1
|
Jing H, Song J, Sun J, Su S, Hu J, Zhang H, Bi Y, Wu B. METTL3 governs thymocyte development and thymic involution by regulating ferroptosis. NATURE AGING 2024; 4:1813-1827. [PMID: 39443728 DOI: 10.1038/s43587-024-00724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Given its central role in immune aging, it is important to identify the regulators of thymic involution. While conventional programmed cell death has a fundamental role in thymocyte development, how cell death pathways contribute to thymic involution are unclear. In this study, we found that CD4+CD8+ double-positive (DP) thymocytes acquired the characteristics of senescence in aged mice undergoing thymic involution, while expression of the m6A methyltransferase-like protein 3 (METTL3), which is enriched in DP cells from young mice, decreased with aging. By conditionally deleting METTL3 in T cells, we revealed a critical role for METTL3 in DP cell survival and in restraining the features of aging in DP thymocytes by preventing ferroptosis signaling through glutathione peroxidase 4. Mechanistically, glutathione peroxidase 4 was maintained by METTL3 at the translational level, independently of its methyltransferase activity. Furthermore, we found that pharmacological inhibition of ferroptosis promoted DP cell survival and attenuated the features of aging in DP thymocytes. These findings uncover a role for METTL3-regulated ferroptosis in thymic involution and identify strategies to restore thymic function.
Collapse
Affiliation(s)
- Huiru Jing
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jiayu Song
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jie Sun
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shaojun Su
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jin Hu
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Haojian Zhang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yanmin Bi
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Bing Wu
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Moses A, Bhalla P, Thompson A, Lai L, Coskun FS, Seroogy CM, de la Morena MT, Wysocki CA, van Oers NSC. Comprehensive phenotypic analysis of diverse FOXN1 variants. J Allergy Clin Immunol 2023; 152:1273-1291.e15. [PMID: 37419334 PMCID: PMC11071152 DOI: 10.1016/j.jaci.2023.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/05/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Thymus hypoplasia due to stromal cell problems has been linked to mutations in several transcription factors, including Forkhead box N1 (FOXN1). FOXN1 supports T-cell development by regulating the formation and expansion of thymic epithelial cells (TECs). While autosomal recessive FOXN1 mutations result in a nude and severe combined immunodeficiency phenotype, the impact of single-allelic or compound heterozygous FOXN1 mutations is less well-defined. OBJECTIVE With more than 400 FOXN1 mutations reported, their impact on protein function and thymopoiesis remains unclear for most variants. We developed a systematic approach to delineate the functional impact of diverse FOXN1 variants. METHODS Selected FOXN1 variants were tested with transcriptional reporter assays and imaging studies. Thymopoiesis was assessed in mouse lines genocopying several human FOXN1 variants. Reaggregate thymus organ cultures were used to compare the thymopoietic potential of the FOXN1 variants. RESULTS FOXN1 variants were categorized into benign, loss- or gain-of-function, and/or dominant-negatives. Dominant negative activities mapped to frameshift variants impacting the transactivation domain. A nuclear localization signal was mapped within the DNA binding domain. Thymopoiesis analyses with mouse models and reaggregate thymus organ cultures revealed distinct consequences of particular Foxn1 variants on T-cell development. CONCLUSIONS The potential effect of a FOXN1 variant on T-cell output from the thymus may relate to its effects on transcriptional activity, nuclear localization, and/or dominant negative functions. A combination of functional assays and thymopoiesis comparisons enabled a categorization of diverse FOXN1 variants and their potential impact on T-cell output from the thymus.
Collapse
Affiliation(s)
- Angela Moses
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Pratibha Bhalla
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Austin Thompson
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, Conn
| | - Fatma S Coskun
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Christine M Seroogy
- the Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Maria Teresa de la Morena
- the Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, Wash
| | - Christian A Wysocki
- Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex; Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Nicolai S C van Oers
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex; Departments of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex; Microbiology, University of Texas Southwestern Medical Center, Dallas, Tex.
| |
Collapse
|
3
|
Song J, Li L, Fang Y, Lin Y, Wu L, Wan W, Wei G, Hua F, Ying J. FOXN Transcription Factors: Regulation and Significant Role in Cancer. Mol Cancer Ther 2023; 22:1028-1039. [PMID: 37566097 DOI: 10.1158/1535-7163.mct-23-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
A growing number of studies have demonstrated that cancer development is closely linked to abnormal gene expression, including alterations in the transcriptional activity of transcription factors. The Forkhead box class N (FOXN) proteins FOXN1-6 form a highly conserved class of transcription factors, which have been shown in recent years to be involved in the regulation of malignant progression in a variety of cancers. FOXNs mediate cell proliferation, cell-cycle progression, cell differentiation, metabolic homeostasis, embryonic development, DNA damage repair, tumor angiogenesis, and other critical biological processes. Therefore, transcriptional dysregulation of FOXNs can directly affect cellular physiology and promote cancer development. Numerous studies have demonstrated that the transcriptional activity of FOXNs is regulated by protein-protein interactions, microRNAs (miRNA), and posttranslational modifications (PTM). However, the mechanisms underlying the molecular regulation of FOXNs in cancer development are unclear. Here, we reviewed the molecular regulatory mechanisms of FOXNs expression and activity, their role in the malignant progression of tumors, and their value for clinical applications in cancer therapy. This review may help design experimental studies involving FOXN transcription factors, and enhance their therapeutic potential as antitumor targets.
Collapse
Affiliation(s)
- Jiali Song
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Longshan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yang Fang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Luojia Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Wei Wan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang City, Jiangxi Province, P.R. China
| |
Collapse
|
4
|
Kang L, Miao Y, Jin Y, Shen S, Lin X. Exosomal miR-205-5p derived from periodontal ligament stem cells attenuates the inflammation of chronic periodontitis via targeting XBP1. Immun Inflamm Dis 2023; 11:e743. [PMID: 36705422 PMCID: PMC9761342 DOI: 10.1002/iid3.743] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Chronic periodontitis (CP) is an inflammatory periodontal disease with high incidence and complex pathology. This research is aimed to investigate the function of exosomal miR-205-5p (Exo-miR-205-5p) in CP and the underlying molecular mechanisms. METHOD Exo-miR-205-5p was isolated from miR-205-5p mimics-transfected periodontal ligament stem cells (PDLSCs), and subsequently cocultured with lipopolysaccharide (LPS)-induced cells or injected into LPS-treated rats. The mRNA expression of inflammatory factors and Th17/Treg-related factors were measured by quantitative real-time PCR. The contents of inflammatory factors and the percentages of Th17/Treg cells were measured by enzyme-linked immunosorbent assay and flow cytometry, respectively. Besides, the target relation between miR-205-5p and X-box binding protein 1 (XBP1) was explored. RESULTS MiR-205-5p was downregulated in LPS-induced PDLSCs and corresponding exosomes. Exo-miR-205-5p inhibited inflammatory cell infiltration, decreased the production of TNF-α, IL-1β, and IL-6, and decreased the percentage of Th17 cells in LPS-treated rats. In addition, XBP1 was a target of miR-205-5p. Overexpression of XBP1 weakened the effects of Exo-miR-205-5p on inhibiting inflammation and regulating Treg/Th17 balance in LPS-induced cells. CONCLUSIONS Exo-miR-205-5p derived from PDLSCs relieves the inflammation and balances the Th17/Treg cells in CP through targeting XBP1.
Collapse
Affiliation(s)
- Lixun Kang
- Department of Stomatology, Shengjing HospitalChina Medical UniversityShenyang CityLiaoning ProvinceChina
| | - Yibin Miao
- Department of Stomatology, Shengjing HospitalChina Medical UniversityShenyang CityLiaoning ProvinceChina
| | - Ying Jin
- Department of Stomatology, Shengjing HospitalChina Medical UniversityShenyang CityLiaoning ProvinceChina
| | - Siyu Shen
- Department of Stomatology, Shengjing HospitalChina Medical UniversityShenyang CityLiaoning ProvinceChina
| | - Xiaoping Lin
- Department of Stomatology, Shengjing HospitalChina Medical UniversityShenyang CityLiaoning ProvinceChina
| |
Collapse
|
5
|
Liang Z, Dong X, Zhang Z, Zhang Q, Zhao Y. Age-related thymic involution: Mechanisms and functional impact. Aging Cell 2022; 21:e13671. [PMID: 35822239 PMCID: PMC9381902 DOI: 10.1111/acel.13671] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022] Open
Abstract
The thymus is the primary immune organ responsible for generating self‐tolerant and immunocompetent T cells. However, the thymus gradually involutes during early life resulting in declined naïve T‐cell production, a process known as age‐related thymic involution. Thymic involution has many negative impacts on immune function including reduced pathogen resistance, high autoimmunity incidence, and attenuated tumor immunosurveillance. Age‐related thymic involution leads to a gradual reduction in thymic cellularity and thymic stromal microenvironment disruption, including loss of definite cortical‐medullary junctions, reduction of cortical thymic epithelial cells and medullary thymic epithelial cells, fibroblast expansion, and an increase in perivascular space. The compromised thymic microenvironment in aged individuals substantially disturbs thymocyte development and differentiation. Age‐related thymic involution is regulated by many transcription factors, micro RNAs, growth factors, cytokines, and other factors. In this review, we summarize the current understanding of age‐related thymic involution mechanisms and effects.
Collapse
Affiliation(s)
- Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Bhalla P, Su DM, van Oers NSC. Thymus Functionality Needs More Than a Few TECs. Front Immunol 2022; 13:864777. [PMID: 35757725 PMCID: PMC9229346 DOI: 10.3389/fimmu.2022.864777] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/03/2022] [Indexed: 12/18/2022] Open
Abstract
The thymus, a primary lymphoid organ, produces the T cells of the immune system. Originating from the 3rd pharyngeal pouch during embryogenesis, this organ functions throughout life. Yet, thymopoiesis can be transiently or permanently damaged contingent on the types of systemic stresses encountered. The thymus also undergoes a functional decline during aging, resulting in a progressive reduction in naïve T cell output. This atrophy is evidenced by a deteriorating thymic microenvironment, including, but not limited, epithelial-to-mesenchymal transitions, fibrosis and adipogenesis. An exploration of cellular changes in the thymus at various stages of life, including mouse models of in-born errors of immunity and with single cell RNA sequencing, is revealing an expanding number of distinct cell types influencing thymus functions. The thymus microenvironment, established through interactions between immature and mature thymocytes with thymus epithelial cells (TEC), is well known. Less well appreciated are the contributions of neural crest cell-derived mesenchymal cells, endothelial cells, diverse hematopoietic cell populations, adipocytes, and fibroblasts in the thymic microenvironment. In the current review, we will explore the contributions of the many stromal cell types participating in the formation, expansion, and contraction of the thymus under normal and pathophysiological processes. Such information will better inform approaches for restoring thymus functionality, including thymus organoid technologies, beneficial when an individuals’ own tissue is congenitally, clinically, or accidentally rendered non-functional.
Collapse
Affiliation(s)
- Pratibha Bhalla
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Dong-Ming Su
- Department of Microbiology, Immunology & Genetics, The University of North Texas Health Sciences Center, Fort Worth, TX, United States
| | - Nicolai S C van Oers
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
7
|
Does the Expression and Epigenetics of Genes Involved in Monogenic Forms of Parkinson’s Disease Influence Sporadic Forms? Genes (Basel) 2022; 13:genes13030479. [PMID: 35328033 PMCID: PMC8951612 DOI: 10.3390/genes13030479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/25/2022] Open
Abstract
Parkinson’s disease (PD) is a disorder characterized by a triad of motor symptoms (akinesia, rigidity, resting tremor) related to loss of dopaminergic neurons mainly in the Substantia nigra pars compacta. Diagnosis is often made after a substantial loss of neurons has already occurred, and while dopamine replacement therapies improve symptoms, they do not modify the course of the disease. Although some biological mechanisms involved in the disease have been identified, such as oxidative stress and accumulation of misfolded proteins, they do not explain entirely PD pathophysiology, and a need for a better understanding remains. Neurodegenerative diseases, including PD, appear to be the result of complex interactions between genetic and environmental factors. The latter can alter gene expression by causing epigenetic changes, such as DNA methylation, post-translational modification of histones and non-coding RNAs. Regulation of genes responsible for monogenic forms of PD may be involved in sporadic PD. This review will focus on the epigenetic mechanisms regulating their expression, since these are the genes for which we currently have the most information available. Despite technical challenges, epigenetic epidemiology offers new insights on revealing altered biological pathways and identifying predictive biomarkers for the onset and progression of PD.
Collapse
|
8
|
Hu C, Zhang K, Jiang F, Wang H, Shao Q. Epigenetic modifications in thymic epithelial cells: an evolutionary perspective for thymus atrophy. Clin Epigenetics 2021; 13:210. [PMID: 34819170 PMCID: PMC8612001 DOI: 10.1186/s13148-021-01197-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023] Open
Abstract
Background The thymic microenvironment is mainly comprised of thymic epithelial cells, the cytokines, exosomes, surface molecules, and hormones from the cells, and plays a vital role in the development, differentiation, maturation and homeostasis of T lymphocytes. However, the thymus begins to degenerate as early as the second year of life and continues through aging in human beings, leading to a decreased output of naïve T cells, the limited TCR diversity and an expansion of monoclonal memory T cells in the periphery organs. These alternations will reduce the adaptive immune response to tumors and emerging infectious diseases, such as COVID-19, also it is easier to suffer from autoimmune diseases in older people. In the context of global aging, it is important to investigate and clarify the causes and mechanisms of thymus involution. Main body Epigenetics include histone modification, DNA methylation, non-coding RNA effects, and chromatin remodeling. In this review, we discuss how senescent thymic epithelial cells determine and control age-related thymic atrophy, how this process is altered by epigenetic modification. How the thymus adipose influences the dysfunctions of the thymic epithelial cells, and the prospects of targeting thymic epithelial cells for the treatment of thymus atrophy. Conclusion Epigenetic modifications are emerging as key regulators in governing the development and senescence of thymic epithelial cells. It is beneficial to re-establish effective thymopoiesis, identify the potential therapeutic strategy and rejuvenate the immune function in the elderly.
Collapse
Affiliation(s)
- Cexun Hu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Keyu Zhang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Feng Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hui Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| | - Qixiang Shao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,Jiangsu College of Nursing, School of Medical Science and Laboratory Medicine, Huai'an, 223002, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Unveiling the ups and downs of miR-205 in physiology and cancer: transcriptional and post-transcriptional mechanisms. Cell Death Dis 2020; 11:980. [PMID: 33191398 PMCID: PMC7667162 DOI: 10.1038/s41419-020-03192-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
miR-205 plays important roles in the physiology of epithelia by regulating a variety of pathways that govern differentiation and morphogenesis. Its aberrant expression is frequently found in human cancers, where it was reported to act either as tumor-suppressor or oncogene depending on the specific tumor context and target genes. miR-205 expression and function in different cell types or processes are the result of the complex balance among transcription, processing and stability of the microRNA. In this review, we summarize the principal mechanisms that regulate miR-205 expression at the transcriptional and post-transcriptional level, with particular focus on the transcriptional relationship with its host gene. Elucidating the mechanisms and factors regulating miR-205 expression in different biological contexts represents a fundamental step for a better understanding of the contribution of such pivotal microRNA to epithelial cell function in physiology and disease, and for the development of modulation strategies for future application in cancer therapy.
Collapse
|
10
|
Coskun FS, Srivastava S, Raj P, Dozmorov I, Belkaya S, Mehra S, Golden NA, Bucsan AN, Chapagain ML, Wakeland EK, Kaushal D, Gumbo T, van Oers NSC. sncRNA-1 Is a Small Noncoding RNA Produced by Mycobacterium tuberculosis in Infected Cells That Positively Regulates Genes Coupled to Oleic Acid Biosynthesis. Front Microbiol 2020; 11:1631. [PMID: 32849337 PMCID: PMC7399025 DOI: 10.3389/fmicb.2020.01631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Nearly one third of the world’s population is infected with Mycobacterium tuberculosis (Mtb). While much work has focused on the role of different Mtb encoded proteins in pathogenesis, recent studies have revealed that Mtb also transcribes many noncoding RNAs whose functions remain poorly characterized. We performed RNA sequencing and identified a subset of Mtb H37Rv-encoded small RNAs (<30 nts in length) that were produced in infected macrophages. Designated as smaller noncoding RNAs (sncRNAs), three of these predominated the read counts. Each of the three, sncRNA-1, sncRNA-6, and sncRNA-8 had surrounding sequences with predicted stable secondary RNA stem loops. Site-directed mutagenesis of the precursor sequences suggest the existence of a hairpin loop dependent RNA processing mechanism. A functional assessment of sncRNA-1 suggested that it positively regulated two mycobacterial transcripts involved in oleic acid biosynthesis. Complementary loss- and gain- of-function approaches revealed that sncRNA-1 positively supports Mtb growth and survival in nutrient-depleted cultures as well as in infected macrophages. Overall, the findings reveal that Mtb produces sncRNAs in infected cells, with sncRNA-1 modulating mycobacterial gene expression including genes coupled to oleic acid biogenesis.
Collapse
Affiliation(s)
- Fatma S Coskun
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, United States
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Igor Dozmorov
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Serkan Belkaya
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Smriti Mehra
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Nadia A Golden
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Allison N Bucsan
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Moti L Chapagain
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, United States
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Deepak Kaushal
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States.,Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, TX, United States
| | - Nicolai S C van Oers
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
11
|
Du Q, Huynh LK, Coskun F, Molina E, King MA, Raj P, Khan S, Dozmorov I, Seroogy CM, Wysocki CA, Padron GT, Yates TR, Markert ML, de la Morena MT, van Oers NS. FOXN1 compound heterozygous mutations cause selective thymic hypoplasia in humans. J Clin Invest 2019; 129:4724-4738. [PMID: 31566583 PMCID: PMC6819092 DOI: 10.1172/jci127565] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022] Open
Abstract
We report on 2 patients with compound heterozygous mutations in forkhead box N1 (FOXN1), a transcription factor essential for thymic epithelial cell (TEC) differentiation. TECs are critical for T cell development. Both patients had a presentation consistent with T-/loB+NK+ SCID, with normal hair and nails, distinct from the classic nude/SCID phenotype in individuals with autosomal-recessive FOXN1 mutations. To understand the basis of this phenotype and the effects of the mutations on FOXN1, we generated mice using CRISPR-Cas9 technology to genocopy mutations in 1 of the patients. The mice with the Foxn1 compound heterozygous mutations had thymic hypoplasia, causing a T-B+NK+ SCID phenotype, whereas the hair and nails of these mice were normal. Characterization of the functional changes due to the Foxn1 mutations revealed a 5-amino acid segment at the end of the DNA-binding domain essential for the development of TECs but not keratinocytes. The transcriptional activity of this Foxn1 mutant was partly retained, indicating a region that specifies TEC functions. Analysis of an additional 9 FOXN1 mutations identified in multiple unrelated patients revealed distinct functional consequences contingent on the impact of the mutation on the DNA-binding and transactivation domains of FOXN1.
Collapse
Affiliation(s)
- Qiumei Du
- Departments of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Larry K. Huynh
- Departments of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Fatma Coskun
- Departments of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Erika Molina
- Departments of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Matthew A. King
- Departments of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Prithvi Raj
- Departments of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shaheen Khan
- Departments of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Igor Dozmorov
- Departments of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christine M. Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Christian A. Wysocki
- Department of Pediatrics, and
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Grace T. Padron
- University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - M. Louise Markert
- Department of Pediatrics and
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - M. Teresa de la Morena
- Division of Immunology, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, Washington , USA
| | - Nicolai S.C. van Oers
- Departments of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pediatrics, and
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Luan R, Liang Z, Zhang Q, Sun L, Zhao Y. Molecular regulatory networks of thymic epithelial cell differentiation. Differentiation 2019; 107:42-49. [PMID: 31238242 DOI: 10.1016/j.diff.2019.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 01/15/2023]
Abstract
Functional mature T cells are generated in the thymus. Thymic epithelial cells (TECs) provide the essential microenvironment for T cell development and maturation. According to their function and localization, TECs are roughly divided into cortical TECs (cTECs) and medullary TECs (mTECs), which are responsible for positive and negative selection, respectively. This review summarizes the current understanding of TEC biology, the identification of fetal and adult bipotent TEC progenitors, and the signaling pathways that control the development and maturation of TECs. The understanding of the ontogeny, differentiation, maturation and function of cTECs lags behind that of mTECs. Better understanding TEC biology will provide clues about TEC development and the applications of thymus engineering.
Collapse
Affiliation(s)
- Rong Luan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Liguang Sun
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Du Q, Hoover AR, Dozmorov I, Raj P, Khan S, Molina E, Chang TC, de la Morena MT, Cleaver OB, Mendell JT, van Oers NSC. MIR205HG Is a Long Noncoding RNA that Regulates Growth Hormone and Prolactin Production in the Anterior Pituitary. Dev Cell 2019; 49:618-631.e5. [PMID: 30982661 DOI: 10.1016/j.devcel.2019.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/21/2018] [Accepted: 03/13/2019] [Indexed: 01/09/2023]
Abstract
MicroRNAs (miRNAs) are processed from primary miRNA transcripts (pri-miRNAs), many of which are annotated as long noncoding RNAs (lncRNAs). We assessed whether MIR205HG, the host gene for miR-205, has independent functions as an lncRNA. Comparing mice with targeted deletions of MIR205HG and miR-205 revealed a functional role for the lncRNA in the anterior pituitary. Mice lacking MIR205HG had a temporal reduction in Pit1, growth hormone, and prolactin. This was mediated, in part, through the ability of this lncRNA to bind and regulate the transcriptional activity of Pit1 in conjunction with Zbtb20. Knockdown of MIR205HG in lactotropes decreased the expression of Pit1, Zbtb20, prolactin, and growth hormone, while its overexpression enhanced the levels of these transcripts. The effects of MIR205HG on the pituitary were independent of miR-205. The data support a role for MIR205HG as an lncRNA that regulates growth hormone and prolactin production in the anterior pituitary.
Collapse
Affiliation(s)
- Qiumei Du
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ashley R Hoover
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Igor Dozmorov
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Prithvi Raj
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Shaheen Khan
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Erika Molina
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Tsung-Cheng Chang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Maria Teresa de la Morena
- Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Ondine B Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nicolai S C van Oers
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
14
|
Hu L, Mao L, Liu S, Zhao J, Chen C, Guo M, He Z, Yang J, Xu W, Xu L. Functional Role of MicroRNAs in Thymocyte Development. Int Arch Allergy Immunol 2019; 178:315-322. [PMID: 30861526 DOI: 10.1159/000496093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous noncoding single-stranded RNAs widely distributed in eukaryotes, which can modulate target gene expression at posttranscriptional level and participate in cell proliferation, differentiation, and apoptosis. Related studies have shown that mi-RNAs are instrumental to many aspects of immunity, including various levels of T-cell immunity. In addition, multiple miRNAs have been ascribed key roles in T-cell development, differentiation, and function. In this review, we highlight the current literature regarding the functional role of miRNAs at various stages of thymocyte development. A better understanding of the relationship between miRNAs and thymocyte development is helpful for the exploration of the exact roles of miRNAs in the development and function of the immune system, as well as related clinical diseases.
Collapse
Affiliation(s)
- Lin Hu
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Ling Mao
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Shiming Liu
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Zhixu He
- Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang, China
| | - Jie Yang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China, .,Department of Immunology, Zunyi Medical University, Zunyi, China,
| |
Collapse
|
15
|
Cepeda S, Griffith AV. Thymic stromal cells: Roles in atrophy and age-associated dysfunction of the thymus. Exp Gerontol 2018; 105:113-117. [PMID: 29278750 PMCID: PMC5869099 DOI: 10.1016/j.exger.2017.12.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 11/25/2022]
Abstract
Atrophy of the thymus, the primary site of T lymphocyte generation, is a hallmark of the aging immune system. Age-associated thymic atrophy results in diminished output of new, naïve T cells, with immune sequelae that include diminished responses to novel pathogenic challenge and vaccines, as well as diminished tumor surveillance. Although a variety of stimuli are known to regulate transient thymic atrophy, mechanisms governing progressive age-associated atrophy have been difficult to resolve. This has been due in part to the fact that one of the primary targets of age-associated thymic atrophy is a relatively rare population, thymic stromal cells. This review focuses on changes in thymic stromal cells during aging and on the contributions of periodic, stochastic, and progressive causes of thymic atrophy.
Collapse
Affiliation(s)
- Sergio Cepeda
- Microbiology, Immunology, and Molecular Genetics, School of Medicine, UT Health San Antonio, San Antonio, TX, United States
| | - Ann V Griffith
- Microbiology, Immunology, and Molecular Genetics, School of Medicine, UT Health San Antonio, San Antonio, TX, United States.
| |
Collapse
|
16
|
Abstract
MicroRNAs (miRNAs) are ∼22 nt RNAs that direct posttranscriptional repression of mRNA targets in diverse eukaryotic lineages. In humans and other mammals, these small RNAs help sculpt the expression of most mRNAs. This article reviews advances in our understanding of the defining features of metazoan miRNAs and their biogenesis, genomics, and evolution. It then reviews how metazoan miRNAs are regulated, how they recognize and cause repression of their targets, and the biological functions of this repression, with a compilation of knockout phenotypes that shows that important biological functions have been identified for most of the broadly conserved miRNAs of mammals.
Collapse
Affiliation(s)
- David P Bartel
- Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
Cron MA, Maillard S, Villegas J, Truffault F, Sudres M, Dragin N, Berrih-Aknin S, Le Panse R. Thymus involvement in early-onset myasthenia gravis. Ann N Y Acad Sci 2017; 1412:137-145. [DOI: 10.1111/nyas.13519] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Mélanie A. Cron
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Solène Maillard
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - José Villegas
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Frédérique Truffault
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Muriel Sudres
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Nadine Dragin
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Sonia Berrih-Aknin
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Rozen Le Panse
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| |
Collapse
|
18
|
MicroRNAs Regulate Thymic Epithelium in Age-Related Thymic Involution via Down- or Upregulation of Transcription Factors. J Immunol Res 2017; 2017:2528957. [PMID: 29226156 PMCID: PMC5684555 DOI: 10.1155/2017/2528957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/09/2017] [Accepted: 08/20/2017] [Indexed: 12/14/2022] Open
Abstract
Age-related thymic involution is primarily induced by defects in nonhematopoietic thymic epithelial cells (TECs). It is characterized by dysfunction of multiple transcription factors (TFs), such as p63 and FoxN1, and also involves other TEC-associated regulators, such as Aire. These TFs and regulators are controlled by complicated regulatory networks, in which microRNAs (miRNAs) act as a key player. miRNAs can either directly target the 3'-UTRs (untranslated regions) of the TFs to suppress TF expression or target TF inhibitors to reduce or increase TF inhibitor expression and thereby indirectly enhance or inhibit TF expression. Here, we review the current understanding and recent studies about how miRNAs are involved in age-related thymic involution via regulation of TEC-autonomous TFs. We also discuss potential strategies for targeting miRNAs to rejuvenate age-related declined thymic function.
Collapse
|
19
|
MicroRNAs as regulators and mediators of forkhead box transcription factors function in human cancers. Oncotarget 2017; 8:12433-12450. [PMID: 27999212 PMCID: PMC5355356 DOI: 10.18632/oncotarget.14015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
Evidence has shown that microRNAs are widely implicated as indispensable components of tumor suppressive and oncogenic pathways in human cancers. Thus, identification of microRNA targets and their relevant pathways will contribute to the development of microRNA-based therapeutics. The forkhead box transcription factors regulate numerous processes including cell cycle progression, metabolism, metastasis and angiogenesis, thereby facilitating tumor initiation and progression. A complex network of protein and non-coding RNAs mediates the expression and activity of forkhead box transcription factors. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs and forkhead box transcription factors and describe the roles of microRNAs-forkhead box axis in various disease states including tumor initiation and progression. Additionally, we describe some of the technical challenges in the use of the microRNA-forkhead box signaling pathway in cancer treatment.
Collapse
|