β = 0.17, 95% CI = 0.21, 0.32) (p < 0.05). Chronic HBV infection was significantly associated with reduced BMD in males. The impact of viral hepatitis on bone health deserves further investigation for the potential pathophysiological mechanisms.
Collapse
Affiliation(s)
- Yuan-Yuei Chen
- Department of Internal Medicine, Tri-Service General Hospital Songshan Branch; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wen-Hui Fang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chung-Ching Wang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Tung-Wei Kao
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Graduate Institute of Clinical Medical, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yaw-Wen Chang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Hui-Fang Yang
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chen-Jung Wu
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Family Medicine, Department of Community Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan, Republic of China
| | - Yu-Shan Sun
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China. .,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital; and School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| |
Collapse
|
28
|
Lopes HB, Freitas GP, Elias CN, Tye C, Stein JL, Stein GS, Lian JB, Rosa AL, Beloti MM. Participation of integrin β3 in osteoblast differentiation induced by titanium with nano or microtopography. J Biomed Mater Res A 2019; 107:1303-1313. [PMID: 30707485 DOI: 10.1002/jbm.a.36643] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/03/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
The major role of integrins is to mediate cell adhesion but some of them are involved in the osteoblasts-titanium (Ti) interactions. In this study, we investigated the participation of integrins in osteoblast differentiation induced by Ti with nanotopography (Ti-Nano) and with microtopography (Ti-Micro). By using a PCR array, we observed that, compared with Ti-Micro, Ti-Nano upregulated the expression of five integrins in mesenchymal stem cells, including integrin β3, which increases osteoblast differentiation. Silencing integrin β3, using CRISPR-Cas9, in MC3T3-E1 cells significantly reduced the osteoblast differentiation induced by Ti-Nano in contrast to the effect on T-Micro. Concomitantly, integrin β3 silencing downregulated the expression of integrin αv, the parent chain that combines with other integrins and several components of the Wnt/β-catenin and BMP/Smad signaling pathways, all involved in osteoblast differentiation, only in cells cultured on Ti-Nano. Taken together, our results showed the key role of integrin β3 in the osteogenic potential of Ti-Nano but not of Ti-Micro. Additionally, we propose a novel mechanism to explain the higher osteoblast differentiation induced by Ti-Nano that involves an intricate regulatory network triggered by integrin β3 upregulation, which activates the Wnt and BMP signal transductions. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1303-1313, 2019.
Collapse
Affiliation(s)
- Helena B Lopes
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gileade P Freitas
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos N Elias
- Biomaterials Laboratory, Instituto Militar de Engenharia, Rio de Janeiro, RJ, Brazil
| | - Coralee Tye
- Department of Biochemistry, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jane B Lian
- Department of Biochemistry, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Adalberto L Rosa
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcio M Beloti
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
29
|
Nanogel tectonic porous 3D scaffold for direct reprogramming fibroblasts into osteoblasts and bone regeneration. Sci Rep 2018; 8:15824. [PMID: 30361649 PMCID: PMC6202359 DOI: 10.1038/s41598-018-33892-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/08/2018] [Indexed: 11/20/2022] Open
Abstract
Transplantation of engineered three-dimensional (3D) bone tissue may provide therapeutic benefits to patients with various bone diseases. To achieve this goal, appropriate 3D scaffolds and cells are required. In the present study, we devised a novel nanogel tectonic material for artificial 3D scaffold, namely the nanogel-cross-linked porous (NanoCliP)-freeze-dried (FD) gel, and estimated its potential as a 3D scaffold for bone tissue engineering. As the osteoblasts, directly converted osteoblasts (dOBs) were used, because a large number of highly functional osteoblasts could be induced from fibroblasts that can be collected from patients with a minimally invasive procedure. The NanoCliP-FD gel was highly porous, and fibronectin coating of the gel allowed efficient adhesion of the dOBs, so that the cells occupied the almost entire surface of the walls of the pores after culturing for 7 days. The dOBs massively produced calcified bone matrix, and the culture could be continued for at least 28 days. The NanoCliP-FD gel with dOBs remarkably promoted bone regeneration in vivo after having been grafted to bone defect lesions that were artificially created in mice. The present findings suggest that the combination of the NanoCliP-FD gel and dOBs may provide a feasible therapeutic modality for bone diseases.
Collapse
|
30
|
Kudo A, Kii I. Periostin function in communication with extracellular matrices. J Cell Commun Signal 2017; 12:301-308. [PMID: 29086200 DOI: 10.1007/s12079-017-0422-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Periostin is a secretory protein with a multi-domain structure, comprising an amino-terminal cysteine-rich EMI domain, four internal FAS 1 domains, and a carboxyl-terminal hydrophilic domain. These adjacent domains bind to extracellular matrix proteins (type I collagen, fibronectin, tenascin-C, and laminin γ2), and BMP-1 that catalyzes crosslinking of type I collagen, and proteoglycans, which play a role in cell adhesion. The binding sites on periostin have been demonstrated to contribute to the mechanical strength of connective tissues, enhancing intermolecular interactions in close proximity and their assembly into extracellular matrix architectures, where periostin plays further essential roles in physiological maintenance and pathological progression. Furthermore, periostin also binds to Notch 1 and CCN3, which have functions in maintenance of stemness, thus opening up a new field of periostin action.
Collapse
Affiliation(s)
- Akira Kudo
- International Frontier, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan. .,Showa University, Tokyo, 142-8555, Japan.
| | - Isao Kii
- Common Facilities Unit, Integrated Research Group, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub, 6-7-3 Minatojima-minamimachi, Chūō-ku, Kobe, Hyogo, 650-0047, Japan.,Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| |
Collapse
|
31
|
Rossnagl S, Ghura H, Groth C, Altrock E, Jakob F, Schott S, Wimberger P, Link T, Kuhlmann JD, Stenzl A, Hennenlotter J, Todenhöfer T, Rojewski M, Bieback K, Nakchbandi IA. A Subpopulation of Stromal Cells Controls Cancer Cell Homing to the Bone Marrow. Cancer Res 2017; 78:129-142. [PMID: 29066511 DOI: 10.1158/0008-5472.can-16-3507] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/26/2017] [Accepted: 10/18/2017] [Indexed: 11/16/2022]
Abstract
Breast and prostate cancer cells home to the bone marrow, where they presumably hijack the hematopoietic stem cell niche. We characterize here the elusive premetastatic niche by examining the role of mesenchymal stromal cells (MSC) in cancer cell homing. Decreasing the number of MSC pharmacologically enhanced cancer cell homing to the bone marrow in mice. In contrast, increasing the number of these MSCs by various interventions including G-CSF administration diminished cancer cell homing. The MSC subpopulation that correlated best with cancer cells expressed stem, endothelial, and pericytic cell markers, suggesting these cells represent an undifferentiated component of the niche with vascular commitment. In humans, a MSC subpopulation carrying markers for endothelial and pericytic cells was lower in the presence of cytokeratin+ cells in bone marrow. Taken together, our data show that a subpopulation of MSC with both endothelial and pericytic cell surface markers suppresses the homing of cancer cells to the bone marrow. Similar to the presence of cytokeratin+ cells in the bone marrow, this MSC subpopulation could prove useful in determining the risk of metastatic disease, and its manipulation might offer a new possibility for diminishing bone metastasis formation.Significance: These findings establish an inverse relationship between a subpopulation of mesenchymal stromal cells and cancer cells in the bone marrow. Cancer Res; 78(1); 129-42. ©2017 AACR.
Collapse
Affiliation(s)
- Stephanie Rossnagl
- Max-Planck Institute for Biochemistry, Martinsried, Germany.,Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Hiba Ghura
- Max-Planck Institute for Biochemistry, Martinsried, Germany.,Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Christopher Groth
- Max-Planck Institute for Biochemistry, Martinsried, Germany.,Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Eva Altrock
- Max-Planck Institute for Biochemistry, Martinsried, Germany.,Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Sarah Schott
- Department of Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, University of Dresden, Dresden, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, University of Dresden, Dresden, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, University of Dresden, Dresden, Germany
| | - Arnulf Stenzl
- Department of Urology, University of Tuebingen, Tuebingen, Germany
| | | | | | - Markus Rojewski
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Mannheim, Germany
| | - Inaam A Nakchbandi
- Max-Planck Institute for Biochemistry, Martinsried, Germany. .,Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
32
|
Fibronectin promotes directional persistence in fibroblast migration through interactions with both its cell-binding and heparin-binding domains. Sci Rep 2017. [PMID: 28623309 PMCID: PMC5473823 DOI: 10.1038/s41598-017-03701-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The precise mechanisms through which insoluble, cell-adhesive ligands induce and regulate directional cell migration remain obscure. We recently demonstrated that elevated surface density of physically adsorbed plasma fibronectin (FN) promotes high directional persistence in fibroblast migration. While cell-FN association through integrins α5β1 and αvβ3 was necessary, substrates that selectively engaged these integrins did not support the phenotype. We here show that high directional persistence necessitates a combination of the cell-binding and C-terminal heparin-binding domains of FN, but does not require the engagement of syndecan-4 or integrin α4β1. FN treatment with various fixation agents indicated that associated changes in fibroblast motility were due to biochemical changes, rather than alterations in its physical state. The nature of the coating determined the ability of fibroblasts to assemble endogenous or exogenous FN, while FN fibrillogenesis played a minor, but significant, role in regulating directionality. Interestingly, knockdown of cellular FN abolished cell motility altogether, demonstrating a requirement for intracellular processes in enabling fibroblast migration on FN. Lastly, kinase inhibition experiments revealed that regulation of cell speed and directional persistence are decoupled. Hence, we have identified factors that render full-length FN a promoter of directional migration and discuss the possible, relevant mechanisms.
Collapse
|