1
|
Cao S, Jiao Y, Jiang W, Wu Y, Qin S, Ren Y, You Y, Tan Y, Guo X, Chen H, Zhang Y, Wu G, Wang T, Zhou Y, Song Y, Cui Y, Shao F, Yang R, Du Z. Subversion of GBP-mediated host defense by E3 ligases acquired during Yersinia pestis evolution. Nat Commun 2022; 13:4526. [PMID: 35927280 PMCID: PMC9352726 DOI: 10.1038/s41467-022-32218-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/18/2022] [Indexed: 01/22/2023] Open
Abstract
Plague has caused three worldwide pandemics in history, including the Black Death in medieval ages. Yersinia pestis, the etiological agent of plague, has evolved a powerful arsenal to disrupt host immune defenses during evolution from enteropathogenic Y. pseudotuberculosis. Here, we find that two functionally redundant E3 ligase of Y. pestis, YspE1 and YspE2, can be delivered via type III secretion injectisome into host cytosol where they ubiquitinate multiple guanylate-binding proteins (GBPs) for proteasomal degradation. However, Y. pseudotuberculosis has no such capability due to lacking functional YspE1/2 homologs. YspE1/2-mediated GBP degradations significantly promote the survival of Y. pestis in macrophages and strongly inhibit inflammasome activation. By contrast, Gbpchr3−/−, chr5−/− macrophages exhibit much lowered inflammasome activation independent of YspE1/2, accompanied with an enhanced replication of Y. pestis. Accordingly, Gbpchr3−/−, chr5−/− mice are more susceptible to Y. pestis. We demonstrate that Y. pestis utilizes E3 ligases to subvert GBP-mediated host defense, which appears to be newly acquired by Y. pestis during evolution. Guanylate-binding proteins (GBPs) recognize pathogen containing vacuoles, leading to lysis of this intracellular niche and induction of inflammasomes. Here, Cao et al. show that Y. pestis, the causative agent of plague, secret two functionally redundant E3 ligase, YspE1 and YspE2, into the host’s cytosol to ubiquitinate multiple GBPs for proteasomal degradation to subvert host immune defense. This capability appears to be newly acquired by Y. pestis during evolution, since its closely related progenitor Y. pseudotuberculosis is unable to do so.
Collapse
Affiliation(s)
- Shiyang Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Yang Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Wei Jiang
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Si Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Yifan Ren
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Yang You
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Xiao Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Hongyan Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Yuan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Gengshan Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Tong Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China.
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China.
| |
Collapse
|
2
|
Jiao Y, Cao S, Zhang Y, Tan Y, Zhou Y, Wang T, You Y, Chen H, Ren Y, Yang R, Du Z. Yersinia pestis-Induced Mitophagy That Balances Mitochondrial Homeostasis and mROS-Mediated Bactericidal Activity. Microbiol Spectr 2022; 10:e0071822. [PMID: 35768946 PMCID: PMC9241946 DOI: 10.1128/spectrum.00718-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 12/28/2022] Open
Abstract
Manipulating mitochondrial homeostasis is essential for host defense against infection and pathogen survival in cells. This study reports for the first time that Y. pestis infection caused mitochondria damage that subsequently leads to the activation of Pink1/Parkin-independent mitophagy in macrophage, and the effector YopH from the type III secretion system was required for these effects. The generation of mitochondrial reactive oxygen species (mROS) by damaged mitochondria enhances the antibacterial activity of macrophages against Y. pestis and promotes apoptosis of the infected cells. Therefore, Y. pestis-induced mitophagy was employed to eliminate dysfunctional mitochondria and relieve the mROS accumulation. This study reveals a novel role for YopH of Y. pestis in damaging host macrophage mitochondria during plague infection and underlines the vital role of mitophagy in maintaining mitochondrial homeostasis by clearing bacteria-damaged mitochondria. The results show that mitophagy or mitochondrial fission manipulation could be used as a new strategy to treat plague. IMPORTANCE Y. pestis, the pathogen of plague, also known as the "Black Death," has caused millions of deaths throughout history. This study reports that Y. pestis infection induces mitochondrial fragmentation and abnormal mROS accumulation, and releases mitochondrial contents into the cytoplasm in macrophages. mROS promotes the antibacterial activity of macrophages against Y. pestis and increases apoptosis of the infected cells. PINK-Parkin-independent mitophagy is activated to balance mitochondrial homeostasis and mROS-induced bactericidal activity in Y. pestis-infected macrophages. These findings deepen the understanding of Y. pestis pathogenesis on mitochondria damage to disturb the host cellular immune elimination. Manipulating mitophagic activity or mitochondrial fission may be a novel therapeutic approach to treat plague.
Collapse
Affiliation(s)
- Yang Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shiyang Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tong Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yang You
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hongyan Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yifan Ren
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
3
|
RNA thermometer-coordinated assembly of the Yersinia injectisome. J Mol Biol 2022; 434:167667. [PMID: 35667470 DOI: 10.1016/j.jmb.2022.167667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022]
Abstract
The type III secretion system (T3SS) is indispensable for successful host cell infection by many Gram-negative pathogens. The molecular syringe delivers effector proteins that suppress the host immune response. Synthesis of T3SS components in Yersinia pseudotuberculosis relies on host body temperature, which induces the RNA thermometer (RNAT)-controlled translation of lcrF coding for a virulence master regulator that activates transcription of the T3SS regulon. The assembly of the secretion machinery follows a strict coordinated succession referred to as outside-in assembly, in which the membrane ring complex and the export apparatus represent the nucleation points. Two components essential for the initial assembly are YscJ and YscT. While YscJ connects the membrane ring complex with the export apparatus in the inner membrane, YscT is required for a functional export apparatus. Previous transcriptome-wide RNA structuromics data suggested the presence of unique intercistronic RNATs upstream of yscJ and yscT. Here, we show by reporter gene fusions that both upstream regions confer translational control. Moreover, we demonstrate the temperature-induced opening of the Shine-Dalgarno region, which facilitates ribosome binding, by in vitro structure probing and toeprinting methods. Rationally designed thermostable RNAT variants of the yscJ and yscT thermometers confirmed their physiological relevance with respect to T3SS assembly and host infection. Since we have shown in a recent study that YopN, the gatekeeper of type III secretion, also is under RNAT control, it appears that the synthesis, assembly and functionality of the Yersinia T3S machinery is coordinated by RNA-based temperature sensors at multiple levels.
Collapse
|
4
|
Gurung JM, Amer AAA, Chen S, Diepold A, Francis MS. Type III secretion by Yersinia pseudotuberculosis is reliant upon an authentic N-terminal YscX secretor domain. Mol Microbiol 2022; 117:886-906. [PMID: 35043994 PMCID: PMC9303273 DOI: 10.1111/mmi.14880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
YscX was discovered as an essential part of the Yersinia type III secretion system about 20 years ago. It is required for substrate secretion and is exported itself. Despite this central role, its precise function and mode of action remains unknown. In order to address this knowledge gap, this present study refocused attention on YscX to build on the recent advances in the understanding of YscX function. Our experiments identified a N-terminal secretion domain in YscX promoting its secretion, with the first five codons constituting a minimal signal capable of promoting secretion of the signalless β-lactamase reporter. Replacing the extreme YscX N-terminus with known secretion signals of other Ysc-Yop substrates revealed that the YscX N-terminal segment contains non-redundant information needed for YscX function. Further, both in cis deletion of the YscX N-terminus in the virulence plasmid and ectopic expression of epitope tagged YscX variants again lead to stable YscX production but not type III secretion of Yop effector proteins. Mislocalisation of the needle components, SctI and SctF, accompanied this general defect in Yops secretion. Hence, a coupling exists between YscX secretion permissiveness and the assembly of an operational secretion system.
Collapse
Affiliation(s)
- Jyoti M Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Ayad A A Amer
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Shiyun Chen
- Wuhan Institute of Virology, The Chinese Academy of Sciences, Wuhan, China
| | - Andreas Diepold
- Max Planck Institute for Terrestrial Microbiology, Department of Ecophysiology, Marburg, Germany
| | - Matthew S Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Proteogenomic discovery of sORF-encoded peptides associated with bacterial virulence in Yersinia pestis. Commun Biol 2021; 4:1248. [PMID: 34728737 PMCID: PMC8563848 DOI: 10.1038/s42003-021-02759-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022] Open
Abstract
Plague caused by Yersinia pestis is one of the deadliest diseases. However, many molecular mechanisms of bacterial virulence remain unclear. This study engaged in the discovery of small open reading frame (sORF)-encoded peptides (SEPs) in Y. pestis. An integrated proteogenomic pipeline was established, and an atlas containing 76 SEPs was described. Bioinformatic analysis indicated that 20% of these SEPs were secreted or localized to the transmembrane and that 33% contained functional domains. Two SEPs, named SEPs-yp1 and -yp2 and encoded in noncoding regions, were selected by comparative peptidomics analysis under host-specific environments and high-salinity stress. They displayed important roles in the regulation of antiphagocytic capability in a thorough functional assay. Remarkable attenuation of virulence in mice was observed in the SEP-deleted mutants. Further global proteomic analysis indicated that SEPs-yp1 and -yp2 affected the bacterial metabolic pathways, and SEP-yp1 was associated with the bacterial virulence by modulating the expression of key virulence factors of the Yersinia type III secretion system. Our study provides a rich resource for research on Y. pestis and plague, and the findings on SEP-yp1 and SEP-yp2 shed light on the molecular mechanism of bacterial virulence. Shiyang Cao, Xinyue Liu, Yin Huang, and Yanfeng Yan et al. utilized an integrated proteogenomic approach to describe an atlas of small open reading frame-encoded peptides (SEPs) in the pathogen, Yersinia pestis. They demonstrate that two of these SEPs are associated with regulation of bacterial virulence, and altogether develop a valuable resource for future research into Y. pestis physiology.
Collapse
|
6
|
Hajra D, Nair AV, Chakravortty D. An elegant nano-injection machinery for sabotaging the host: Role of Type III secretion system in virulence of different human and animal pathogenic bacteria. Phys Life Rev 2021; 38:25-54. [PMID: 34090822 DOI: 10.1016/j.plrev.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
Various Gram-negative bacteria possess a specialized membrane-bound protein secretion system known as the Type III secretion system (T3SS), which transports the bacterial effector proteins into the host cytosol thereby helping in bacterial pathogenesis. The T3SS has a special needle-like translocon that can sense the contact with the host cell membrane and translocate effectors. The export apparatus of T3SS recognizes these effector proteins bound to chaperones and translocates them into the host cell. Once in the host cell cytoplasm, these effector proteins result in modulation of the host system and promote bacterial localization and infection. Using molecular biology, bioinformatics, genetic techniques, electron microscopic studies, and mathematical modeling, the structure and function of the T3SS and the corresponding effector proteins in various bacteria have been studied. The strategies used by different human pathogenic bacteria to modulate the host system and thereby enhance their virulence mechanism using T3SS have also been well studied. Here we review the history, evolution, and general structure of the T3SS, highlighting the details of its comparison with the flagellar export machinery. Also, this article provides mechanistic details about the common role of T3SS in subversion and manipulation of host cellular processes. Additionally, this review describes specific T3SS apparatus and the role of their specific effectors in bacterial pathogenesis by considering several human and animal pathogenic bacteria.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
7
|
Menetrey Q, Sorlin P, Jumas-Bilak E, Chiron R, Dupont C, Marchandin H. Achromobacter xylosoxidans and Stenotrophomonas maltophilia: Emerging Pathogens Well-Armed for Life in the Cystic Fibrosis Patients' Lung. Genes (Basel) 2021; 12:610. [PMID: 33919046 PMCID: PMC8142972 DOI: 10.3390/genes12050610] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
In patients with cystic fibrosis (CF), the lung is a remarkable ecological niche in which the microbiome is subjected to important selective pressures. An inexorable colonization by bacteria of both endogenous and environmental origin is observed in most patients, leading to a vicious cycle of infection-inflammation. In this context, long-term colonization together with competitive interactions among bacteria can lead to over-inflammation. While Pseudomonas aeruginosa and Staphylococcus aureus, the two pathogens most frequently identified in CF, have been largely studied for adaptation to the CF lung, in the last few years, there has been a growing interest in emerging pathogens of environmental origin, namely Achromobacter xylosoxidans and Stenotrophomonas maltophilia. The aim of this review is to gather all the current knowledge on the major pathophysiological traits, their supporting mechanisms, regulation and evolutionary modifications involved in colonization, virulence, and competitive interactions with other members of the lung microbiota for these emerging pathogens, with all these mechanisms being major drivers of persistence in the CF lung. Currently available research on A. xylosoxidans complex and S. maltophilia shows that these emerging pathogens share important pathophysiological features with well-known CF pathogens, making them important members of the complex bacterial community living in the CF lung.
Collapse
Affiliation(s)
- Quentin Menetrey
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, 34093 Montpellier, France; (Q.M.); (P.S.)
| | - Pauline Sorlin
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, 34093 Montpellier, France; (Q.M.); (P.S.)
| | - Estelle Jumas-Bilak
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, Department d’Hygiène Hospitalière, CHU Montpellier, 34093 Montpellier, France; (E.J.-B.); (C.D.)
| | - Raphaël Chiron
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Centre de Ressources et de Compétences de la Mucoviscidose, CHU de Montpellier, 34093 Montpellier, France;
| | - Chloé Dupont
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, Department d’Hygiène Hospitalière, CHU Montpellier, 34093 Montpellier, France; (E.J.-B.); (C.D.)
| | - Hélène Marchandin
- HydroSciences Montpellier, CNRS, IRD, Univ Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 34093 Nîmes, France
- UMR 5151 HydroSciences Montpellier, Equipe Pathogènes Hydriques Santé Environnements, U.F.R. des Sciences Pharmaceutiques et Biologiques, Université de Montpellier, 15, Avenue Charles Flahault, BP 14491, CEDEX 5, 34093 Montpellier, France
| |
Collapse
|
8
|
Cao S, Chen Y, Yan Y, Zhu S, Tan Y, Wang T, Song Y, Deng H, Yang R, Du Z. Secretome and Comparative Proteomics of Yersinia pestis Identify Two Novel E3 Ubiquitin Ligases That Contribute to Plague Virulence. Mol Cell Proteomics 2021; 20:100066. [PMID: 33631294 PMCID: PMC7994543 DOI: 10.1016/j.mcpro.2021.100066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/12/2021] [Indexed: 11/21/2022] Open
Abstract
Plague is a zoonotic disease that primarily infects rodents via fleabite. Transmission from flea to host niches requires rapid adaption of Yersinia pestis to the outer environments to establish infection. Here, quantitative proteome and secretome analyses of Y. pestis grown under conditions mimicking the two typical niches, i.e., the mammalian host (Mh) and the flea vector (Fv), were performed to understand the adaption strategies of this deadly pathogen. A secretome of Y. pestis containing 308 proteins has been identified using TMT-labeling mass spectrometry analysis. Although some proteins are known to be secreted, such as the type III secretion substrates, PsaA and F1 antigen, most of them were found to be secretory proteins for the first time. Comparative proteomic analysis showed that membrane proteins, chaperonins and stress response proteins are significantly upregulated under the Mh condition, among which the previously uncharacterized proteins YP_3416∼YP_3418 are remarkable because they cannot only be secreted but also translocated into HeLa cells by Y. pestis. We further demonstrated that the purified YP_3416 and YP_3418 exhibited E3 ubiquitin ligase activity in in vitro ubiquitination assay and yp_3416∼3418 deletion mutant of Y. pestis showed significant virulence attenuation in mice. Taken together, our results represent the first Y. pestis secretome, which will promote the better understanding of Y. pestis pathogenesis, as well as the development of new strategies for treatment and prevention of plague.
Collapse
Affiliation(s)
- Shiyang Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tong Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| |
Collapse
|
9
|
Torres‐Vargas CE, Kronenberger T, Roos N, Dietsche T, Poso A, Wagner S. The inner rod of virulence‐associated type III secretion systems constitutes a needle adapter of one helical turn that is deeply integrated into the system's export apparatus. Mol Microbiol 2019; 112:918-931. [DOI: 10.1111/mmi.14327] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Claudia E. Torres‐Vargas
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| | - Thales Kronenberger
- Department of Internal Medicine VIII University Hospital Tübingen Otfried‐Müller‐Str. 14Tübingen 72076Germany
- School of Pharmacy University of Eastern Finland P.O. Box 1627Kuopio 70211Finland
| | - Nora Roos
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| | - Tobias Dietsche
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| | - Antti Poso
- Department of Internal Medicine VIII University Hospital Tübingen Otfried‐Müller‐Str. 14Tübingen 72076Germany
- School of Pharmacy University of Eastern Finland P.O. Box 1627Kuopio 70211Finland
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT) University of Tübingen Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
- Partner‐Site Tübingen German Center for Infection Research (DZIF) Elfriede‐Aulhorn‐Str. 6Tübingen 72076Germany
| |
Collapse
|
10
|
Takaya A, Takeda H, Tashiro S, Kawashima H, Yamamoto T. Chaperone-mediated secretion switching from early to middle substrates in the type III secretion system encoded by Salmonella pathogenicity island 2. J Biol Chem 2019; 294:3783-3793. [PMID: 30651351 DOI: 10.1074/jbc.ra118.005072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/07/2019] [Indexed: 11/06/2022] Open
Abstract
The bacterial type III secretion system (T3SS) delivers virulence proteins, called effectors, into eukaryotic cells. T3SS comprises a transmembrane secretion apparatus and a complex network of specialized chaperones that target protein substrates to this secretion apparatus. However, the regulation of secretion switching from early (needle and inner rod) to middle (tip/filament and translocators) substrates is incompletely understood. Here, we investigated chaperone-mediated secretion switching from early to middle substrates in the T3SS encoded by Salmonella pathogenicity island 2 (SPI2), essential for systemic infection. Our findings revealed that the protein encoded by ssaH regulates the secretion of an inner rod and early substrate, SsaI. Structural modeling revealed that SsaH is structurally similar to class III chaperones, known to associate with proteins in various pathogenic bacteria. The SPI2 protein SsaE was identified as a class V chaperone homolog and partner of SsaH. A pulldown analysis disclosed that SsaH and SsaE form a heterodimer, which interacted with another early substrate, the needle protein SsaG. Moreover, SsaE also helped stabilize SsaH and a middle substrate, SseB. We also found that SsaE regulates cellular SsaH levels to translocate the early substrates SsaG and SsaI and then promotes the translocation of SseB by stabilizing it. In summary, our results indicate that the class III chaperone SsaH facilitates SsaI secretion, and a heterodimer of SsaH and the type V chaperone SsaE then switches secretion to SsaG. This is the first report of a chaperone system that regulates both early and middle substrates during substrate switching for T3SS assembly.
Collapse
Affiliation(s)
- Akiko Takaya
- From the Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Hikari Takeda
- From the Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Shogo Tashiro
- From the Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Hiroto Kawashima
- From the Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan and
| | - Tomoko Yamamoto
- Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
11
|
Luu LDW, Octavia S, Zhong L, Raftery MJ, Sintchenko V, Lan R. Comparison of the Whole Cell Proteome and Secretome of Epidemic Bordetella pertussis Strains From the 2008-2012 Australian Epidemic Under Sulfate-Modulating Conditions. Front Microbiol 2018; 9:2851. [PMID: 30538686 PMCID: PMC6277516 DOI: 10.3389/fmicb.2018.02851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/06/2018] [Indexed: 01/19/2023] Open
Abstract
Sulfate is an important modulator for virulence factor expression in Bordetella pertussis, the causative organism for whooping cough. During infection, sulfate is released when respiratory epithelial cells are damaged which can affect gene expression. The current predominant strains in Australia are found in single nucleotide polymorphism (SNP) cluster I (ptxP3/prn2). It has been reported that ptxP3 strains have higher mRNA expression of virulence genes than ptxP1 strains under intermediate sulfate-modulating conditions (5 mM MgSO4). Our previous proteomic study compared L1423 (cluster I, ptxP3) and L1191 (cluster II, ptxP1) in Thalen-IJssel (THIJS) media without sulfate modulation and identified an upregulation of transport proteins and a downregulation of immunogenic proteins. To determine whether proteomic differences exist between cluster I and cluster II strains in intermediate modulating conditions, this study compared the whole cell proteome and secretome between L1423 and L1191 grown in THIJS media with 5 mM MgSO4 using iTRAQ and high-resolution multiple reaction monitoring (MRM-hr). Two proteins (BP0200 and BP1175) in the whole cell were upregulated in L1423 [fold change (FC) >1.2, false discovery rate (FDR) <0.05]. In the secretome, four proteins from the type III secretion system (T3SS) effectors were downregulated (FC < 0.8, FDR < 0.05) while six proteins, including two adhesins, pertactin (Prn) and tracheal colonization factor A (TcfA), were upregulated which were consistent with our previous proteomic study. The upregulation of Prn and TcfA in SNP cluster I may result in improved adhesion while the downregulation of the T3SS and other immunogenic proteins may reduce immune recognition, which may contribute to the increased fitness of cluster I B. pertussis strains.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - NSW Health Pathology, Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
12
|
Protein Acetylation Mediated by YfiQ and CobB Is Involved in the Virulence and Stress Response of Yersinia pestis. Infect Immun 2018; 86:IAI.00224-18. [PMID: 29610260 DOI: 10.1128/iai.00224-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/07/2023] Open
Abstract
Recent studies revealed that acetylation is a widely used protein modification in prokaryotic organisms. The major protein acetylation acetyltransferase YfiQ and the sirtuin-like deacetylase CobB have been found to be involved in basic physiological processes, such as primary metabolism, chemotaxis, and stress responses, in Escherichia coli and Salmonella However, little is known about protein acetylation modifications in Yersinia pestis, a lethal pathogen responsible for millions of human deaths in three worldwide pandemics. Here we found that Yp_0659 and Yp_1760 of Y. pestis encode the major protein acetylation acetyltransferase YfiQ and the sirtuin-like deacetylase CobB, respectively, which can acetylate and deacetylate PhoP enzymatically in vitro Protein acetylation impairment in cobB and yfiQ mutants greatly decreased bacterial tolerance to cold, hot, high-salt, and acidic environments. Our comparative transcriptomic data revealed that the strongly decreased tolerance to stress stimuli was probably related to downregulation of the genes encoding the heat shock proteins (HtpG, HslV, HslR, and IbpA), cold shock proteins (CspC and CspA1), and acid resistance proteins (HdeB and AdiA). We found that the reversible acetylation mediated by CobB and YfiQ conferred attenuation of virulence, probably partially due to the decreased expression of the psaABCDEF operon, which encodes Psa fimbriae that play a key role in virulence of Y. pestis This is the first report, to our knowledge, on the roles of protein acetylation modification in stress responses, biofilm formation, and virulence of Y. pestis.
Collapse
|