1
|
Valesyan S, Jora M, Addepalli B, Limbach PA. Stress-induced modification of Escherichia coli tRNA generates 5-methylcytidine in the variable loop. Proc Natl Acad Sci U S A 2024; 121:e2317857121. [PMID: 39495928 DOI: 10.1073/pnas.2317857121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/08/2024] [Indexed: 11/06/2024] Open
Abstract
There has been recent interest in trying to understand the connection between transfer RNA (tRNA) posttranscriptional modifications and changes in-cellular environmental conditions. Here, we report on the identification of the modified nucleoside 5-methylcytidine (m5C) in Escherichia coli tRNAs. This modification was determined to be present at position 49 of tRNA Tyr-QUA-II. Moreover, m5C levels in this tRNA are significantly elevated under high reactive oxygen specieis (ROS) conditions in E. coli cells. We identified the known ribosomal RNA methyltransferase rsmF as the enzyme responsible for m5C synthesis in tRNA and enzyme transcript levels are responsive to elevated levels of ROS in the cell. We further find that changes in m5C levels in this tRNA are not specific to Fenton-like reaction conditions elevating ROS, but heat shock can also induce increased modification of tRNA Tyr-QUA-II. Altogether, this work illustrates how cells adapt to changing environmental conditions through variations in tRNA modification profiles.
Collapse
Affiliation(s)
- Satenik Valesyan
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH 45221-0172
| | - Manasses Jora
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH 45221-0172
| | - Balasubrahmanyam Addepalli
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH 45221-0172
| | - Patrick A Limbach
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH 45221-0172
| |
Collapse
|
2
|
Galperin MY, Vera Alvarez R, Karamycheva S, Makarova KS, Wolf YI, Landsman D, Koonin EV. COG database update 2024. Nucleic Acids Res 2024:gkae983. [PMID: 39494517 DOI: 10.1093/nar/gkae983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
The Clusters of Orthologous Genes (COG) database, originally created in 1997, has been updated to reflect the constantly growing collection of completely sequenced prokaryotic genomes. This update increased the genome coverage from 1309 to 2296 species, including 2103 bacteria and 193 archaea, in most cases, with a single representative genome per genus. This set covers all genera of bacteria and archaea that included organisms with 'complete genomes' as per NCBI databases in November 2023. The number of COGs has been expanded from 4877 to 4981, primarily by including protein families involved in bacterial protein secretion. Accordingly, COG pathways and functional groups now include secretion systems of types II through X, as well as Flp/Tad and type IV pili. These groupings allow straightforward identification and examination of the prokaryotic lineages that encompass-or lack-a particular secretion system. Other developments include improved annotations for the rRNA and tRNA modification proteins, multi-domain signal transduction proteins, and some previously uncharacterized protein families. The new version of COGs is available at https://www.ncbi.nlm.nih.gov/research/COG, as well as on the NCBI FTP site https://ftp.ncbi.nlm.nih.gov/pub/COG/, which also provides archived data from previous COG releases.
Collapse
Affiliation(s)
- Michael Y Galperin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Roberto Vera Alvarez
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Svetlana Karamycheva
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Kira S Makarova
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - David Landsman
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| |
Collapse
|
3
|
Popova A, Jain N, Dong X, Abdollah-Nia F, Britton R, Williamson J. Complete list of canonical post-transcriptional modifications in the Bacillus subtilis ribosome and their link to RbgA driven large subunit assembly. Nucleic Acids Res 2024; 52:11203-11217. [PMID: 39036956 PMCID: PMC11472175 DOI: 10.1093/nar/gkae626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Ribosomal RNA modifications in prokaryotes have been sporadically studied, but there is a lack of a comprehensive picture of modification sites across bacterial phylogeny. Bacillus subtilis is a preeminent model organism for gram-positive bacteria, with a well-annotated and editable genome, convenient for fundamental studies and industrial use. Yet remarkably, there has been no complete characterization of its rRNA modification inventory. By expanding modern MS tools for the discovery of RNA modifications, we found a total of 25 modification sites in 16S and 23S rRNA of B. subtilis, including the chemical identity of the modified nucleosides and their precise sequence location. Furthermore, by perturbing large subunit biogenesis using depletion of an essential factor RbgA and measuring the completion of 23S modifications in the accumulated intermediate, we provide a first look at the order of modification steps during the late stages of assembly in B. subtilis. While our work expands the knowledge of bacterial rRNA modification patterns, adding B. subtilis to the list of fully annotated species after Escherichia coli and Thermus thermophilus, in a broader context, it provides the experimental framework for discovery and functional profiling of rRNA modifications to ultimately elucidate their role in ribosome biogenesis and translation.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/genetics
- Bacterial Proteins/metabolism
- Bacterial Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/genetics
- Ribosomes/metabolism
- Ribosomes/genetics
Collapse
Affiliation(s)
- Anna M Popova
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nikhil Jain
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
- INSITRO, 279 E Grand Ave., South San Francisco, CA 94080, USA
| | - Xiyu Dong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Farshad Abdollah-Nia
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Ding H, Liu N, Wang Y, Adam SA, Jin J, Feng W, Sun J. Implications of RNA pseudouridylation for cancer biology and therapeutics: a narrative review. J Transl Med 2024; 22:906. [PMID: 39375731 PMCID: PMC11457414 DOI: 10.1186/s12967-024-05687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Pseudouridine (Ψ), a C5-glycoside isomer of uridine, stands as one of the most prevalent RNA modifications in all RNA types. Distinguishing from the C-N bond linking uridine to ribose, the link between Ψ and ribose is a C-C bond, endowing Ψ modified RNA distinct properties and functions in various biological processes. The conversion of uridine to Ψ is governed by pseudouridine synthases (PUSs). RNA pseudouridylation is implicated in cancer biology and therapeutics. OBJECTIVES In this review, we will summarize the methods for detecting Ψ, the process of Ψ generation, the impact of Ψ modification on RNA metabolism and gene expression, the roles of dysregulated Ψ and pseudouridine synthases in cancers, and the underlying mechanism. METHODS We conducted a comprehensive search of PubMed from its inception through February 2024. The search terms included "pseudouridine"; "pseudouridine synthase"; "PUS"; "dyskerin"; "cancer"; "tumor"; "carcinoma"; "malignancy"; "tumorigenesis"; "biomarker"; "prognosis" and "therapy". We included studies published in peer-reviewed journals that focused on Ψ detection, specific mechanisms involving Ψ and PUSs, and prognosis in cancer patients with high Ψ expression. We excluded studies lacking sufficient methodological details or appropriate controls. RESULTS Ψ has been recognized as a significant biomarker in cancer diagnosis and prognosis. Abnormal Ψ modifications mediated by various PUSs result in dysregulated RNA metabolism and impaired RNA function, promoting the development of various cancers. Overexpression of PUSs is common in cancer cells and predicts poor prognosis. PUSs inhibition arrests cell proliferation and enhances apoptosis in cancer cells, suggesting PUS-targeting cancer therapy may be a potential strategy in cancer treatment. DISCUSSION High Ψ levels in serum, urine, and saliva may suggest cancer, but do not specify the type, requiring additional lab markers and imaging for accurate diagnosis. Standardized detection methods are also crucial for reliable results. PUSs are linked to cancer, but more researches are needed to understand their mechanisms in different cancers. Anticancer treatments targeting PUSs are still under developed.
Collapse
Affiliation(s)
- Hanyi Ding
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Na Liu
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
- Department of Oncology, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
| | - Sofia Abdulkadir Adam
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China.
| | - Weiying Feng
- Department of Hematology, Shaoxing People's Hospital, Shaoxing, Zhejiang, China.
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Schultz SK, Kothe U. RNA modifying enzymes shape tRNA biogenesis and function. J Biol Chem 2024; 300:107488. [PMID: 38908752 PMCID: PMC11301382 DOI: 10.1016/j.jbc.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.
Collapse
Affiliation(s)
- Sarah K Schultz
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
6
|
Ero R, Leppik M, Reier K, Liiv A, Remme J. Ribosomal RNA modification enzymes stimulate large ribosome subunit assembly in E. coli. Nucleic Acids Res 2024; 52:6614-6628. [PMID: 38554109 PMCID: PMC11194073 DOI: 10.1093/nar/gkae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Ribosomal RNA modifications are introduced by specific enzymes during ribosome assembly in bacteria. Deletion of individual modification enzymes has a minor effect on bacterial growth, ribosome biogenesis, and translation, which has complicated the definition of the function of the enzymes and their products. We have constructed an Escherichia coli strain lacking 10 genes encoding enzymes that modify 23S rRNA around the peptidyl-transferase center. This strain exhibits severely compromised growth and ribosome assembly, especially at lower temperatures. Re-introduction of the individual modification enzymes allows for the definition of their functions. The results demonstrate that in addition to previously known RlmE, also RlmB, RlmKL, RlmN and RluC facilitate large ribosome subunit assembly. RlmB and RlmKL have functions in ribosome assembly independent of their modification activities. While the assembly stage specificity of rRNA modification enzymes is well established, this study demonstrates that there is a mutual interdependence between the rRNA modification process and large ribosome subunit assembly.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/genetics
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Ribosome Subunits, Large/metabolism
- Ribosome Subunits, Large/genetics
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/genetics
- Ribosomes/metabolism
- Ribosomes/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/chemistry
Collapse
Affiliation(s)
- Rya Ero
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Margus Leppik
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Kaspar Reier
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Aivar Liiv
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Jaanus Remme
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
7
|
Popova AM, Jain N, Dong X, Abdollah-Nia F, Britton RA, Williamson JR. Complete list of canonical post-transcriptional modifications in the Bacillus subtilis ribosome and their link to RbgA driven large subunit assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593627. [PMID: 38765983 PMCID: PMC11100780 DOI: 10.1101/2024.05.10.593627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ribosomal RNA modifications in prokaryotes have been sporadically studied, but there is a lack of a comprehensive picture of modification sites across bacterial phylogeny. B. subtilis is a preeminent model organism for gram-positive bacteria, with a well-annotated and editable genome, convenient for fundamental studies and industrial use. Yet remarkably, there has been no complete characterization of its rRNA modification inventory. By expanding modern MS tools for the discovery of RNA modifications, we found a total of 25 modification sites in 16S and 23S rRNA of B. subtilis, including the chemical identity of the modified nucleosides and their precise sequence location. Furthermore, by perturbing large subunit biogenesis using depletion of an essential factor RbgA and measuring the completion of 23S modifications in the accumulated intermediate, we provide a first look at the order of modification steps during the late stages of assembly in B. subtilis. While our work expands the knowledge of bacterial rRNA modification patterns, adding B. subtilis to the list of fully annotated species after E. coli and T. thermophilus, in a broader context, it provides the experimental framework for discovery and functional profiling of rRNA modifications to ultimately elucidate their role in ribosome biogenesis and translation.
Collapse
Affiliation(s)
- Anna M. Popova
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nikhil Jain
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA, Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiyu Dong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Farshad Abdollah-Nia
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA, Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R. Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Quaiyum S, Sun J, Marchand V, Sun G, Reed CJ, Motorin Y, Dedon PC, Minnick MF, de Crécy-Lagard V. Mapping the tRNA modification landscape of Bartonella henselae Houston I and Bartonella quintana Toulouse. Front Microbiol 2024; 15:1369018. [PMID: 38544857 PMCID: PMC10965804 DOI: 10.3389/fmicb.2024.1369018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Transfer RNA (tRNA) modifications play a crucial role in maintaining translational fidelity and efficiency, and they may function as regulatory elements in stress response and virulence. Despite their pivotal roles, a comprehensive mapping of tRNA modifications and their associated synthesis genes is still limited, with a predominant focus on free-living bacteria. In this study, we employed a multidisciplinary approach, incorporating comparative genomics, mass spectrometry, and next-generation sequencing, to predict the set of tRNA modification genes responsible for tRNA maturation in two intracellular pathogens-Bartonella henselae Houston I and Bartonella quintana Toulouse, which are causative agents of cat-scratch disease and trench fever, respectively. This analysis presented challenges, particularly because of host RNA contamination, which served as a potential source of error. However, our approach predicted 26 genes responsible for synthesizing 23 distinct tRNA modifications in B. henselae and 22 genes associated with 23 modifications in B. quintana. Notably, akin to other intracellular and symbiotic bacteria, both Bartonella species have undergone substantial reductions in tRNA modification genes, mostly by simplifying the hypermodifications present at positions 34 and 37. Bartonella quintana exhibited the additional loss of four modifications and these were linked to examples of gene decay, providing snapshots of reductive evolution.
Collapse
Affiliation(s)
- Samia Quaiyum
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Virginie Marchand
- Université de Lorraine, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility and UMR7365 IMoPA, CNRS-Inserm, Biopôle UL, Nancy, France
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Colbie J. Reed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Yuri Motorin
- Université de Lorraine, UAR2008/US40 IBSLor, EpiRNA-Seq Core Facility and UMR7365 IMoPA, CNRS-Inserm, Biopôle UL, Nancy, France
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Michael F. Minnick
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
- Genetic Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Chen H, Zhao S. Research progress of RNA pseudouridine modification in nervous system. Int J Neurosci 2024:1-11. [PMID: 38407188 DOI: 10.1080/00207454.2024.2315483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
Recent advances of pseudouridine (Ψ, 5-ribosyluracil) modification highlight its crucial role as a post-transcriptional regulator in gene expression and its impact on various RNA processes. Ψ synthase (PUS), a category of RNA-modifying enzymes, orchestrates the pseudouridylation reaction. It can specifically recognize conserved sequences or structural motifs within substrates, thereby regulating the biological function of various RNA molecules accurately. Our comprehensive review underscored the close association of PUS1, PUS3, PUS7, PUS10, and dyskerin PUS1 with various nervous system disorders, including neurodevelopmental disorders, nervous system tumors, mitochondrial myopathy, lactic acidosis and sideroblastic anaemia (MLASA) syndrome, peripheral nervous system disorders, and type II myotonic dystrophy. In light of these findings, this study elucidated how Ψ strengthened RNA structures and contributed to RNA function, thereby providing valuable insights into the intricate molecular mechanisms underlying nervous system diseases. However, the detailed effects and mechanisms of PUS on neuron remain elusive. This lack of mechanistic understanding poses a substantial obstacle to the development of therapeutic approaches for various neurological disorders based on Ψ modification.
Collapse
Affiliation(s)
- Hui Chen
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Shuang Zhao
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
10
|
Goh WSS, Kuang Y. Heterogeneity of chemical modifications on RNA. Biophys Rev 2024; 16:79-87. [PMID: 38495447 PMCID: PMC10937866 DOI: 10.1007/s12551-023-01128-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/27/2023] [Indexed: 03/19/2024] Open
Abstract
The chemical modifications of RNAs broadly impact almost all cellular events and influence various diseases. The rapid advance of sequencing and other technologies opened the door to global methods for profiling all RNA modifications, namely the "epitranscriptome." The mapping of epitranscriptomes in different cells and tissues unveiled that RNA modifications exhibit extensive heterogeneity, in type, amount, and in location. In this mini review, we first introduce the current understanding of modifications on major types of RNAs and the methods that enabled their discovery. We next discuss the tissue and cell heterogeneity of RNA modifications and briefly address the limitations of current technologies. With much still remaining unknown, the development of the epitranscriptomic field lies in the further developments of novel technologies.
Collapse
Affiliation(s)
- W. S. Sho Goh
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yi Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
11
|
Wolff P, Labar G, Lechner A, Van Elder D, Soin R, Gueydan C, Kruys V, Droogmans L, Roovers M. The Bacillus subtilis ywbD gene encodes RlmQ, the 23S rRNA methyltransferase forming m 7G2574 in the A-site of the peptidyl transferase center. RNA (NEW YORK, N.Y.) 2024; 30:105-112. [PMID: 38071475 PMCID: PMC10798245 DOI: 10.1261/rna.079853.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Ribosomal RNA contains many posttranscriptionally modified nucleosides, particularly in the functional parts of the ribosome. The distribution of these modifications varies from one organism to another. In Bacillus subtilis, the model organism for Gram-positive bacteria, mass spectrometry experiments revealed the presence of 7-methylguanosine (m7G) at position 2574 of the 23S rRNA, which lies in the A-site of the peptidyl transferase center of the large ribosomal subunit. Testing several m7G methyltransferase candidates allowed us to identify the RlmQ enzyme, encoded by the ywbD open reading frame, as the MTase responsible for this modification. The enzyme methylates free RNA and not ribosomal 50S or 70S particles, suggesting that modification occurs in the early steps of ribosome biogenesis.
Collapse
Affiliation(s)
- Philippe Wolff
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | | | - Antony Lechner
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Dany Van Elder
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles (ULB), Labiris, B-1070 Bruxelles, Belgium
| | - Romuald Soin
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Cyril Gueydan
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Louis Droogmans
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles (ULB), Labiris, B-1070 Bruxelles, Belgium
| | | |
Collapse
|
12
|
Quaiyum S, Sun J, Marchand V, Sun G, Reed CJ, Motorin Y, Dedon PC, Minnick MF, de Crécy-Lagard V. Mapping the tRNA Modification Landscape of Bartonella henselae Houston I and Bartonella quintana Toulouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574729. [PMID: 38260440 PMCID: PMC10802484 DOI: 10.1101/2024.01.08.574729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Transfer RNA (tRNA) modifications play a crucial role in maintaining translational fidelity and efficiency, and they may function as regulatory elements in stress response and virulence. Despite their pivotal roles, a comprehensive mapping of tRNA modifications and their associated synthesis genes is still limited, with a predominant focus on free-living bacteria. In this study, we employed a multidisciplinary approach, incorporating comparative genomics, mass spectrometry, and next-generation sequencing, to predict the set of tRNA modification genes responsible for tRNA maturation in two intracellular pathogens- Bartonella henselae Houston I and Bartonella quintana Toulouse, which are causative agents of cat-scratch disease and trench fever, respectively. This analysis presented challenges, particularly because of host RNA contamination, which served as a potential source of error. However, our approach predicted 26 genes responsible for synthesizing 23 distinct tRNA modifications in B. henselae and 22 genes associated with 23 modifications in B. quintana . Notably, akin to other intracellular and symbiotic bacteria, both Bartonella species have undergone substantial reductions in tRNA modification genes, mostly by simplifying the hypermodifications present at positions 34 and 37. B. quintana exhibited the additional loss of four modifications and these were linked to examples of gene decay, providing snapshots of reductive evolution.
Collapse
|
13
|
Burrows CJ, Fleming AM. Bisulfite and Nanopore Sequencing for Pseudouridine in RNA. Acc Chem Res 2023; 56:2740-2751. [PMID: 37700703 PMCID: PMC10911771 DOI: 10.1021/acs.accounts.3c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Nucleophilic addition of bisulfite to pyrimidine bases has been known for a half century, and the reaction has been in use for at least a quarter of a century for identifying 5-methylcytidine in DNA. This account focuses on the chemistry of bisulfite with pseudouridine, an isomer of the RNA nucleoside uridine in which the uracil base is connected to C1' of ribose via C5 instead of N1. Pseudouridine, Ψ, is the most common nucleotide modification found in cellular RNA overall, in part due to its abundance in rRNAs and tRNAs. It has a stabilizing influence on RNA structure because N1 is now available for additional hydrogen bonding and because the heterocycle is slightly better at π stacking. The isomerization of U to Ψ in RNA strands is catalyzed by 13 different enzymes in humans and 11 in E. coli; some of these enzymes are implicated in disease states which is testament to the biological importance of pseudouridine in cells. Recently, pseudouridine came into the limelight as the key modification that, after N1 methylation, enables mRNA vaccines to be delivered efficiently into human tissue with minimal generation of a deleterious immunogenic response. Here we describe the bisulfite reaction with pseudouridine which gives rise to a chemical sequencing method to map the modified base in the epitranscriptome. Unlike the reaction with cytidine, the addition of bisulfite to Ψ leads irreversibly to form an adduct that is bypassed during cDNA synthesis by reverse transcriptases yielding a characteristic deletion signature. Although there were hints to the structure of the bisulfite adduct(s) 30 to 50 years ago, it took modern spectroscopic and computational methods to solve the mystery. Raman spectroscopy along with extensive NMR, ECD, and computational work led to the assignment of the major product as the (R) diastereomer of an oxygen adduct at C1' of a ring-opened pseudouridine. Mechanistically, this arose from a succession of conjugate addition, E2 elimination, and a [2,3] sigmatropic rearrangement, all of which are stereodefined reactions. A minor reaction with excess bisulfite led to the (S) isomer of a S-adducted SO3- group. Understanding structure and mechanism aided the design of a Ψ-specific sequencing reaction and guided attempts to improve the utility and specificity of the method. Separately, we have been investigating the use of nanopore direct RNA sequencing, a single-molecule method that directly analyzes RNA strands isolated from cells after end-ligation of adaptor sequences. By combining the electrical current and base-calling data from the nanopore with dwell-time analysis from the helicase employed to deliver RNA to the nanopore, we were able to map Ψ sites in nearly all sequence contexts. This analysis was employed to find Ψ residues in the SARS-CoV-2 vRNA, to analyze the sequence context effects of mRNA vaccine synthesis via in vitro transcription, and to evaluate the impact of stress on chemical modifications in the E. coli ribosome. Most recently, we found that bisulfite treatment of RNA leading to Ψ adducts could modulate the nanopore signal to help in mapping modifications of low occupancy.
Collapse
Affiliation(s)
- Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
14
|
Jones JD, Simcox KM, Kennedy RT, Koutmou KS. Direct sequencing of total Saccharomyces cerevisiae tRNAs by LC-MS/MS. RNA (NEW YORK, N.Y.) 2023; 29:1201-1214. [PMID: 37169396 PMCID: PMC10351886 DOI: 10.1261/rna.079656.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/23/2023] [Indexed: 05/13/2023]
Abstract
Among RNAs, transfer RNAs (tRNAs) contain the widest variety of abundant posttranscriptional chemical modifications. These modifications are crucial for tRNAs to participate in protein synthesis, promoting proper tRNA structure and aminoacylation, facilitating anticodon:codon recognition, and ensuring the reading frame maintenance of the ribosome. While tRNA modifications were long thought to be stoichiometric, it is becoming increasingly apparent that these modifications can change dynamically in response to the cellular environment. The ability to broadly characterize the fluctuating tRNA modification landscape will be essential for establishing the molecular level contributions of individual sites of tRNA modification. The locations of modifications within individual tRNA sequences can be mapped using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). In this approach, a single tRNA species is purified, treated with ribonucleases, and the resulting single-stranded RNA products are subject to LC-MS/MS analysis. The application of LC-MS/MS to study tRNAs is limited by the necessity of analyzing one tRNA at a time, because the digestion of total tRNA mixtures by commercially available ribonucleases produces many short digestion products unable to be uniquely mapped back to a single site within a tRNA. We overcame these limitations by taking advantage of the highly structured nature of tRNAs to prevent the full digestion by single-stranded RNA-specific ribonucleases. Folding total tRNA prior to digestion allowed us to sequence Saccharomyces cerevisiae tRNAs with up to 97% sequence coverage for individual tRNA species by LC-MS/MS. This method presents a robust avenue for directly detecting the distribution of modifications in total tRNAs.
Collapse
Affiliation(s)
- Joshua D Jones
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kaley M Simcox
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
15
|
Jones JD, Grassmyer KT, Kennedy RT, Koutmou KS, Maloney TD. Nuclease P1 Digestion for Bottom-Up RNA Sequencing of Modified siRNA Therapeutics. Anal Chem 2023; 95:4404-4411. [PMID: 36812429 DOI: 10.1021/acs.analchem.2c04902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
siRNA therapeutics provide a selective and powerful approach to reduce the expression of disease-causing genes. For regulatory approval, these modalities require sequence confirmation which is typically achieved by intact tandem mass spectrometry sequencing. However, this process produces highly complex spectra which are difficult to interpret and typically results in less than full sequence coverage. We sought to develop a bottom-up siRNA sequencing platform to ease sequencing data analysis and provide full sequence coverage. Analogous to bottom-up proteomics, this process requires chemical or enzymatic digestion to reduce the oligonucleotide length down to analyzable lengths, but siRNAs commonly contain modifications that inhibit the degradation process. We tested six digestion schemes for their feasibility to digest the 2' modified siRNAs and identified that nuclease P1 provides an effective digestion workflow. Using a partial digestion, nuclease P1 provides high 5' and 3' end sequence coverage with multiple overlapping digestion products. Additionally, this enzyme provides high-quality and highly reproducible RNA sequencing no matter the RNA phosphorothioate content, 2'-fluorination status, sequence, or length. Overall, we developed a robust enzymatic digestion scheme for bottom-up siRNA sequencing using nuclease P1, which can be implemented into existing sequence confirmation workflows.
Collapse
Affiliation(s)
- Joshua D Jones
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, Michigan 48109, United States.,Synthetic Molecule Design and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Kathleen T Grassmyer
- Synthetic Molecule Design and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, Michigan 48109, United States
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, 930 N University, Ann Arbor, Michigan 48109, United States
| | - Todd D Maloney
- Synthetic Molecule Design and Development, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
| |
Collapse
|
16
|
Dinh TT, Xiang M, Rajaraman A, Wang Y, Salazar N, Zhu Y, Roper W, Rhee S, Brulois K, O'Hara E, Kiefel H, Dinh TM, Bi Y, Gonzalez D, Bao EP, Red-Horse K, Balogh P, Gábris F, Gaszner B, Berta G, Pan J, Butcher EC. An NKX-COUP-TFII morphogenetic code directs mucosal endothelial addressin expression. Nat Commun 2022; 13:7448. [PMID: 36460642 PMCID: PMC9718832 DOI: 10.1038/s41467-022-34991-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Immunoglobulin family and carbohydrate vascular addressins encoded by Madcam1 and St6gal1 control lymphocyte homing into intestinal tissues, regulating immunity and inflammation. The addressins are developmentally programmed to decorate endothelial cells lining gut post-capillary and high endothelial venules (HEV), providing a prototypical example of organ- and segment-specific endothelial specialization. We identify conserved NKX-COUP-TFII composite elements (NCCE) in regulatory regions of Madcam1 and St6gal1 that bind intestinal homeodomain protein NKX2-3 cooperatively with venous nuclear receptor COUP-TFII to activate transcription. The Madcam1 element also integrates repressive signals from arterial/capillary Notch effectors. Pan-endothelial COUP-TFII overexpression induces ectopic addressin expression in NKX2-3+ capillaries, while NKX2-3 deficiency abrogates expression by HEV. Phylogenetically conserved NCCE are enriched in genes involved in neuron migration and morphogenesis of the heart, kidney, pancreas and other organs. Our results define an NKX-COUP-TFII morphogenetic code that targets expression of mucosal vascular addressins.
Collapse
Affiliation(s)
- Thanh Theresa Dinh
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Menglan Xiang
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Anusha Rajaraman
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Yongzhi Wang
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Clinical Science Malmo, Section of Surgery, Lund University, Malmo, Sweden
| | - Nicole Salazar
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu Zhu
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Walter Roper
- Columbia University Vagelos College of Physicians and Surgeons, New York City, NY, USA
| | - Siyeon Rhee
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Kevin Brulois
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Ed O'Hara
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Helena Kiefel
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Truc M Dinh
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Yuhan Bi
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | | | - Evan P Bao
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Peter Balogh
- Department of Immunology and Biotechnology, University of Pécs Medical School, Pécs, Hungary
- Lymphoid Organogenesis Research Team, Szentágothai Research Center, Pécs, Hungary
| | - Fanni Gábris
- Department of Immunology and Biotechnology, University of Pécs Medical School, Pécs, Hungary
- Lymphoid Organogenesis Research Team, Szentágothai Research Center, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, University of Pécs Medical School, Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscopy Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Junliang Pan
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
17
|
Thakur P, Atway J, Limbach PA, Addepalli B. RNA Cleavage Properties of Nucleobase-Specific RNase MC1 and Cusativin Are Determined by the Dinucleotide-Binding Interactions in the Enzyme-Active Site. Int J Mol Sci 2022; 23:7021. [PMID: 35806025 PMCID: PMC9266746 DOI: 10.3390/ijms23137021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
Knowledge of the cleavage specificity of ribonucleases is critical for their application in RNA modification mapping or RNA-protein binding studies. Here, we detail the cleavage specificity and efficiency of ribonuclease MC1 and cusativin using a customized RNA sequence that contained all dinucleotide combinations and homopolymer sequences. The sequencing of the oligonucleotide digestion products by a semi-quantitative liquid chromatography coupled with mass spectrometry (LC-MS) analysis documented as little as 0.5-1% cleavage levels for a given dinucleotide sequence combination. While RNase MC1 efficiently cleaved the [A/U/C]pU dinucleotide bond, no cleavage was observed for the GpU bond. Similarly, cusativin efficiently cleaved Cp[U/A/G] dinucleotide combinations along with UpA and [A/U]pU, suggesting a broader specificity of dinucleotide preferences. The molecular interactions between the substrate and active site as determined by the dinucleotide docking studies of protein models offered additional evidence and support for the observed substrate specificity. Targeted alteration of the key amino acid residues in the nucleotide-binding site confirms the utility of this in silico approach for the identification of key interactions. Taken together, the use of bioanalytical and computational approaches, involving LC-MS and ligand docking of tertiary structural models, can form a powerful combination to help explain the RNA cleavage behavior of RNases.
Collapse
Affiliation(s)
| | | | | | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (P.T.); (J.A.); (P.A.L.)
| |
Collapse
|
18
|
Estevez M, Li R, Paul B, Daneshvar K, Mullen AC, Romerio F, Addepalli B. Identification and mapping of post-transcriptional modifications on the HIV-1 antisense transcript Ast in human cells. RNA (NEW YORK, N.Y.) 2022; 28:697-710. [PMID: 35168996 PMCID: PMC9014878 DOI: 10.1261/rna.079043.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/29/2022] [Indexed: 05/03/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) encodes multiple RNA molecules. Transcripts that originate from the proviral 5' long terminal repeat (LTR) function as messenger RNAs for the expression of 16 different mature viral proteins. In addition, HIV-1 expresses an antisense transcript (Ast) from the 3'LTR, which has both protein-coding and noncoding properties. While the mechanisms that regulate the coding and noncoding activities of Ast remain unknown, post-transcriptional modifications are known to influence RNA stability, interaction with protein partners, and translation capacity. Here, we report the nucleoside modification profile of Ast obtained through liquid chromatography coupled with mass spectrometry (LC-MS) analysis. The epitranscriptome includes a limited set of modified nucleosides but predominantly ribose methylations. A number of these modifications were mapped to specific positions of the sequence through RNA modification mapping procedures. The presence of modifications on Ast is consistent with the RNA-modifying enzymes interacting with Ast The identification and mapping of Ast post-transcriptional modifications is expected to elucidate the mechanisms through which this versatile molecule can carry out diverse activities in different cell compartments. Manipulation of post-transcriptional modifications on the Ast RNA may have therapeutic implications.
Collapse
Affiliation(s)
- Mariana Estevez
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Rui Li
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Biplab Paul
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Kaveh Daneshvar
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Alan C Mullen
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Fabio Romerio
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
19
|
Role of main RNA modifications in cancer: N 6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 2022; 7:142. [PMID: 35484099 PMCID: PMC9051163 DOI: 10.1038/s41392-022-01003-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the major diseases threatening human life and health worldwide. Epigenetic modification refers to heritable changes in the genetic material without any changes in the nucleic acid sequence and results in heritable phenotypic changes. Epigenetic modifications regulate many biological processes, such as growth, aging, and various diseases, including cancer. With the advancement of next-generation sequencing technology, the role of RNA modifications in cancer progression has become increasingly prominent and is a hot spot in scientific research. This review studied several common RNA modifications, such as N6-methyladenosine, 5-methylcytosine, and pseudouridine. The deposition and roles of these modifications in coding and noncoding RNAs are summarized in detail. Based on the RNA modification background, this review summarized the expression, function, and underlying molecular mechanism of these modifications and their regulators in cancer and further discussed the role of some existing small-molecule inhibitors. More in-depth studies on RNA modification and cancer are needed to broaden the understanding of epigenetics and cancer diagnosis, treatment, and prognosis.
Collapse
|
20
|
Lin TY, Mehta R, Glatt S. Pseudouridines in RNAs: switching atoms means shifting paradigms. FEBS Lett 2021; 595:2310-2322. [PMID: 34468991 PMCID: PMC9290505 DOI: 10.1002/1873-3468.14188] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 01/21/2023]
Abstract
The structure, stability, and function of various coding and noncoding RNAs are influenced by chemical modifications. Pseudouridine (Ψ) is one of the most abundant post‐transcriptional RNA base modifications and has been detected at individual positions in tRNAs, rRNAs, mRNAs, and snRNAs, which are referred to as Ψ‐sites. By allowing formation of additional bonds with neighboring atoms, Ψ strengthens RNA–RNA and RNA–protein interactions. Although many aspects of the underlying modification reactions remain unclear, the advent of new transcriptome‐wide methods to quantitatively detect Ψ‐sites has recently changed our perception of the functional roles and importance of Ψ. For instance, it is now clear that the occurrence of Ψs appears to be directly linked to the lifetime and the translation efficiency of a given mRNA molecule. Furthermore, the administration of Ψ‐containing RNAs reduces innate immune responses, which appears strikingly advantageous for the development of generations of mRNA‐based vaccines. In this review, we aim to comprehensively summarize recent discoveries that highlight the impact of Ψ on various types of RNAs and outline possible novel biomedical applications of Ψ.
Collapse
Affiliation(s)
- Ting-Yu Lin
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | - Rahul Mehta
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology (MCB), Jagiellonian University, Krakow, Poland
| |
Collapse
|
21
|
Thakur P, Abernathy S, Limbach PA, Addepalli B. Locating chemical modifications in RNA sequences through ribonucleases and LC-MS based analysis. Methods Enzymol 2021; 658:1-24. [PMID: 34517943 PMCID: PMC9680040 DOI: 10.1016/bs.mie.2021.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Knowledge of the structural information is essential for understanding the functional details of modified RNA. Cellular non-coding RNA such as rRNA, tRNA and even viral RNAs contain a number of post-transcriptional modifications with varied degree of diversity and density. In this chapter, we discuss the use of a combination of biochemical and analytical tools such as ribonucleases and liquid chromatography coupled with mass spectrometry approaches for characterization of modified RNA. We present the protocols and alternate strategies for obtaining confident modified sequence information to facilitate the understanding of function.
Collapse
Affiliation(s)
- Priti Thakur
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States
| | - Scott Abernathy
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States
| | - Balasubrahmanyam Addepalli
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
22
|
Schauerte M, Pozhydaieva N, Höfer K. Shaping the Bacterial Epitranscriptome-5'-Terminal and Internal RNA Modifications. Adv Biol (Weinh) 2021; 5:e2100834. [PMID: 34121369 DOI: 10.1002/adbi.202100834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Indexed: 11/11/2022]
Abstract
All domains of life utilize a diverse set of modified ribonucleotides that can impact the sequence, structure, function, stability, and the fate of RNAs, as well as their interactions with other molecules. Today, more than 160 different RNA modifications are known that decorate the RNA at the 5'-terminus or internal RNA positions. The boost of next-generation sequencing technologies sets the foundation to identify and study the functional role of RNA modifications. The recent advances in the field of RNA modifications reveal a novel regulatory layer between RNA modifications and proteins, which is central to developing a novel concept called "epitranscriptomics." The majority of RNA modifications studies focus on the eukaryotic epitranscriptome. In contrast, RNA modifications in prokaryotes are poorly characterized. This review outlines the current knowledge of the prokaryotic epitranscriptome focusing on mRNA modifications. Here, it is described that several internal and 5'-terminal RNA modifications either present or likely present in prokaryotic mRNA. Thereby, the individual techniques to identify these epitranscriptomic modifications, their writers, readers and erasers, and their proposed functions are explored. Besides that, still unanswered questions in the field of prokaryotic epitranscriptomics are pointed out, and its future perspectives in the dawn of next-generation sequencing technologies are outlined.
Collapse
Affiliation(s)
- Maik Schauerte
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Hessen, 35043, Germany
| | - Nadiia Pozhydaieva
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Hessen, 35043, Germany
| | - Katharina Höfer
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Hessen, 35043, Germany
| |
Collapse
|
23
|
DeLano M, Walter TH, Lauber MA, Gilar M, Jung MC, Nguyen JM, Boissel C, Patel AV, Bates-Harrison A, Wyndham KD. Using Hybrid Organic-Inorganic Surface Technology to Mitigate Analyte Interactions with Metal Surfaces in UHPLC. Anal Chem 2021; 93:5773-5781. [PMID: 33798331 DOI: 10.1021/acs.analchem.0c05203] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Interactions of analytes with metal surfaces in high-performance liquid chromatography (HPLC) instruments and columns have been reported to cause deleterious effects ranging from peak tailing to a complete loss of the analyte signal. These effects are due to the adsorption of certain analytes on the metal oxide layer on the surface of the metal components. We have developed a novel surface modification technology and applied it to the metal components in ultra-HPLC (UHPLC) instruments and columns to mitigate these interactions. A hybrid organic-inorganic surface, based on an ethylene-bridged siloxane chemistry, was developed for use with reversed-phase and hydrophilic interaction chromatography. We have characterized the performance of UHPLC instruments and columns that incorporate this surface technology and compared the results with those obtained using their conventional counterparts. We demonstrate improved performance when using the hybrid surface technology for separations of nucleotides, a phosphopeptide, and an oligonucleotide. The hybrid surface technology was found to result in higher and more consistent analyte peak areas and improved peak shape, particularly when using low analyte mass loads and acidic mobile phases. Reduced abundances of iron adducts in the mass spectrum of a peptide were also observed when using UHPLC systems and columns that incorporate hybrid surface technology. These results suggest that this technology will be particularly beneficial in UHPLC/mass spectrometry investigations of metal-sensitive analytes.
Collapse
Affiliation(s)
- Mathew DeLano
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Thomas H Walter
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Matthew A Lauber
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Moon Chul Jung
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Jennifer M Nguyen
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Cheryl Boissel
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | - Amit V Patel
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | | | - Kevin D Wyndham
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| |
Collapse
|
24
|
Tagel M, Ilves H, Leppik M, Jürgenstein K, Remme J, Kivisaar M. Pseudouridines of tRNA Anticodon Stem-Loop Have Unexpected Role in Mutagenesis in Pseudomonas sp. Microorganisms 2020; 9:microorganisms9010025. [PMID: 33374637 PMCID: PMC7822408 DOI: 10.3390/microorganisms9010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pseudouridines are known to be important for optimal translation. In this study we demonstrate an unexpected link between pseudouridylation of tRNA and mutation frequency in Pseudomonas species. We observed that the lack of pseudouridylation activity of pseudouridine synthases TruA or RluA elevates the mutation frequency in Pseudomonas putida 3 to 5-fold. The absence of TruA but not RluA elevates mutation frequency also in Pseudomonas aeruginosa. Based on the results of genetic studies and analysis of proteome data, the mutagenic effect of the pseudouridylation deficiency cannot be ascribed to the involvement of error-prone DNA polymerases or malfunctioning of DNA repair pathways. In addition, although the deficiency in TruA-dependent pseudouridylation made P. putida cells more sensitive to antimicrobial compounds that may cause oxidative stress and DNA damage, cultivation of bacteria in the presence of reactive oxygen species (ROS)-scavenging compounds did not eliminate the mutator phenotype. Thus, the elevated mutation frequency in the absence of tRNA pseudouridylation could be the result of a more specific response or, alternatively, of a cumulative effect of several small effects disturbing distinct cellular functions, which remain undetected when studied independently. This work suggests that pseudouridines link the translation machinery to mutation frequency.
Collapse
Affiliation(s)
- Mari Tagel
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | | | | | | | - Jaanus Remme
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | - Maia Kivisaar
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| |
Collapse
|
25
|
de Crécy-Lagard V, Ross RL, Jaroch M, Marchand V, Eisenhart C, Brégeon D, Motorin Y, Limbach PA. Survey and Validation of tRNA Modifications and Their Corresponding Genes in Bacillus subtilis sp Subtilis Strain 168. Biomolecules 2020; 10:E977. [PMID: 32629984 PMCID: PMC7408541 DOI: 10.3390/biom10070977] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extensive knowledge of both the nature and position of tRNA modifications in all cellular tRNAs has been limited to two bacteria, Escherichia coli and Mycoplasma capricolum. Bacillus subtilis sp subtilis strain 168 is the model Gram-positive bacteria and the list of the genes involved in tRNA modifications in this organism is far from complete. Mass spectrometry analysis of bulk tRNA extracted from B. subtilis, combined with next generation sequencing technologies and comparative genomic analyses, led to the identification of 41 tRNA modification genes with associated confidence scores. Many differences were found in this model Gram-positive bacteria when compared to E. coli. In general, B. subtilis tRNAs are less modified than those in E. coli, even if some modifications, such as m1A22 or ms2t6A, are only found in the model Gram-positive bacteria. Many examples of non-orthologous displacements and of variations in the most complex pathways are described. Paralog issues make uncertain direct annotation transfer from E. coli to B. subtilis based on homology only without further experimental validation. This difficulty was shown with the identification of the B. subtilis enzyme that introduces ψ at positions 31/32 of the tRNAs. This work presents the most up to date list of tRNA modification genes in B. subtilis, identifies the gaps in knowledge, and lays the foundation for further work to decipher the physiological role of tRNA modifications in this important model organism and other bacteria.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA;
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Robert L. Ross
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA;
| | - Virginie Marchand
- UMR7365 IMoPA CNRS-UL and UMS2008 CNRS-UL-INSERM, Université de Lorraine, Biopôle UL, 54000 Nancy, France; (V.M.); (Y.M.)
| | - Christina Eisenhart
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (C.E.); (P.A.L.)
| | - Damien Brégeon
- IBPS, Biology of Aging and Adaptation, Sorbonne University, 7 Quai Saint Bernard, CEDEX 05, F-75252 Paris, France;
| | - Yuri Motorin
- UMR7365 IMoPA CNRS-UL and UMS2008 CNRS-UL-INSERM, Université de Lorraine, Biopôle UL, 54000 Nancy, France; (V.M.); (Y.M.)
| | - Patrick A. Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA; (C.E.); (P.A.L.)
| |
Collapse
|
26
|
Howell NW, Jora M, Jepson BF, Limbach PA, Jackman JE. Distinct substrate specificities of the human tRNA methyltransferases TRMT10A and TRMT10B. RNA (NEW YORK, N.Y.) 2019; 25:1366-1376. [PMID: 31292261 PMCID: PMC6800469 DOI: 10.1261/rna.072090.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/07/2019] [Indexed: 06/09/2023]
Abstract
The tRNA m1R9 methyltransferase (Trm10) family is conserved throughout Eukarya and Archaea. Despite the presence of a single Trm10 gene in Archaea and most single-celled eukaryotes, metazoans encode up to three homologs of Trm10. Several disease states correlate with a deficiency in the human homolog TRMT10A, despite the presence of another cytoplasmic enzyme, TRMT10B. Here we investigate these phenomena and demonstrate that human TRMT10A (hTRMT10A) and human TRMT10B (hTRMT10B) are not biochemically redundant. In vitro activity assays with purified hTRMT10A and hTRMT10B reveal a robust activity for hTRMT10B as a tRNAAsp-specific m1A9 methyltransferase and suggest that it is the relevant enzyme responsible for this newly discovered m1A9 modification in humans. Moreover, a comparison of the two cytosolic enzymes with multiple tRNA substrates exposes the enzymes' distinct substrate specificities, and suggests that hTRMT10B exhibits a restricted selectivity hitherto unseen in the Trm10 enzyme family. Single-turnover kinetics and tRNA binding assays highlight further differences between the two enzymes and eliminate overall tRNA affinity as a primary determinant of substrate specificity for either enzyme. These results increase our understanding of the important biology of human tRNA modification systems, which can aid in understanding the molecular basis for diseases in which their aberrant function is increasingly implicated.
Collapse
Affiliation(s)
- Nathan W Howell
- Center for RNA Biology and Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210, USA
| | - Manasses Jora
- Department of Chemistry and Biochemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Benjamin F Jepson
- Center for RNA Biology and Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210, USA
| | - Patrick A Limbach
- Department of Chemistry and Biochemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Jane E Jackman
- Center for RNA Biology and Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210, USA
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
27
|
Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, de Crécy-Lagard V, Ross R, Limbach PA, Kotter A, Helm M, Bujnicki JM. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 2019; 46:D303-D307. [PMID: 29106616 PMCID: PMC5753262 DOI: 10.1093/nar/gkx1030] [Citation(s) in RCA: 1303] [Impact Index Per Article: 260.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022] Open
Abstract
MODOMICS is a database of RNA modifications that provides comprehensive information concerning the chemical structures of modified ribonucleosides, their biosynthetic pathways, the location of modified residues in RNA sequences, and RNA-modifying enzymes. In the current database version, we included the following new features and data: extended mass spectrometry and liquid chromatography data for modified nucleosides; links between human tRNA sequences and MINTbase - a framework for the interactive exploration of mitochondrial and nuclear tRNA fragments; new, machine-friendly system of unified abbreviations for modified nucleoside names; sets of modified tRNA sequences for two bacterial species, updated collection of mammalian tRNA modifications, 19 newly identified modified ribonucleosides and 66 functionally characterized proteins involved in RNA modification. Data from MODOMICS have been linked to the RNAcentral database of RNA sequences. MODOMICS is available at http://modomics.genesilico.pl.
Collapse
Affiliation(s)
- Pietro Boccaletto
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Magdalena A Machnicka
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland.,Institute of Informatics, University of Warsaw, Banacha 2, PL-02-097 Warsaw, Poland
| | - Elzbieta Purta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Pawel Piatkowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Blazej Baginski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Tomasz K Wirecki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | | | - Robert Ross
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Patrick A Limbach
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Annika Kotter
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Mark Helm
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität, Staudinger Weg 5, D-55128 Mainz, Germany
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland.,Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, PL-61-614 Poznan, Poland
| |
Collapse
|
28
|
Wang Y, Zhu FC, He LS, Danchin A. Unique tRNA gene profile suggests paucity of nucleotide modifications in anticodons of a deep-sea symbiotic Spiroplasma. Nucleic Acids Res 2019; 46:2197-2203. [PMID: 29390076 PMCID: PMC5861454 DOI: 10.1093/nar/gky045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022] Open
Abstract
The position 34 of a tRNA is always modified for efficient recognition of codons and accurate integration of amino acids by the translation machinery. Here, we report genomics features of a deep-sea gut symbiotic Spiroplasma, which suggests that the organism does not require tRNA(34) anticodon modifications. In the genome, there is a novel set of tRNA genes composed of 32 species for recognition of the 20 amino acids. Among the anticodons of the tRNAs, we witnessed the presence of both U34- and C34-containing tRNAs required to decode NNR (A/G) 2:2 codons as countermeasure of probable loss of anticodon modification genes. In the tRNA fragments detected in the gut transcriptome, mismatches expected to be caused by some tRNA modifications were not shown in their alignments with the corresponding genes. However, the probable paucity of modified anticodons did not fundamentally change the codon usage pattern of the Spiroplasma. The tRNA gene profile that probably resulted from the paucity of tRNA(34) modifications was not observed in other symbionts and deep-sea bacteria, indicating that this phenomenon was an evolutionary dead-end. This study provides insights on co-evolution of translation machine and tRNA genes and steric constraints of codon-anticodon interactions in deep-sea extreme environment.
Collapse
Affiliation(s)
- Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Fang-Chao Zhu
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Li-Sheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Antoine Danchin
- Institute of Cardiometabolism and Nutrition, Hôpital de la Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France.,School of Biomedical Sciences, Li Kashing Faculty of Medicine, University of Hong Kong, 21 Sassoon Road, SAR Hong Kong, China
| |
Collapse
|
29
|
tRNA Modification Profiles and Codon-Decoding Strategies in Methanocaldococcus jannaschii. J Bacteriol 2019; 201:JB.00690-18. [PMID: 30745370 DOI: 10.1128/jb.00690-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
tRNAs play a critical role in mRNA decoding, and posttranscriptional modifications within tRNAs drive decoding efficiency and accuracy. The types and positions of tRNA modifications in model bacteria have been extensively studied, and tRNA modifications in a few eukaryotic organisms have also been characterized and localized to particular tRNA sequences. However, far less is known regarding tRNA modifications in archaea. While the identities of modifications have been determined for multiple archaeal organisms, Haloferax volcanii is the only organism for which modifications have been extensively localized to specific tRNA sequences. To improve our understanding of archaeal tRNA modification patterns and codon-decoding strategies, we have used liquid chromatography and tandem mass spectrometry to characterize and then map posttranscriptional modifications on 34 of the 35 unique tRNA sequences of Methanocaldococcus jannaschii A new posttranscriptionally modified nucleoside, 5-cyanomethyl-2-thiouridine (cnm5s2U), was discovered and localized to position 34. Moreover, data consistent with wyosine pathway modifications were obtained beyond the canonical tRNAPhe as is typical for eukaryotes. The high-quality mapping of tRNA anticodon loops enriches our understanding of archaeal tRNA modification profiles and decoding strategies.IMPORTANCE While many posttranscriptional modifications in M. jannaschii tRNAs are also found in bacteria and eukaryotes, several that are unique to archaea were identified. By RNA modification mapping, the modification profiles of M. jannaschii tRNA anticodon loops were characterized, allowing a comparative analysis with H. volcanii modification profiles as well as a general comparison with bacterial and eukaryotic decoding strategies. This general comparison reveals that M. jannaschii, like H. volcanii, follows codon-decoding strategies similar to those used by bacteria, although position 37 appears to be modified to a greater extent than seen in H. volcanii.
Collapse
|
30
|
Baldridge KC, Jora M, Maranhao AC, Quick MM, Addepalli B, Brodbelt JS, Ellington AD, Limbach PA, Contreras LM. Directed Evolution of Heterologous tRNAs Leads to Reduced Dependence on Post-transcriptional Modifications. ACS Synth Biol 2018; 7:1315-1327. [PMID: 29694026 DOI: 10.1021/acssynbio.7b00421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Heterologous tRNA:aminoacyl tRNA synthetase pairs are often employed for noncanonical amino acid incorporation in the quest for an expanded genetic code. In this work, we investigated one possible mechanism by which directed evolution can improve orthogonal behavior for a suite of Methanocaldococcus jannaschii ( Mj) tRNATyr-derived amber suppressor tRNAs. Northern blotting demonstrated that reduced expression of heterologous tRNA variants correlated with improved orthogonality. We suspected that reduced expression likely minimized nonorthogonal interactions with host cell machinery. Despite the known abundance of post-transcriptional modifications in tRNAs across all domains of life, few studies have investigated how host enzymes may affect behavior of heterologous tRNAs. Therefore, we measured tRNA orthogonality using a fluorescent reporter assay in several modification-deficient strains, demonstrating that heterologous tRNAs with high expression are strongly affected by some native E. coli RNA-modifying enzymes, whereas low abundance evolved heterologous tRNAs are less affected by these same enzymes. We employed mass spectrometry to map ms2i6A37 and Ψ39 in the anticodon arm of two high abundance tRNAs (Nap1 and tRNAOptCUA), which provides (to our knowledge) the first direct evidence that MiaA and TruA post-transcriptionally modify evolved heterologous amber suppressor tRNAs. Changes in total tRNA modification profiles were observed by mass spectrometry in cells hosting these and other evolved suppressor tRNAs, suggesting that the demonstrated interactions with host enzymes might disturb native tRNA modification networks. Together, these results suggest that heterologous tRNAs engineered for specialized amber suppression can evolve highly efficient suppression capacity within the native post-transcriptional modification landscape of host RNA processing machinery.
Collapse
Affiliation(s)
- Kevin C. Baldridge
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Manasses Jora
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Andre C. Maranhao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matthew M. Quick
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew D. Ellington
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Patrick A. Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
31
|
Pseudouridine-Free Escherichia coli Ribosomes. J Bacteriol 2018; 200:JB.00540-17. [PMID: 29180357 DOI: 10.1128/jb.00540-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/21/2017] [Indexed: 01/13/2023] Open
Abstract
Pseudouridine (Ψ) is present at conserved, functionally important regions in the ribosomal RNAs (rRNAs) from all three domains of life. Little, however, is known about the functions of Ψ modifications in bacterial ribosomes. An Escherichia coli strain has been constructed in which all seven rRNA Ψ synthases have been inactivated and whose ribosomes are devoid of all Ψs. Surprisingly, this strain displays only minor defects in ribosome biogenesis and function, and cell growth is only modestly affected. This is in contrast to a strong requirement for Ψ in eukaryotic ribosomes and suggests divergent roles for rRNA Ψ modifications in these two domains.IMPORTANCE Pseudouridine (Ψ) is the most abundant posttranscriptional modification in RNAs. In the ribosome, Ψ modifications are typically located at conserved, critical regions, suggesting they play an important functional role. In eukarya and archaea, rRNAs are modified by a single pseudouridine synthase (PUS) enzyme, targeted to rRNA via a snoRNA-dependent mechanism, while bacteria use multiple stand-alone PUS enzymes. Disruption of Ψ modification of rRNA in eukarya seriously impairs ribosome function and cell growth. We have constructed an E. coli multiple deletion strain lacking all Ψ modifications in rRNA. In contrast to the equivalent eukaryotic mutants, the E. coli strain is only modestly affected in growth, decoding, and ribosome biogenesis, indicating a differential requirement for Ψ modifications in these two domains.
Collapse
|
32
|
Glasner H, Riml C, Micura R, Breuker K. Label-free, direct localization and relative quantitation of the RNA nucleobase methylations m6A, m5C, m3U, and m5U by top-down mass spectrometry. Nucleic Acids Res 2017; 45:8014-8025. [PMID: 28549193 PMCID: PMC5570050 DOI: 10.1093/nar/gkx470] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/23/2017] [Indexed: 01/28/2023] Open
Abstract
Nucleobase methylations are ubiquitous posttranscriptional modifications of ribonucleic acids (RNA) that can substantially increase the structural diversity of RNA in a highly dynamic fashion with implications for gene expression and human disease. However, high throughput, deep sequencing does not generally provide information on posttranscriptional modifications (PTMs). A promising alternative approach for the characterization of PTMs, i.e. their identification, localization, and relative quantitation, is top-down mass spectrometry (MS). In this study, we have investigated how specific nucleobase methylations affect RNA ionization in electrospray ionization (ESI), and backbone cleavage in collisionally activated dissociation (CAD) and electron detachment dissociation (EDD). For this purpose, we have developed two new approaches for the characterization of RNA methylations in mixtures of either isomers of RNA or nonisomeric RNA forms. Fragment ions from dissociation experiments were analyzed to identify the modification type, to localize the modification sites, and to reveal the site-specific, relative extent of modification for each site.
Collapse
Affiliation(s)
- Heidelinde Glasner
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christian Riml
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
33
|
Yu N, Lobue PA, Cao X, Limbach PA. RNAModMapper: RNA Modification Mapping Software for Analysis of Liquid Chromatography Tandem Mass Spectrometry Data. Anal Chem 2017; 89:10744-10752. [PMID: 28942636 DOI: 10.1021/acs.analchem.7b01780] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liquid chromatography tandem mass spectrometry (LC-MS/MS) has proven to be a powerful analytical tool for the characterization of modified ribonucleic acids (RNAs). The typical approach for analyzing modified nucleosides within RNA sequences by mass spectrometry involves ribonuclease digestion followed by LC-MS/MS analysis and data interpretation. Here we describe a new software tool, RNAModMapper (RAMM), to assist in the interpretation of LC-MS/MS data. RAMM is a stand-alone package that requires user-submitted DNA or RNA sequences to create a local database against which collision-induced dissociation (CID) data of modified oligonucleotides can be compared. RAMM can interpret MS/MS data containing modified nucleosides in two modes: fixed and variable. In addition, RAMM can also utilize interpreted MS/MS data for RNA modification mapping back against the input sequence(s). The applicability of RAMM was first tested using total tRNA isolated from Escherichia coli. It was then applied to map modifications found in 16S and 23S rRNA from Streptomyces griseus.
Collapse
Affiliation(s)
- Ningxi Yu
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati , P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Peter A Lobue
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati , P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Xiaoyu Cao
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati , P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati , P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
34
|
Agris PF, Eruysal ER, Narendran A, Väre VYP, Vangaveti S, Ranganathan SV. Celebrating wobble decoding: Half a century and still much is new. RNA Biol 2017; 15:537-553. [PMID: 28812932 PMCID: PMC6103715 DOI: 10.1080/15476286.2017.1356562] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 10/25/2022] Open
Abstract
A simple post-transcriptional modification of tRNA, deamination of adenosine to inosine at the first, or wobble, position of the anticodon, inspired Francis Crick's Wobble Hypothesis 50 years ago. Many more naturally-occurring modifications have been elucidated and continue to be discovered. The post-transcriptional modifications of tRNA's anticodon domain are the most diverse and chemically complex of any RNA modifications. Their contribution with regards to chemistry, structure and dynamics reveal individual and combined effects on tRNA function in recognition of cognate and wobble codons. As forecast by the Modified Wobble Hypothesis 25 years ago, some individual modifications at tRNA's wobble position have evolved to restrict codon recognition whereas others expand the tRNA's ability to read as many as four synonymous codons. Here, we review tRNA wobble codon recognition using specific examples of simple and complex modification chemistries that alter tRNA function. Understanding natural modifications has inspired evolutionary insights and possible innovation in protein synthesis.
Collapse
Affiliation(s)
- Paul F. Agris
- The RNA Institute, State University of New York, Albany, NY, USA
- Department of Biology, State University of New York, Albany, NY, USA
- Department of Chemistry, State University of New York, Albany, NY, USA
| | - Emily R. Eruysal
- Department of Biology, State University of New York, Albany, NY, USA
| | - Amithi Narendran
- Department of Biology, State University of New York, Albany, NY, USA
| | - Ville Y. P. Väre
- Department of Biology, State University of New York, Albany, NY, USA
| | - Sweta Vangaveti
- The RNA Institute, State University of New York, Albany, NY, USA
| | | |
Collapse
|