1
|
Zhao Z, Wu Y, Cheng F, Wang Z, Geng Q, Niu Y, Zuo Q, Zhang Y. High levels of histone acetylation modifications promote the formation of PGCs. Poult Sci 2025; 104:104763. [PMID: 39798283 DOI: 10.1016/j.psj.2024.104763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025] Open
Abstract
This study investigates the role of histone acetylation in the differentiation of chicken embryonic stem cells (ESCs) into primordial germ cells (PGCs). Transcriptomic sequencing was used to analyze differentially expressed genes during this differentiation process, with functional annotation identifying genes associated with histone acetylation. To explore the role of acetylation, acetate and an acetyltransferase inhibitor (ANAC) were added to the ESCs induction medium. Transcriptomic analysis revealed that during ESCs differentiation into PGCs, genes involved in histone acetyltransferase activity were upregulated, while those associated with histone deacetylase activity were downregulated. Functional enrichment analysis indicated these genes are involved in pathways critical for germ cell differentiation, underscoring their importance in avian reproductive biology. Quantitative real-time PCR (qRT-PCR) confirmed significant differential expression of HAT8 and HDAC10 between ESCs and PGCs (P < 0.01). The acetate treatment group exhibited a significantly higher number of embryoid bodies and elevated expression levels of CVH, C-KIT, and NANOS3 compared to the ANAC group (P < 0.01). Furthermore, indirect immunofluorescence and flow cytometry demonstrated a significantly higher proportion of DDX4-positive cells in the acetate group (P < 0.01). These findings provide preliminary evidence that histone acetylation regulates chicken PGCs formation, offering a theoretical framework for the epigenetic induction of PGCs in vitro. This study enhances our understanding of the molecular mechanisms underlying PGCs development in poultry and contributes to advancements in avian reproductive technologies and genetic conservation.
Collapse
Affiliation(s)
- Ziduo Zhao
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China
| | - Yuhui Wu
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China
| | - Fufu Cheng
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China
| | - Zhe Wang
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China
| | - Qingqing Geng
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China
| | - Yingjie Niu
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China
| | - Qisheng Zuo
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China
| | - Yani Zhang
- College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China.
| |
Collapse
|
2
|
Murra N, Pommert NS, Schmidt B, Issa RS, Kaehler M, Bruckmueller H, Tim V, Cascorbi I, Waetzig V. Regulation and Function of CCL2 and N-Myc in Retinoic Acid-treated Neuroblastoma Cells. Cancer Genomics Proteomics 2025; 22:90-102. [PMID: 39730182 PMCID: PMC11696317 DOI: 10.21873/cgp.20490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND/AIM Treatment with retinoic acid (RA) often promotes neuroblastoma differentiation and growth inhibition, including the suppression of the expression of the MYCN oncogene. However, RA also targets protumoral chemokines, such as CCL2, which may contribute to the development of resistance. The present study aimed to investigate the regulation and function of CCL2 and N-Myc in RA-treated neuroblastoma cells. MATERIALS AND METHODS In Kelly or SH-SY5Y cells, viability was quantified by cell fitness assays. Expression was analyzed using quantitative PCR and the regulation of proteins using enzyme-linked immunoabsorbent assays (ELISA) or western blots. RESULTS In MYCN-amplified Kelly cells, endogenous CCL2 levels were significantly lower compared to MYCN non-amplified SH-SY5Y cells. Treatment with 5 μM RA increased CCL2 release in both cell lines, but reduced N-Myc levels and cell numbers in Kelly cells. Over-expression of MYCN enhanced viability in SH-SY5Y cells, but did not affect RA-induced CCL2 release, while supplementation of CCL2 in Kelly cells did not prevent RA-mediated growth reduction. Impaired N-Myc or CCL2 signaling reduced the survival of all RA-treated cells and inhibition of N-Myc also decreased CCL2 levels. However, attenuated survival signaling was not generally associated with reduced levels of N-Myc or CCL2. Co-application of RA and the growth factor receptor inhibitors cediranib or crizotinib decreased N-Myc levels only in Kelly cells, while CCL2 release was dependent on the cell type and stimulus. CONCLUSION CCL2 and N-Myc promote the viability of RA-treated cells, although the levels of these mediators were not consistently correlated with cellular outcomes, especially during apoptotic signaling.
Collapse
Affiliation(s)
- Nanke Murra
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Nina Sophie Pommert
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Berit Schmidt
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Reema Sami Issa
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Vera Tim
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Vicki Waetzig
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
3
|
Zhang Y, Wang X, Mu Q, Hou X, Yu W, Guo J. Histone H3 Acetylation Is Involved in Retinoid Acid-Induced Neural Differentiation through Increasing Mitochondrial Function. Biomedicines 2023; 11:3251. [PMID: 38137472 PMCID: PMC10741432 DOI: 10.3390/biomedicines11123251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Histone acetylation and mitochondrial function contribute importantly to neural differentiation, which is critically associated with neurodevelopmental disorders such as Down Syndrome (DS). However, whether and how histone acetylation regulates mitochondrial function and further affects neural differentiation has not been well described. In this study, when treated with retinoid acid (RA), the human neuroblastoma SH-SY5Y cell line was used as a neural differentiation model. We found that the acetylation of histone H3, especially H3 lysine 14 acetylation (H3K14ac), and mitochondrial function, including biogenesis and electron transport chain, were enhanced during neural differentiation. Specific inhibition of histone acetyltransferases (HATs) induced neural differentiation deficits, accompanied by downregulation of mitochondrial function. Furthermore, RA receptors (RARs) interacting with HATs were involved in the increased H3K14ac and the enhanced mitochondrial function during the neural differentiation process. Finally, receptor-interacting protein 140 (RIP140), a co-repressor of RARs, was also involved in regulating histone acetylation. RIP140 overexpression inhibited histone acetylation and mediated negative feedback on target genes which are involved in RA signaling. These findings evidenced that when interacting with RARs which had been negatively regulated by RIP140, RA promoted neural differentiation by promoting H3K14ac and enhanced mitochondrial function. This provides a molecular foundation for further investigations into abnormal neural development.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pediatric, Peking University People’s Hospital, Beijing 100044, China
| | - Xinjuan Wang
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing 100044, China
| | - Qing Mu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing 100044, China
| | - Xueyu Hou
- Department of Pediatric, Peking University People’s Hospital, Beijing 100044, China
| | - Weidong Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing 100044, China
| | - Jingzhu Guo
- Department of Pediatric, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
4
|
Guo XJ, Huang XY, Yang X, Lu JC, Wei CY, Gao C, Pei YZ, Chen Y, Sun QM, Cai JB, Zhou J, Fan J, Ke AW, Shi YG, Shen YH, Zhang PF, Shi GM, Yang GH. Loss of 5-hydroxymethylcytosine induces chemotherapy resistance in hepatocellular carcinoma via the 5-hmC/PCAF/AKT axis. Cell Death Dis 2023; 14:79. [PMID: 36732324 PMCID: PMC9895048 DOI: 10.1038/s41419-022-05406-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 02/04/2023]
Abstract
Multidrug resistance is a major challenge in treating advanced hepatocellular carcinoma (HCC). Although recent studies have reported that the multidrug resistance phenotype is associated with abnormal DNA methylation in cancer cells, the epigenetic mechanism underlying multidrug resistance remains unknown. Here, we reported that the level of 5-hydroxymethylcytosine (5-hmC) in human HCC tissues was significantly lower than that in adjacent liver tissues, and reduced 5-hmC significantly correlated with malignant phenotypes, including poor differentiation and microvascular invasion; additionally, loss of 5-hmC was related to chemotherapy resistance in post-transplantation HCC patients. Further, the 5-hmC level was regulated by ten-eleven translocation 2 (TET2), and the reduction of TET2 in HCC contributes to chemotherapy resistance through histone acetyltransferase P300/CBP-associated factor (PCAF) inhibition and AKT signaling hyperactivation. In conclusion, loss of 5-hmC induces chemotherapy resistance through PCAF/AKT axis and is a promising chemosensitivity prediction biomarker and therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Xiao-Jun Guo
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Xiao-Yong Huang
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Xuan Yang
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
- Department of General Surgery, Peking University Third Hospital, Beijing, PR China
| | - Jia-Cheng Lu
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Chuan-Yuan Wei
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Chao Gao
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Yan-Zi Pei
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Yi Chen
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Qi-Man Sun
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
| | - Jia-Bin Cai
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
| | - Jian Zhou
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Jia Fan
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Ai-Wu Ke
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China
| | - Yujiang G Shi
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China.
| | - Ying-Hao Shen
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China.
| | - Peng-Fei Zhang
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China.
- Department of Medical Oncology, Zhongshan Hospital of Fudan University, Shanghai, 200032, PR China.
- Cancer Center, Zhongshan Hospital of Fudan University, Shanghai, 200032, PR China.
| | - Guo-Ming Shi
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China.
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China.
- Clinical Research Unit, Institute of Clinical Science, Zhongshan Hospital of Fudan University, Shanghai, 200032, PR China.
| | - Guo-Huan Yang
- Department of Liver Surgery and Liver Transplantation, Liver Cancer Institute, Zhongshan Hospital of Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China.
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Shanghai, 200032, PR China.
| |
Collapse
|
5
|
PCAF Accelerates Vascular Senescence via the Hippo Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1200602. [PMID: 36246398 PMCID: PMC9560818 DOI: 10.1155/2022/1200602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/13/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
P300/CBP-Associated Factor (PCAF), one of the histone acetyltransferases (HATs), is known to be involved in cell growth and/or differentiation. PCAF is reported to be involved in atherosclerotic plaques and neointimal formation. However, its role in cellular senescence remains undefined. We investigated the potential mechanism for PCAF-mediated cellular senescence. Immunohistochemical (IHC) analysis showed PCAF was distinctly increased in the endothelia of aorta in aged mice. Palmitate acid (PA) or X radiation significantly induced the expression of senescence-associated markers and PCAF in human umbilical vein endothelial cells (HUVECs). PCAF silence in PA-treated HUVECs significantly rescued senescence-associated phenotypes, while PCAF overexpression accelerated it. Additionally, our results showed that Yes1 Associated Transcriptional Regulator (YAP) that acts as end effector of the Hippo signaling pathway is crucial in PCAF-mediated endothelial senescence. YAP activity declining was observed in aged vascular endothelia. Overexpression of YAP partially ameliorated PCAF-induced endothelial senescence. In vivo, endothelial-(EC-) specific PCAF downregulation in aged mice using adeno-associated virus revealed less vascular senescence-associated phenotypes. These results suggested that PCAF mediated endothelial senescence through the Hippo signaling pathway, implying that PCAF may become a potential target for the prevention and treatment of vascular aging.
Collapse
|
6
|
De Marchi F, Okuda M, Morishita S, Imai M, Baba T, Horino M, Mori Y, Furuya C, Ogata S, Yang Y, Ando J, Ando M, Araki M, Komatsu N. Clinical and biological relevance of CREB3L1 in Philadelphia chromosome-negative myeloproliferative neoplasms. Leuk Res 2022; 119:106883. [DOI: 10.1016/j.leukres.2022.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
|
7
|
Morales-Tarré O, Alonso-Bastida R, Arcos-Encarnación B, Pérez-Martínez L, Encarnación-Guevara S. Protein lysine acetylation and its role in different human pathologies: a proteomic approach. Expert Rev Proteomics 2021; 18:949-975. [PMID: 34791964 DOI: 10.1080/14789450.2021.2007766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Lysine acetylation is a reversible post-translational modification (PTM) regulated through the action of specific types of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (HDACs), in addition to bromodomains, which are a group of conserved domains which identify acetylated lysine residues, several of the players in the process of protein acetylation, including enzymes and bromodomain-containing proteins, have been related to the progression of several diseases. The combination of high-resolution mass spectrometry-based proteomics, and immunoprecipitation to enrich acetylated peptides has contributed in recent years to expand the knowledge about this PTM described initially in histones and nuclear proteins, and is currently reported in more than 5000 human proteins, that are regulated by this PTM. AREAS COVERED This review presents an overview of the main participant elements, the scenario in the development of protein lysine acetylation, and its role in different human pathologies. EXPERT OPINION Acetylation targets are practically all cellular processes in eukaryotes and prokaryotes organisms. Consequently, this modification has been linked to many pathologies like cancer, viral infection, obesity, diabetes, cardiovascular, and nervous system-associated diseases, to mention a few relevant examples. Accordingly, some intermediate mediators in the acetylation process have been projected as therapeutic targets.
Collapse
Affiliation(s)
- Orlando Morales-Tarré
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ramiro Alonso-Bastida
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Bolivar Arcos-Encarnación
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
8
|
Lu YF, Xu XP, Lu XP, Zhu Q, Liu G, Bao YT, Wen H, Li YL, Gu W, Zhu WG. SIRT7 activates p53 by enhancing PCAF-mediated MDM2 degradation to arrest the cell cycle. Oncogene 2020; 39:4650-4665. [PMID: 32404984 PMCID: PMC7286819 DOI: 10.1038/s41388-020-1305-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/04/2023]
Abstract
Sirtuin 7 (SIRT7), an NAD+-dependent deacetylase, plays vital roles in energy sensing, but the underlying mechanisms of action remain less clear. Here, we report that SIRT7 is required for p53-dependent cell-cycle arrest during glucose deprivation. We show that SIRT7 directly interacts with p300/CBP-associated factor (PCAF) and the affinity for this interaction increases during glucose deprivation. Upon binding, SIRT7 deacetylates PCAF at lysine 720 (K720), which augments PCAF binding to murine double minute (MDM2), the p53 E3 ubiquitin ligase, leading to accelerated MDM2 degradation. This effect results in upregulated expression of the cell-cycle inhibitor, p21Waf1/Cip1, which further leads to cell-cycle arrest and decreased cell viability. These data highlight the importance of the SIRT7–PCAF interaction in regulating p53 activity and cell-cycle progression during conditions of glucose deprivation. This axis may represent a new avenue to design effective therapeutics based on tumor starvation.
Collapse
Affiliation(s)
- Ya-Fei Lu
- Guangdong Key Laboratory of Genome Instability and Human Disease, Shenzhen University International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Xiao-Peng Xu
- Guangdong Key Laboratory of Genome Instability and Human Disease, Shenzhen University International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Xiao-Peng Lu
- Guangdong Key Laboratory of Genome Instability and Human Disease, Shenzhen University International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Qian Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease, Shenzhen University International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Ge Liu
- Guangdong Key Laboratory of Genome Instability and Human Disease, Shenzhen University International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Yan-Tao Bao
- Guangdong Key Laboratory of Genome Instability and Human Disease, Shenzhen University International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - He Wen
- Guangdong Key Laboratory of Genome Instability and Human Disease, Shenzhen University International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Ying-Lu Li
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
| | - Wei Gu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease, Shenzhen University International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China. .,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China. .,Peking University-Tsinghua University Center for Life Sciences, Beijing, 100871, China.
| |
Collapse
|
9
|
Mustachio LM, Roszik J, Farria A, Dent SYR. Targeting the SAGA and ATAC Transcriptional Coactivator Complexes in MYC-Driven Cancers. Cancer Res 2020; 80:1905-1911. [PMID: 32094302 DOI: 10.1158/0008-5472.can-19-3652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022]
Abstract
Targeting epigenetic regulators, such as histone-modifying enzymes, provides novel strategies for cancer therapy. The GCN5 lysine acetyltransferase (KAT) functions together with MYC both during normal development and in oncogenesis. As transcription factors, MYC family members are difficult to target with small-molecule inhibitors, but the acetyltransferase domain and the bromodomain in GCN5 might provide alternative targets for disruption of MYC-driven functions. GCN5 is part of two distinct multiprotein histone-modifying complexes, SAGA and ATAC. This review summarizes key findings on the roles of SAGA and ATAC in embryo development and in cancer to better understand the functional relationships of these complexes with MYC family members, as well as their future potential as therapeutic targets.
Collapse
Affiliation(s)
- Lisa Maria Mustachio
- Departments of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aimee Farria
- Departments of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sharon Y R Dent
- Departments of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
10
|
A Systematic Analysis Revealed the Potential Gene Regulatory Processes of ATRA-Triggered Neuroblastoma Differentiation and Identified a Novel RA Response Sequence in the NTRK2 Gene. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6734048. [PMID: 32149119 PMCID: PMC7053487 DOI: 10.1155/2020/6734048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Retinoic acid- (RA-) triggered neuroblastoma cell lines are widely used cell modules of neuronal differentiation in neurodegenerative disease studies, but the gene regulatory mechanism underlying differentiation is unclear now. In this study, system biological analysis was performed on public microarray data from three neuroblastoma cell lines (SK-N-SH, SH-SY5Y-A, and SH-SY5Y-E) to explore the potential molecular processes of all-trans retinoic acid- (ATRA-) triggered differentiation. RT-qPCR, functional genomics analysis, western blotting, chromatin immunoprecipitation (ChIP), and homologous sequence analysis were further performed to validate the gene regulation processes and identify the RA response element in a specific gene. The potential disturbed biological pathways (111 functional GO terms in 14 interactive functional groups) and gene regulatory network (10 regulators and 71 regulated genes) in neuroblastoma differentiation were obtained. 15 of the 71 regulated genes are neuronal projection-related. Among them, NTRK2 is the only one that was dramatically upregulated in the RT-qPCR test that we performed on ATRA-treated SH-SY5Y-A cells. We further found that the overexpression of the NTRK2 gene can trigger differentiation-like changes in SH-SY5Y-A cells. Functional genomic analysis and western blotting assay suggested that, in neuroblastoma cells, ATRA may directly regulate the NTRK2 gene by activating the RA receptor (RAR) that binds in its promoter region. A novel RA response DNA element in the NTRK2 gene was then identified by bioinformatics analysis and chromatin immunoprecipitation (ChIP) assay. The novel element is sequence conservation and position variation among different species. Our study systematically provided the potential regulatory information of ATRA-triggered neuroblastoma differentiation, and in the NTRK2 gene, we identified a novel RA response DNA element, which may contribute to the differentiation in a human-specific manner.
Collapse
|
11
|
Duan P, Li J, Yang W, Li X, Long M, Feng X, Zhang Y, Chen C, Morais CLM, Martin FL, Luo J, Liu D, Xiong C. Fourier transform infrared and Raman-based biochemical profiling of different grades of pure foetal-type hepatoblastoma. JOURNAL OF BIOPHOTONICS 2019; 12:e201800304. [PMID: 30993892 DOI: 10.1002/jbio.201800304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
The biomolecular events resulting from the progression of hepatoblastoma remain to be elucidated. Fourier-transform infrared (FTIR) and Raman spectroscopies are capable of noninvasively and accurately capturing the biochemical properties of biological tissue from its pathological status. Our aim was to probe critial biomolecular changes of liver accompanying the progression of pure foetal hepatoblastoma (PFH) by FTIR and Raman spectroscopies. Herein, biochemical alterations were both evident in the FTIR spectra (regions of 3100-2800 cm-1 and 1800-900 cm-1 ) and the Raman spectra (region of 1800-400 cm-1 ) among normal, borderline and malignant liver tissues. Compared with normal tissues, the ratios of protein-to-lipid, α-helix-to-β-sheet, RNA-to-DNA, CH3 methyl-to-CH2 methylene, glucose-to-phospholipids, and unsaturated-to-saturated lipids intensities were significantly higher in malignant tissues, while the ratios of RNA-to-Amide II, DNA-to-Amide II, glycogen-to-cholesterol and Amide I-to-Amide II intensities were remarkably lower. These biochemical alterations in the transition from normal to malignant have profound implications not only for cyto-pathological classification but also for molecular understanding of PFH progression. The successive changes of the spectral characteristics have been shown to be consistent with the development of PFH, indicating that FTIR and Raman spectroscopies are excellent tools to interrogate the biochemical features of different grades of PFH.
Collapse
Affiliation(s)
- Peng Duan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Reproductive Medicine, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Junyi Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Weiyingxue Yang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiandong Li
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Manman Long
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Feng
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuge Zhang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunling Chen
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Camilo L M Morais
- Lancashire Teaching Hospitals NHS Trust, Preston, UK
- Biocel Ltd, Hull, UK
| | | | - Jianbin Luo
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Dameng Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Chengliang Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| |
Collapse
|
12
|
Pallavi R, Mazzarella L, Pelicci PG. Advances in precision epigenetic treatment for acute promyelocytic leukemia. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1612238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rani Pallavi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Mazzarella
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Division of Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Doush Y, Surani AA, Navarro-Corcuera A, McArdle S, Billett EE, Montiel-Duarte C. SP1 and RARα regulate AGAP2 expression in cancer. Sci Rep 2019; 9:390. [PMID: 30674964 PMCID: PMC6344547 DOI: 10.1038/s41598-018-36888-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/29/2018] [Indexed: 01/24/2023] Open
Abstract
AGAP2 (Arf GAP with GTP-binding protein-like domain, Ankyrin repeat and PH domain 2) isoform 2 is considered a proto-oncogene, but not much is known about AGAP2 gene expression regulation. To get some insight into this process, AGAP2 proximal promoter was cloned and characterised using reporter assays. We have identified SP1 as a transcription factor bound to AGAP2 promoter and required for AGAP2 expression in two different types of cancer cells (KU812, a chronic myeloid leukaemia cell line; and DU145, a prostate cancer cell line): silencing SP1 decreased AGAP2 protein levels. We have also found that all-trans retinoic acid (ATRA) treatment increased AGAP2 protein levels in both cell lines whilst curcumin treatment reduced ATRA-mediated AGAP2 increase. Furthermore, chromatin immunoprecipitation studies revealed the presence of RARα, RXRα and the lysine acetyl transferase PCAF in AGAP2 promoter. Our results provide a novel understanding of AGAP2 expression regulation that could be beneficial to those patients with cancers where AGAP2 is overexpressed.
Collapse
Affiliation(s)
- Yegor Doush
- College of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Arif A Surani
- College of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Amaia Navarro-Corcuera
- College of Science and Technology, Nottingham Trent University, Nottingham, UK.,Department of Biochemistry and Genetics, University of Navarra, 31008, Pamplona, Spain
| | - Stephanie McArdle
- The John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - E Ellen Billett
- College of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | |
Collapse
|
14
|
Memari F, Joneidi Z, Taheri B, Aval SF, Roointan A, Zarghami N. Epigenetics and Epi-miRNAs: Potential markers/therapeutics in leukemia. Biomed Pharmacother 2018; 106:1668-1677. [PMID: 30170355 DOI: 10.1016/j.biopha.2018.07.133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic variations can play remarkable roles in different normal and abnormal situations. Such variations have been shown to have a direct role in the pathogenesis of various diseases either through inhibition of tumor suppressor genes or increasing the expression of oncogenes. Enzymes involving in epigenetic machinery are the main actors in tuning the epigenetic-based controls on gene expressions. Aberrant expression of these enzymes can trigger a big chaos in the cellular gene expression networks and finally lead to cancer progression. This situation has been shown in different types of leukemia, where high or low levels of an epigenetic enzyme are partly or highly responsible for involvement or progression of a disease. DNA hypermethylation, different histone modifications, and aberrant miRNA expressions are three main epigenetic variations, which have been shown to play a role in leukemia progression. Epigenetic based treatments now are considered as novel and effective therapies in order to decrease the abnormal epigenetic modifications in patient cells. Different epigenetic-based approaches have been developed and tested to inhibit or reverse the unusual expression of epigenetic agents in leukemia. The reciprocal behavior of miRNAs in the regulation of epigenetic modifiers, while being regulated by them, unlocks a new opportunity in order to design some epigenetic-based miRNAs able to silence or sensitize these effectors in leukemia.
Collapse
Affiliation(s)
- Fatemeh Memari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Joneidi
- Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behnaz Taheri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sedigheh Fekri Aval
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Zhang X, Zheng X, Yang H, Yan J, Fu X, Wei R, Xu X, Zhang Z, Yu A, Zhou K, Ding J, Geng M, Huang X. Piribedil disrupts the MLL1-WDR5 interaction and sensitizes MLL-rearranged acute myeloid leukemia (AML) to doxorubicin-induced apoptosis. Cancer Lett 2018; 431:150-160. [PMID: 29857126 DOI: 10.1016/j.canlet.2018.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
Targeting WT MLL for the treatment of MLL-r leukemia, which is highly aggressive and resistant to chemotherapy, has been shown to be a promising strategy. However, drug treatments targeting WT MLL are lacking. We used an in vitro histone methyltransferase assay to screen a library consists of 592 FDA-approved drugs for MLL1 inhibitors by measuring alterations in HTRF signal and found that Piribedil represented a potent activity. Piribedil specifically inhibited the proliferation of MLL-r cells by inducing cell-cycle arrest, apoptosis and myeloid differentiation with little toxicity to the non-MLL cells. Mechanism study showed Piribedil blocked the MLL1-WDR5 interaction and thus selectively reduced MLL1-dependent H3K4 methylation. Importantly, MLL1 depletion induced gene expression that was similar to that induced by Piribedil and rendered the MLL-r cells resistant to Piribedil-induced toxicity, revealing Piribedil exerted anti-leukemia effects by targeting MLL1. Furthermore, both the Piribedil treatment and MLL1 depletion sensitized the MLL-r cells to doxorubicin-induced apoptosis. Our study support the hypothesis that Piribedil could serve as a new drug for the treatment of MLL-r AML and provide new insight for further optimization of targeting MLL1 HMT activity.
Collapse
Affiliation(s)
- Xiong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xingling Zheng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hong Yang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Juan Yan
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Xuhong Fu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Rongrui Wei
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Xiaowei Xu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Zhuqing Zhang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Aisong Yu
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Kaixin Zhou
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China
| | - Jian Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China; Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China.
| | - Meiyu Geng
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China.
| | - Xun Huang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
16
|
Kargbo RB. Histone Deacetylase Inhibitors as Treatment for Targeting Multiple Components in Cancer Therapy. ACS Med Chem Lett 2018. [PMID: 29541353 DOI: 10.1021/acsmedchemlett.8b00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Robert B. Kargbo
- Usona Institute, 277 Granada Drive, San Luis Obispo, California 93401-7337, United States
| |
Collapse
|
17
|
Abstract
The concept of differentiation therapy emerged from the fact that hormones or cytokines may promote differentiation ex vivo, thereby irreversibly changing the phenotype of cancer cells. Its hallmark success has been the treatment of acute promyelocytic leukaemia (APL), a condition that is now highly curable by the combination of retinoic acid (RA) and arsenic. Recently, drugs that trigger differentiation in a variety of primary tumour cells have been identified, suggesting that they are clinically useful. This Opinion article analyses the basis for the clinical successes of RA or arsenic in APL by assessing the respective roles of terminal maturation and loss of self-renewal. By reviewing other successful examples of drug-induced tumour cell differentiation, novel approaches to transform differentiating drugs into more efficient therapies are proposed.
Collapse
Affiliation(s)
- Hugues de Thé
- Collège de France, PSL Research University, 75005 Paris; Université Paris Diderot, Sorbonne Paris Cité (INSERM UMR 944, Equipe Labellisée par la Ligue Nationale contre le Cancer; CNRS UMR 7212), Institut Universitaire d'Hématologie, 75010 Paris; and Assistance Publique/Hôpitaux de Paris, Oncologie Moléculaire, Hôpital St Louis, 75010 Paris, France
| |
Collapse
|
18
|
van Gils N, Verhagen HJMP, Smit L. Reprogramming acute myeloid leukemia into sensitivity for retinoic-acid-driven differentiation. Exp Hematol 2017; 52:12-23. [PMID: 28456748 DOI: 10.1016/j.exphem.2017.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/05/2017] [Accepted: 04/14/2017] [Indexed: 12/29/2022]
Abstract
The success of all-trans retinoic acid (ATRA) therapy for acute promyelocytic leukemia (APL) provides a rationale for using retinoic acid (RA)-based therapy for other subtypes of acute myeloid leukemia (AML). Recently, several studies showed that ATRA may drive leukemic cells efficiently into differentiation and/or apoptosis in a subset of AML patients with an NPM1 mutation, a FLT3-ITD, an IDH1 mutation, and patients overexpressing EVI-1. Because not all patients within these molecular subgroups respond to ATRA and clinical trials that tested ATRA response in non-APL AML patients have had disappointing results, the identification of additional biomarkers may help to identify patients who strongly respond to ATRA-based therapy. Searching for response biomarkers might also reveal novel RA-based combination therapies with an efficient differentiation/apoptosis-inducing effect in non-APL AML patients. Preliminary studies suggest that the epigenetic or transcriptional state of leukemia cells determines their susceptibility to ATRA. We hypothesize that reprogramming by inhibitors of epigenetic-modifying enzymes or by modulation of microRNA expression might sensitize non-APL AML cells for RA-based therapy. AML relapse is caused by a subpopulation of leukemia cells, named leukemic stem cells (LSCs), which are in a different epigenetic state than the total bulk of the AML. The survival of LSCs after therapy is the main cause of the poor prognosis of AML patients, and novel differentiation therapies should drive these LSCs into maturity. In this review, we summarize the current knowledge on the epigenetic aspects of susceptibility to RA-induced differentiation in APL and non-APL AML.
Collapse
Affiliation(s)
- Noortje van Gils
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Han J M P Verhagen
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Linda Smit
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|