1
|
Mohamed DA, Fouda K, Mabrok HB, El-Shamarka ME, Hamed IM. Sourdough bread as nutritional intervention tool for improvement of cognitive dysfunction in diabetic rats. BMC Nutr 2024; 10:53. [PMID: 38528644 DOI: 10.1186/s40795-024-00861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The current research targeted to study the impact of nutritional intervention by two sourdough breads in improvement of cognitive dysfunction in diabetic rats. METHODS Type-2 diabetes was induced in rats by Streptozotocin-Nicotinamide (STZ-NC). Diabetic rats were fed on balanced diet or balanced diet containing 20% of sourdough bread I or II for a month. Lipid profile, oxidative stress, inflammatory markers and cognitive functions were assessed in all rats. Gene expression of brain-derived neurotrophic factor (BDNF) and nuclear respiratory factor 2 (NRF-2) were assessed in hippocampal tissue, while expression of phosphoenol pyruvate carboxy kinase (PEPCK), and glucose transporter 2 (GLUT2) genes were evaluated in hepatic tissue. Chemical composition and fatty acids profile were evaluated in the prepared sourdough bread. RESULTS Sourdough bread II showed higher content of phenolic compounds, fat, fiber and carbohydrates. Fatty acids profile revealed that sourdough bread I was higher in saturated fatty acids (16.08%), while sourdough bread sample II was higher in unsaturated fatty acids (79.33%). Sourdough bread I or II feeding rats' showed significant improvement in hyperglycemia, oxidative stress markers, inflammatory markers, lipid profile, liver and kidney functions in association with improvement in cognitive function. Gene expression of BDNF and NRF2 in hippocampal tissue were increased significantly, while hepatic GLUT2 and PEPCK gene expression were down-regulated in diabetic given sourdough bread I or II. CONCLUSION Sourdough bread II was superior in all the studied parameters. The anti-diabetic effect and protection from cognitive dysfunction of sourdough bread samples may be ascribed to the occurrence of dietary fibers, phenolic compounds, and polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Doha A Mohamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| | - Karem Fouda
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Hoda B Mabrok
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Marwa E El-Shamarka
- Toxicology and Narcotics Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ibrahim M Hamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
2
|
Costa GA, de Gusmão Taveiros Silva NK, Marianno P, Chivers P, Bailey A, Camarini R. Environmental Enrichment Increased Bdnf Transcripts in the Prefrontal Cortex: Implications for an Epigenetically Controlled Mechanism. Neuroscience 2023; 526:277-289. [PMID: 37419403 DOI: 10.1016/j.neuroscience.2023.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Environmental enrichment (EE) is a condition characterized by its complexity regarding social contact, exposure to novelty, tactile stimuli and voluntary exercise, also is considered as a eustress model. The impact of EE on brain physiology and behavioral outcomes may be at least partly underpinned by mechanisms involving the modulation of the brain-derived neurotrophic factor (BDNF), but the connection between specific Bdnf exon expression and their epigenetic regulation remain poorly understood. This study aimed to dissect the transcriptional and epigenetic regulatory effect of 54-day exposure to EE on BDNF by analysing individual BDNF exons mRNA expression and the DNA methylation profile of a key transcriptional regulator of the Bdnf gene, exon IV, in the prefrontal cortex (PFC) of C57BL/6 male mice (sample size = 33). Bdnf exons II, IV, VI and IX mRNA expression were upregulated and methylation levels at two CpG sites of exon IV were reduced in the PFC of EE mice. As deficit in exon IV expression has also been causally implicated in stress-related psychopathologies, we also assessed anxiety-like behavior and plasma corticosterone levels in these mice to determine any potential correlation. However, no changes were observed in EE mice. The findings may suggest an EE-induced epigenetic control of BDNF exon expression via a mechanism involving exon IV methylation. The findings of this study contribute to the current literature by dissecting the Bdnf gene topology in the PFC where transcriptional and epigenetic regulatory effect of EE takes place.
Collapse
Affiliation(s)
- Gabriel Araújo Costa
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Priscila Marianno
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priti Chivers
- School of Biosciences & Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK.
| | - Rosana Camarini
- Pharmacology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Correia AS, Cardoso A, Vale N. BDNF Unveiled: Exploring Its Role in Major Depression Disorder Serotonergic Imbalance and Associated Stress Conditions. Pharmaceutics 2023; 15:2081. [PMID: 37631295 PMCID: PMC10457827 DOI: 10.3390/pharmaceutics15082081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a significant role in the survival and development of neurons, being involved in several diseases such as Alzheimer's disease and major depression disorder. The association between BDNF and major depressive disorder is the subject of extensive research. Indeed, numerous studies indicate that decreased levels of BDNF are linked to an increased occurrence of depressive symptoms, neuronal loss, and cortical atrophy. Moreover, it has been observed that antidepressive therapy can help restore BDNF levels. In this review, we will focus on the role of BDNF in major depression disorder serotonergic imbalance and associated stress conditions, particularly hypothalamic-pituitary-adrenal (HPA) axis dysregulation and oxidative stress. All of these features are highly connected to BDNF signaling pathways in the context of this disease, and exploring this topic will aim to advance our understanding of the disorder, improve diagnostic and treatment approaches, and potentially identify new therapeutic targets to alleviate the heavy burden of depression on society.
Collapse
Affiliation(s)
- Ana Salomé Correia
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Armando Cardoso
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
4
|
Łuczkowska K, Kulig P, Baumert B, Machaliński B. Brain-derived neurotrophic factor: focus on the pathogenesis of multiple myeloma and the development of treatment-induced peripheral neuropathy. Leuk Lymphoma 2022; 63:3044-3051. [PMID: 35999712 DOI: 10.1080/10428194.2022.2113535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
For many years, intensive research has been carried out on the in-depth understanding of the pathogenesis of multiple myeloma (MM). Nevertheless, the multifactorial nature of the disease, the development of drug resistance, and the side effects of therapy, make it difficult to effectively treat patients. One of the many factors involved in the pathogenesis of MM is brain-derived neurotrophic factor (BDNF). This factor is widely described as a neuroregenerative and neuroprotective agent, but it also regulates non-neuronal cell functions, such as proliferation, apoptosis, and viability. Therefore, BDNF appears to be a good therapeutic target in MM. On the other hand, its decreased concentration during treatment closely correlates with the development of peripheral neuropathy (PN). BDNF dualism requires a detailed understanding of its action on individual molecular mechanisms. Perhaps the optimization of the BDNF level will contribute to the improvement of MM treatment and the reduction of chemotherapy side effects.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Bartłomiej Baumert
- Department of Bone Marrow Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland.,Department of Bone Marrow Transplantation, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
5
|
Rentería I, García-Suárez PC, Fry AC, Moncada-Jiménez J, Machado-Parra JP, Antunes BM, Jiménez-Maldonado A. The Molecular Effects of BDNF Synthesis on Skeletal Muscle: A Mini-Review. Front Physiol 2022; 13:934714. [PMID: 35874524 PMCID: PMC9306488 DOI: 10.3389/fphys.2022.934714] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) is a member of the nerve growth factor family which is generated mainly by the brain. Its main role involve synaptic modulation, neurogenesis, neuron survival, immune regulation, myocardial contraction, and angiogenesis in the brain. Together with the encephalon, some peripheral tissues synthesize BDNF like skeletal muscle. On this tissue, this neurotrophin participates on cellular mechanisms related to muscle function maintenance and plasticity as reported on recent scientific works. Moreover, during exercise stimuli the BDNF contributes directly to strengthening neuromuscular junctions, muscle regeneration, insulin-regulated glucose uptake and β-oxidation processes in muscle tissue. Given its vital relevance on many physiological mechanisms, the current mini-review focuses on discussing up-to-date knowledge about BDNF production in skeletal muscle and how this neurotrophin impacts skeletal muscle biology.
Collapse
Affiliation(s)
- I Rentería
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - P C García-Suárez
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico.,Department of Health, Sports and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - A C Fry
- Department of Health, Sports and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - J Moncada-Jiménez
- Human Movement Sciences Research Center (CIMOHU), University of Costa Rica, San José, Costa Rica
| | - J P Machado-Parra
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - B M Antunes
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - A Jiménez-Maldonado
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| |
Collapse
|
6
|
Budiariati V, Rinendyaputri R, Noviantari A, Haq NMD, Budiono D, Pristihadi DN, Juliandi B, Fahrudin M, Boediono A. Conditioned medium of E17 rat brain cells induced differentiation of primary colony of mice blastocyst into neuron-like cells. J Vet Sci 2021; 22:e86. [PMID: 34854268 PMCID: PMC8636651 DOI: 10.4142/jvs.2021.22.e86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/01/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Background Conditioned medium is the medium obtained from certain cultured cells and contained secretome from the cells. The secretome, which can be in the form of growth factors, cytokines, exosomes, or other proteins secreted by the cells, can induce the differentiation of cells that still have pluripotent or multipotent properties. Objectives This study examined the effects of conditioned medium derived from E17 rat brain cells on cells with pluripotent properties. Methods The conditioned medium used in this study originated from E17 rat brain cells. The CM was used to induce the differentiation of primary colonies of mice blastocysts. Primary colonies were stained with alkaline phosphatase to analyze the pluripotency. The morphological changes in the colonies were examined, and the colonies were stained with GFAP and Neu-N markers on days two and seven after adding the conditioned medium. Results The conditioned medium could differentiate the primary colony, beginning with the formation of embryoid-body-like structure; round GFAP positive cells were identified. Finally, neuron-like cells testing positive for Neu-N were observed on the seventh day after adding the conditioned medium. Conclusions Conditioned medium from different species, in this case, E17 rat brain cells, induced and promoted the differentiation of the primary colony from mice blastocysts into neuron-like cells. The addition of CM mediated neurite growth in the differentiation process.
Collapse
Affiliation(s)
- Vista Budiariati
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Ratih Rinendyaputri
- Center for Research and Development of Biomedical and Basic Health Technology, National Institute of Health Research and Development, Ministry of Health Republic of Indonesia, Jakarta 10560, Indonesia
| | - Ariyani Noviantari
- Center for Research and Development of Biomedical and Basic Health Technology, National Institute of Health Research and Development, Ministry of Health Republic of Indonesia, Jakarta 10560, Indonesia
| | - Noer Muhammad Dliyaul Haq
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia
| | - Dwi Budiono
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia
| | - Diah Nugrahani Pristihadi
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia
| | - Berry Juliandi
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Mokhamad Fahrudin
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia
| | - Arief Boediono
- Department of Anatomy, Physiology, and Pharmacology, Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
7
|
Polansky H, Goral B. How an increase in the copy number of HSV-1 during latency can cause Alzheimer's disease: the viral and cellular dynamics according to the microcompetition model. J Neurovirol 2021; 27:895-916. [PMID: 34635992 DOI: 10.1007/s13365-021-01012-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 04/28/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
Numerous studies observed a link between the herpes smplex virus-1 (HSV-1) and Alzheimer's disease. However, the exact viral and cellular dynamics that lead from an HSV-1 infection to Alzheimer's disease are unknown. In this paper, we use the microcompetition model to formulate these dynamics by connecting seemingly unconnected observations reported in the literature. We concentrate on four pathologies characteristic of Alzheimer's disease. First, we explain how an increase in the copy number of HSV-1 during latency can decrease the expression of BECN1/Beclin1, the degradative trafficking protein, which, in turn, can cause a dysregulation of autophagy and Alzheimer's disease. Second, we show how an increase in the copy number of the latent HSV-1 can decrease the expression of many genes important for mitochondrial genome metabolism, respiratory chain, and homeostasis, which can lead to oxidative stress and neuronal damage, resulting in Alzheimer's disease. Third, we describe how an increase in this copy number can reduce the concentration of the NMDA receptor subunits NR1 and NR2b (Grin1 and Grin2b genes), and brain derived neurotrophic factor (BDNF), which can cause an impaired synaptic plasticity, Aβ accumulation and eventually Alzheimer's disease. Finally, we show how an increase in the copy number of HSV-1 in neural stem/progenitor cells in the hippocampus during the latent phase can lead to an abnormal quantity and quality of neurogenesis, and the clinical presentation of Alzheimer's disease. Since the current understanding of the dynamics and homeostasis of the HSV-1 reservoir during latency is limited, the proposed model represents only a first step towards a complete understanding of the relationship between the copy number of HSV-1 during latency and Alzheimer's disease.
Collapse
Affiliation(s)
- Hanan Polansky
- The Center for the Biology of Chronic Disease (CBCD), 3 Germay Dr, Wilmington, DE, 19804, USA.
| | - Benjamin Goral
- The Center for the Biology of Chronic Disease (CBCD), 3 Germay Dr, Wilmington, DE, 19804, USA
| |
Collapse
|
8
|
Unterman I, Bloch I, Cazacu S, Kazimirsky G, Ben-Zeev B, Berman BP, Brodie C, Tabach Y. Expanding the MECP2 network using comparative genomics reveals potential therapeutic targets for Rett syndrome. eLife 2021; 10:e67085. [PMID: 34355696 PMCID: PMC8346285 DOI: 10.7554/elife.67085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Inactivating mutations in the Methyl-CpG Binding Protein 2 (MECP2) gene are the main cause of Rett syndrome (RTT). Despite extensive research into MECP2 function, no treatments for RTT are currently available. Here, we used an evolutionary genomics approach to construct an unbiased MECP2 gene network, using 1028 eukaryotic genomes to prioritize proteins with strong co-evolutionary signatures with MECP2. Focusing on proteins targeted by FDA-approved drugs led to three promising targets, two of which were previously linked to MECP2 function (IRAK, KEAP1) and one that was not (EPOR). The drugs targeting these three proteins (Pacritinib, DMF, and EPO) were able to rescue different phenotypes of MECP2 inactivation in cultured human neural cell types, and appeared to converge on Nuclear Factor Kappa B (NF-κB) signaling in inflammation. This study highlights the potential of comparative genomics to accelerate drug discovery, and yields potential new avenues for the treatment of RTT.
Collapse
Affiliation(s)
- Irene Unterman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| | - Idit Bloch
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| | - Simona Cazacu
- Hermelin Brain Tumor Center, Henry Ford HospitalDetroitUnited States
| | - Gila Kazimirsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Bruria Ben-Zeev
- Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical CenterRamat GanIsrael
| | - Benjamin P Berman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| | - Chaya Brodie
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| |
Collapse
|
9
|
Parashar D, Nair B, Geethadevi A, George J, Nair A, Tsaih SW, Kadamberi IP, Gopinadhan Nair GK, Lu Y, Ramchandran R, Uyar DS, Rader JS, Ram PT, Mills GB, Pradeep S, Chaluvally-Raghavan P. Peritoneal Spread of Ovarian Cancer Harbors Therapeutic Vulnerabilities Regulated by FOXM1 and EGFR/ERBB2 Signaling. Cancer Res 2020; 80:5554-5568. [PMID: 33087324 DOI: 10.1158/0008-5472.can-19-3717] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/06/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022]
Abstract
Peritoneal spread is the primary mechanism of metastasis of ovarian cancer, and survival of ovarian cancer cells in the peritoneal cavity as nonadherent spheroids and their adherence to the mesothelium of distant organs lead to cancer progression, metastasis, and mortality. However, the mechanisms that govern this metastatic process in ovarian cancer cells remain poorly understood. In this study, we cultured ovarian cancer cell lines in adherent and nonadherent conditions in vitro and analyzed changes in mRNA and protein levels to identify mechanisms of tumor cell survival and proliferation in adherent and nonadherent cells. EGFR or ERBB2 upregulated ZEB1 in nonadherent cells, which caused resistance to cell death and increased tumor-initiating capacity. Conversely, Forkhead box M1 (FOXM1) was required for the induction of integrin β1, integrin-α V, and integrin-α 5 for adhesion of cancer cells. FOXM1 also upregulated ZEB1, which could act as a feedback inhibitor of FOXM1, and caused the transition of adherent cells to nonadherent cells. Strikingly, the combinatorial treatment with lapatinib [dual kinase inhibitor of EGFR (ERBB1) and ERBB2] and thiostrepton (FOXM1 inhibitor) reduced growth and peritoneal spread of ovarian cancer cells more effectively than either single-agent treatment in vivo. In conclusion, these results demonstrate that FOXM1 and EGFR/ERBB2 pathways are key points of vulnerability for therapy to disrupt peritoneal spread and adhesion of ovarian cancer cells. SIGNIFICANCE: This study describes the mechanism exhibited by ovarian cancer cells required for adherent cell transition to nonadherent form during peritoneal spread and metastasis. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/24/5554/F1.large.jpg.
Collapse
Affiliation(s)
- Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bindu Nair
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anjali Geethadevi
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jasmine George
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ajay Nair
- Department of Systems Biology, Columbia University, New York, New York
| | - Shirng-Wern Tsaih
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ishaque P Kadamberi
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Yiling Lu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ramani Ramchandran
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Denise S Uyar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Janet S Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Prahlad T Ram
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Developmental and Cancer Biology, Knight Cancer Institute Oregon Health Science University, Oregon, Portland, Oregon
| | - Sunila Pradeep
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin. .,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pradeep Chaluvally-Raghavan
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin. .,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
10
|
Zakharova IO, Akhmetshina AO, Bayunova LV, Kizhaeva LR, Avrova NF. The Effect of Alpha-Tocopherol on
Viability of PC12 Cells during Oxidative Stress and Expression of
Genes Encoding Pro- and Anti-Apoptotic Mitochondrial Proteins, SOD2
and Transcription Factors NRF-1, NRF-2 and TFAM. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093020030084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Auchter AM, Barrett DW, Monfils MH, Gonzalez-Lima F. Methylene Blue Preserves Cytochrome Oxidase Activity and Prevents Neurodegeneration and Memory Impairment in Rats With Chronic Cerebral Hypoperfusion. Front Cell Neurosci 2020; 14:130. [PMID: 32508596 PMCID: PMC7251060 DOI: 10.3389/fncel.2020.00130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Chronic cerebral hypoperfusion in neurocognitive disorders diminishes cytochrome oxidase activity leading to neurodegenerative effects and impairment of learning and memory. Methylene blue at low doses stimulates cytochrome oxidase activity and may thus counteract the adverse effects of cerebral hypoperfusion. However, the effects of methylene blue on cytochrome oxidase activity during chronic cerebral hypoperfusion have not been described before. To test this hypothesis, rats underwent bilateral carotid artery occlusion or sham surgery, received daily 4 mg/kg methylene blue or saline injections, and learned a visual water task. Brain mapping of cytochrome oxidase activity was done by quantitative enzyme histochemistry. Permanent carotid occlusion for 1 month resulted in decreased cytochrome oxidase activity in visual cortex, prefrontal cortex, perirhinal cortex, hippocampus and amygdala, and weaker interregional correlation of cytochrome oxidase activity between these regions. Methylene blue preserved cytochrome oxidase activity in regions affected by carotid occlusion and strengthened their interregional correlations of cytochrome oxidase activity, which prevented neurodegenerative effects and facilitated task-specific learning and memory. Brain-behavior correlations revealed positive correlations between performance and brain regions in which cytochrome oxidase activity was preserved by methylene blue. These results are the first to demonstrate that methylene blue prevents neurodegeneration and memory impairment by preserving cytochrome oxidase activity and interregional correlation of cytochrome oxidase activity in brain regions susceptible to chronic hypoperfusion. This demonstration provides further support for the hypothesis that lower cerebral blood flow results in an Alzheimer's-like syndrome and that stimulating cytochrome oxidase activity with low-dose methylene blue is neuroprotective.
Collapse
Affiliation(s)
| | | | | | - F. Gonzalez-Lima
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
12
|
Louis Sam Titus ASC, Sharma D, Kim MS, D'Mello SR. The Bdnf and Npas4 genes are targets of HDAC3-mediated transcriptional repression. BMC Neurosci 2019; 20:65. [PMID: 31883511 PMCID: PMC6935488 DOI: 10.1186/s12868-019-0546-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Background Histone deacetylase-3 (HDAC3) promotes neurodegeneration in various cell culture and in vivo models of neurodegeneration but the mechanism by which HDAC3 exerts neurotoxicity is not known. HDAC3 is known to be a transcriptional co-repressor. The goal of this study was to identify transcriptional targets of HDAC3 in an attempt to understand how it promotes neurodegeneration. Results We used chromatin immunoprecipitation analysis coupled with deep sequencing (ChIP-Seq) to identify potential targets of HDAC3 in cerebellar granule neurons. One of the genes identified was the activity-dependent and neuroprotective transcription factor, Neuronal PAS Domain Protein 4 (Npas4). We confirmed using ChIP that in healthy neurons HDAC3 associates weakly with the Npas4 promoter, however, this association is robustly increased in neurons primed to die. We find that HDAC3 also associates differentially with the brain-derived neurotrophic factor (Bdnf) gene promoter, with higher association in dying neurons. In contrast, association of HDAC3 with the promoters of other neuroprotective genes, including those encoding c-Fos, FoxP1 and Stat3, was barely detectable in both healthy and dying neurons. Overexpression of HDAC3 leads to a suppression of Npas4 and Bdnf expression in cortical neurons and treatment with RGFP966, a chemical inhibitor of HDAC3, resulted in upregulation of their expression. Expression of HDAC3 also repressed Npas4 and Bdnf promoter activity. Conclusion Our results suggest that Bdnf and Npas4 are transcriptional targets of Hdac3-mediated repression. HDAC3 inhibitors have been shown to protect against behavioral deficits and neuronal loss in mouse models of neurodegeneration and it is possible that these inhibitors work by upregulating neuroprotective genes like Bdnf and Npas4.
Collapse
Affiliation(s)
- Anto Sam Crosslee Louis Sam Titus
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA.,Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Dharmendra Sharma
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA.,Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Min Soo Kim
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA. .,, Dallas, TX, 75243, USA.
| |
Collapse
|
13
|
Chicherin IV, Dashinimaev E, Baleva M, Krasheninnikov I, Levitskii S, Kamenski P. Cytochrome c Oxidase on the Crossroads of Transcriptional Regulation and Bioenergetics. Front Physiol 2019; 10:644. [PMID: 31231235 PMCID: PMC6558401 DOI: 10.3389/fphys.2019.00644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are the organelles of eukaryotic cells responsible for the ATP production by means of the electron transfer chain (ETC). Its work is under strict genetic control providing the correct assembly of the enzyme complexes and the interface to adapt the energetic demands of the cell to the environment. These mechanisms are particularly developed in the cells with high energy consumption, like neurons and myocytes. This review summarizes several aspects of the involvement of the ETC complexes in the transcriptional control mechanisms of the neurons and other cells. Their influence on the differentiation of neurons is also discussed.
Collapse
Affiliation(s)
- Ivan Vladimirovich Chicherin
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, Russia
| | - Erdem Dashinimaev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Mariia Baleva
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Igor Krasheninnikov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey Levitskii
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Piotr Kamenski
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
14
|
Buchan MJ. Transient downregulation of BDNF is required for GABAergic maturation in rat primary visual cortex. J Physiol 2018; 597:673-675. [PMID: 30506569 DOI: 10.1113/jp277386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Matthew J Buchan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| |
Collapse
|
15
|
Cao D, Cui J, Cao D, Guo C, Min G, Liu M, Li L. S-adenosylmethionine reduces the inhibitory effect of Aβ on BDNF expression through decreasing methylation level of BDNF exon Ⅳ in rats. Biochem Biophys Res Commun 2018; 495:2609-2615. [DOI: 10.1016/j.bbrc.2017.12.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 12/30/2017] [Indexed: 12/27/2022]
|
16
|
Chen H, Lombès M, Le Menuet D. Glucocorticoid receptor represses brain-derived neurotrophic factor expression in neuron-like cells. Mol Brain 2017; 10:12. [PMID: 28403881 PMCID: PMC5389111 DOI: 10.1186/s13041-017-0295-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in many functions such as neuronal growth, survival, synaptic plasticity and memorization. Altered expression levels are associated with many pathological situations such as depression, epilepsy, Alzheimer’s, Huntington’s and Parkinson’s diseases. Glucocorticoid receptor (GR) is also crucial for neuron functions, via binding of glucocorticoid hormones (GCs). GR actions largely overlap those of BDNF. It has been proposed that GR could be a regulator of BDNF expression, however the molecular mechanisms involved have not been clearly defined yet. Herein, we analyzed the effect of a GC agonist dexamethasone (DEX) on BDNF expression in mouse neuronal primary cultures and in the newly characterized, mouse hippocampal BZ cell line established by targeted oncogenesis. Mouse Bdnf gene exhibits a complex genomic structure with 8 untranslated exons (I to VIII) splicing onto one common and unique coding exon IX. We found that DEX significantly downregulated total BDNF mRNA expression by around 30%. Expression of the highly expressed exon IV and VI containing transcripts was also reduced by DEX. The GR antagonist RU486 abolished this effect, which is consistent with specific GR-mediated action. Transient transfection assays allowed us to define a short 275 bp region within exon IV promoter responsible for GR-mediated Bdnf repression. Chromatin immunoprecipitation experiments demonstrated GR recruitment onto this fragment, through unidentified transcription factor tethering. Altogether, GR downregulates Bdnf expression through direct binding to Bdnf regulatory sequences. These findings bring new insights into the crosstalk between GR and BDNF signaling pathways both playing a major role in physiology and pathology of the central nervous system.
Collapse
Affiliation(s)
- Hui Chen
- Inserm 1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Marc Lombès
- Inserm 1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service d'Endocrinologie et des Maladies de la Reproduction, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Damien Le Menuet
- Inserm 1185, Fac Med Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| |
Collapse
|