1
|
Gopikrishnan M, Doss GPC. Targeting PilA in Acinetobacter baumannii: A Computational Approach for Anti-Virulent Compound Discovery. Mol Biotechnol 2024:10.1007/s12033-024-01300-9. [PMID: 39414707 DOI: 10.1007/s12033-024-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
Acinetobacter baumannii (A. baumannii) has emerged as a critical global pathogen due to its ability to acquire resistance traits. This bacterium exhibits two distinct forms of motility: twitching, mediated by type IV pili (T4P), and surface-associated motility, independent of appendages. T4P is crucial in various bacterial species, facilitating twitching motility, biofilm formation, and host-cell adhesion. The synthesis of T4P is a common feature among Gram-negative pathogens, particularly A. baumannii, suggesting that PilA could be a viable target for biofilm-related treatments. This study aims to develop drug molecules to mitigate A. baumannii virulence by targeting PilA. Using Schrodinger software, we screened 60,766 compounds from the CMNPD, ChemDiv, and Enamine antibacterial databases through high-throughput virtual screening. The top two compounds from each database, identified through extra precision (XP) mode, were subjected to further studies. Among the six compounds identified (CMNPD18469, CMNPD20698, Z2377302405, Z2378175729, N039-0021, and N098-0051), docking scores ranged from - 5.0 to - 7.5 kcal/mol. Subsequently, we conducted 300 ns molecular dynamics simulations and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis of the PilA-ligand complexes. Analysis of the simulation trajectories indicated structural stability and consistent behavior of the PilA-ligand complexes in a dynamic environment. Notably, the PilA-N098-0051 complex exhibited enhanced stability and robust binding interactions, underscoring its potential as a therapeutic agent. These findings suggest that the identified compounds, particularly N098-0051, hold promise as potent molecules targeting PilA, necessitating further validation through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - George Priya C Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Song Y, Lv H, Xu L, Liu Z, Wang J, Fang T, Deng X, Zhou Y, Li D. In vitro and in vivo activities of scutellarein, a novel polyphosphate kinase 1 inhibitor against Acinetobacter baumannii infection. Microb Cell Fact 2024; 23:269. [PMID: 39379932 PMCID: PMC11462863 DOI: 10.1186/s12934-024-02540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Inorganic polyphosphate (polyP)-targeted polyphosphate kinase 1 (PPK1) has attracted much attention by virtue of its importance in bacterial pathogenicity and persistence, as well as its exclusive presence in microorganisms. However, only very few drugs have been found to be efficacious in inhibiting the Acinetobacter baumannii (A. baumannii) PPK1 protein. RESULTS In this study, we identified Scutellarein (Scu), a potent PPK1 inhibitor that could significantly influence PPK1-regulated motility, biofilm formation, and bacterial persistence, which was further validated by the results of transcriptome analysis. Mechanistic explorations revealed that Scu achieved its enzyme inhibitory activity predominantly through direct engagement with the active center of PPK1. Moreover, the survival rate of Galleria mellonella larvae was increased by about 35% with 20 mg/kg of Scu treatment. The remarkable therapeutic benefits of Scu were also observed in the mouse pneumonia model, shown mainly by reduced bacterial colonization, pathological lesions, and inflammatory factors. CONCLUSION Our results revealed that Scu could attenuate the pathogenicity and persistence of A. baumannii by interfering with its important kinase PPK1.
Collapse
Affiliation(s)
- Yuping Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Hongfa Lv
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lei Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhiying Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tianqi Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- Jilin Mushuo Breeding Co., Ltd, Changchun, Jilin, 130052, China
| | - Xuming Deng
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yonglin Zhou
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Dan Li
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
3
|
O'Hara MT, Shimozono TM, Dye KJ, Harris D, Yang Z. Surface hydrophilicity promotes bacterial twitching motility. mSphere 2024; 9:e0039024. [PMID: 39194233 PMCID: PMC11423576 DOI: 10.1128/msphere.00390-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/24/2024] [Indexed: 08/29/2024] Open
Abstract
Twitching motility is a form of bacterial surface translocation powered by the type IV pilus (T4P). It is frequently analyzed by interstitial colony expansion between agar and the polystyrene surfaces of petri dishes. In such assays, the twitching motility of Acinetobacter nosocomialis was observed with MacConkey but not Luria-Bertani (LB) agar media. One difference between these two media is the presence of bile salts as a selective agent in MacConkey but not in LB. Here, we demonstrate that the addition of bile salts to LB allowed A. nosocomialis to display twitching. Similarly, bile salts enhanced the twitching of Acinetobacter baumannii and Pseudomonas aeruginosa in LB. These observations suggest that there is a common mechanism, whereby bile salts enhance bacterial twitching and promote interstitial colony expansion. Bile salts disrupt lipid membranes and apply envelope stress as detergents. Surprisingly, their stimulatory effect on twitching appears not to be related to a bacterial physiological response to stressors. Rather, it is due to their ability to alter the physicochemical properties of a twitching surface. We observed that while other detergents promoted twitching like bile salts, stresses applied by antibiotics, including the outer membrane-targeting polymyxin B, did not enhance twitching motility. More importantly, bacteria displayed increased twitching on hydrophilic surfaces such as those of glass and tissue culture-treated polystyrene plastics, and bile salts no longer stimulated twitching on these surfaces. Together, our results show that altering the hydrophilicity of a twitching surface significantly impacts T4P functionality. IMPORTANCE The bacterial type IV pilus (T4P) is a critical virulence factor for many medically important pathogens, some of which are prioritized by the World Health Organization for their high levels of antibiotic resistance. The T4P is known to propel bacterial twitching motility, the analysis of which provides a convenient assay for T4P functionality. Here, we show that bile salts and other detergents augment the twitching of multiple bacterial pathogens. We identified the underlying mechanism as the alteration of surface hydrophilicity by detergents. Consequently, hydrophilic surfaces like those of glass or plasma-treated polystyrene promote bacterial twitching, bypassing the requirement for detergents. The implication is that surface properties, such as those of tissues and medical implants, significantly impact the functionality of bacterial T4P as a virulence determinant. This offers valuable insights for developing countermeasures against the colonization and infection by bacterial pathogens of critical importance to human health on a global scale.
Collapse
Affiliation(s)
- Megan T O'Hara
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Tori M Shimozono
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Keane J Dye
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - David Harris
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
4
|
Ruan SY, Luo HW, Tang XR, Qi JY. Effects of 3-year organic farming management on soil antibiotic resistant genes and virulence factors in a double rice cropping system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173722. [PMID: 38839017 DOI: 10.1016/j.scitotenv.2024.173722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Investigating the antibiotic resistance genes (ARGs) and virulence factors (VFs) within soil microbial communities is crucial for understanding microbial ecology and the evolution of antibiotic resistance. However, the study of ARGs, VFs, and their predominant microbial hosts in soils under varying rice production management practices remains largely underexplored. To this end, a three-year field experiment was conducted under organic management within a double rice cropping system in South China. The study revealed that, in contrast to conventional management (CK), organic farming practices did not significantly alter the total reads of ARGs and VFs. However, there was a notable alteration in the ARGs abundance at the antibiotic class level, such as an increase (P < 0.05) in the abundance of Multidrug ARGs (by 1.7 %) and a decrease (P < 0.05) in Rifamycin (by 17.5 %) and Fosfomycin ARGs (by 15.3 %). Furthermore, a significant shift in VFs was observed under organic farming compared to CK, characterized by an increase (P < 0.05) in offensive VFs and a decrease (P < 0.05) in nonspecific VFs and the regulation of virulence-associated genes. Key microbial taxa identified as influencing ARGs and VFs in the tested soil samples, e.g., Proteobacteria. The findings highlight the need for more detailed attention to soil ecology within organic rice production systems in South China, particularly concerning the significant alterations observed in ARGs and VFs.
Collapse
Affiliation(s)
- Shao-Yi Ruan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Hao-Wen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xiang-Ru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China.
| | - Jian-Ying Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China.
| |
Collapse
|
5
|
Singh S, Singh S, Trivedi M, Dwivedi M. An insight into MDR Acinetobacter baumannii infection and its pathogenesis: Potential therapeutic targets and challenges. Microb Pathog 2024; 192:106674. [PMID: 38714263 DOI: 10.1016/j.micpath.2024.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Acinetobacter baumannii is observed as a common species of Gram-negative bacteria that exist in soil and water. Despite being accepted as a typical component of human skin flora, it has become an important opportunistic pathogen, especially in healthcare settings. The pathogenicity of A. baumannii is attributed to its virulence factors, which include adhesins, pili, lipopolysaccharides, outer membrane proteins, iron uptake systems, autotransporter, secretion systems, phospholipases etc. These elements provide the bacterium the ability to cling to and penetrate host cells, get past the host immune system, and destroy tissue. Its infection is a major contributor to human pathophysiological conditions including pneumonia, bloodstream infections, urinary tract infections, and surgical site infections. It is challenging to treat infections brought on by this pathogen since this bacterium has evolved to withstand numerous drugs and further emergence of drug-resistant A. baumannii results in higher rates of morbidity and mortality. The long-term survival of this bacterium on surfaces of medical supplies and hospital furniture facilitates its frequent spread in humans from one habitat to another. There is a need for urgent investigations to find effective drug targets for A. baumannii as well as designing novel drugs to reduce the survival and spread of infection. In the current review, we represent the specific features, pathogenesis, and molecular intricacies of crucial drug targets of A. baumannii. This would also assist in proposing strategies and alternative therapies for the prevention and treatment of A. baumannii infections and their spread.
Collapse
Affiliation(s)
- Sukriti Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Sushmita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow, 226028, India.
| |
Collapse
|
6
|
Meng R, Xing Z, Chang JY, Yu Z, Thongchol J, Xiao W, Wang Y, Chamakura K, Zeng Z, Wang F, Young R, Zeng L, Zhang J. Structural basis of Acinetobacter type IV pili targeting by an RNA virus. Nat Commun 2024; 15:2746. [PMID: 38553443 PMCID: PMC10980823 DOI: 10.1038/s41467-024-47119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Acinetobacters pose a significant threat to human health, especially those with weakened immune systems. Type IV pili of acinetobacters play crucial roles in virulence and antibiotic resistance. Single-stranded RNA bacteriophages target the bacterial retractile pili, including type IV. Our study delves into the interaction between Acinetobacter phage AP205 and type IV pili. Using cryo-electron microscopy, we solve structures of the AP205 virion with an asymmetric dimer of maturation proteins, the native Acinetobacter type IV pili bearing a distinct post-translational pilin cleavage, and the pili-bound AP205 showing its maturation proteins adapted to pilin modifications, allowing each phage to bind to one or two pili. Leveraging these results, we develop a 20-kilodalton AP205-derived protein scaffold targeting type IV pili in situ, with potential for research and diagnostics.
Collapse
Affiliation(s)
- Ran Meng
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Yale University, New Haven, CT, 06520, USA
| | - Zhongliang Xing
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Jeng-Yih Chang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- UMass Chan Medical School, Worcester, MA, 01655, USA
| | - Zihao Yu
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Jirapat Thongchol
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Wen Xiao
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Yuhang Wang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Karthik Chamakura
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Armata Pharmaceuticals, Inc., Marina del Rey, CA, 90292, USA
| | - Zhiqi Zeng
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ry Young
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Lanying Zeng
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Junjie Zhang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Karampatakis T, Tsergouli K, Behzadi P. Pan-Genome Plasticity and Virulence Factors: A Natural Treasure Trove for Acinetobacter baumannii. Antibiotics (Basel) 2024; 13:257. [PMID: 38534692 DOI: 10.3390/antibiotics13030257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/17/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative pathogen responsible for a variety of community- and hospital-acquired infections. It is recognized as a life-threatening pathogen among hospitalized individuals and, in particular, immunocompromised patients in many countries. A. baumannii, as a member of the ESKAPE group, encompasses high genomic plasticity and simultaneously is predisposed to receive and exchange the mobile genetic elements (MGEs) through horizontal genetic transfer (HGT). Indeed, A. baumannii is a treasure trove that contains a high number of virulence factors. In accordance with these unique pathogenic characteristics of A. baumannii, the authors aim to discuss the natural treasure trove of pan-genome and virulence factors pertaining to this bacterial monster and try to highlight the reasons why this bacterium is a great concern in the global public health system.
Collapse
Affiliation(s)
| | - Katerina Tsergouli
- Microbiology Department, Agios Pavlos General Hospital, 55134 Thessaloniki, Greece
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| |
Collapse
|
8
|
Yao Y, Chen Q, Zhou H. Virulence Factors and Pathogenicity Mechanisms of Acinetobacter baumannii in Respiratory Infectious Diseases. Antibiotics (Basel) 2023; 12:1749. [PMID: 38136783 PMCID: PMC10740465 DOI: 10.3390/antibiotics12121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) has become a notorious pathogen causing nosocomial and community-acquired infections, especially ventilator-associated pneumonia. This opportunistic pathogen is found to possess powerful genomic plasticity and numerous virulence factors that facilitate its success in the infectious process. Although the interactions between A. baumannii and the pulmonary epitheliums have been extensively studied, a complete and specific description of its overall pathogenic process is lacking. In this review, we summarize the current knowledge of the antibiotic resistance and virulence factors of A. baumannii, specifically focusing on the pathogenic mechanisms of this detrimental pathogen in respiratory infectious diseases. An expansion of the knowledge regarding A. baumannii pathogenesis will contribute to the development of effective therapies based on immunopathology or intracellular signaling pathways to eliminate this harmful pathogen during infections.
Collapse
Affiliation(s)
| | | | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (Y.Y.); (Q.C.)
| |
Collapse
|
9
|
Ahmad I, Nadeem A, Mushtaq F, Zlatkov N, Shahzad M, Zavialov AV, Wai SN, Uhlin BE. Csu pili dependent biofilm formation and virulence of Acinetobacter baumannii. NPJ Biofilms Microbiomes 2023; 9:101. [PMID: 38097635 PMCID: PMC10721868 DOI: 10.1038/s41522-023-00465-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Acinetobacter baumannii has emerged as one of the most common extensive drug-resistant nosocomial bacterial pathogens. Not only can the bacteria survive in hospital settings for long periods, but they are also able to resist adverse conditions. However, underlying regulatory mechanisms that allow A. baumannii to cope with these conditions and mediate its virulence are poorly understood. Here, we show that bi-stable expression of the Csu pili, along with the production of poly-N-acetyl glucosamine, regulates the formation of Mountain-like biofilm-patches on glass surfaces to protect bacteria from the bactericidal effect of colistin. Csu pilus assembly is found to be an essential component of mature biofilms formed on glass surfaces and of pellicles. By using several microscopic techniques, we show that clinical isolates of A. baumannii carrying abundant Csu pili mediate adherence to epithelial cells. In addition, Csu pili suppressed surface-associated motility but enhanced colonization of bacteria into the lungs, spleen, and liver in a mouse model of systemic infection. The screening of c-di-GMP metabolizing protein mutants of A. baumannii 17978 for the capability to adhere to epithelial cells led us to identify GGDEF/EAL protein AIS_2337, here denoted PdeB, as a major regulator of Csu pili-mediated virulence and biofilm formation. Moreover, PdeB was found to be involved in the type IV pili-regulated robustness of surface-associated motility. Our findings suggest that the Csu pilus is not only a functional component of mature A. baumannii biofilms but also a major virulence factor promoting the initiation of disease progression by mediating bacterial adherence to epithelial cells.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden.
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan.
| | - Aftab Nadeem
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
| | - Fizza Mushtaq
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Nikola Zlatkov
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, Pakistan
| | - Anton V Zavialov
- Department of Biochemistry, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - Sun Nyunt Wai
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90187, Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187, Umeå, Sweden
| |
Collapse
|
10
|
Sidner B, Lerma A, Biswas B, Do TVT, Yu Y, Ronish LA, McCullough H, Auchtung JM, Piepenbrink KH. Flagellin is essential for initial attachment to mucosal surfaces by Clostridioides difficile. Microbiol Spectr 2023; 11:e0212023. [PMID: 37823657 PMCID: PMC10714722 DOI: 10.1128/spectrum.02120-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Clostridioides difficile is one of the leading causes of hospital-acquired infections worldwide and presents challenges in treatment due to recurrent gastrointestinal disease after treatment with antimicrobials. The mechanisms by which C. difficile colonizes the gut represent a key gap in knowledge, including its association with host cells and mucosa. Our results show the importance of flagellin for specific adhesion to mucosal hydrogels and can help to explain prior observations of adhesive defects in flagellin and pilin mutants.
Collapse
Affiliation(s)
- Ben Sidner
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Armando Lerma
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Baishakhi Biswas
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Thi Van Thanh Do
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yafan Yu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Leslie A. Ronish
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Hugh McCullough
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jennifer M. Auchtung
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kurt H. Piepenbrink
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
11
|
Maure A, Robino E, Van der Henst C. The intracellular life of Acinetobacter baumannii. Trends Microbiol 2023; 31:1238-1250. [PMID: 37487768 DOI: 10.1016/j.tim.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023]
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic bacterium responsible for nosocomial and community-acquired infections. This pathogen is globally disseminated and associated with high levels of antibiotic resistance, which makes it an important threat to human health. Recently, new evidence showed that several A. baumannii isolates can survive and proliferate within eukaryotic professional and/or nonprofessional phagocytic cells, with in vivo consequences. This review provides updated information and describes the tools that A. baumannii possesses to adhere, colonize, and replicate in host cells. Additionally, we emphasize the high genetic and phenotypic heterogeneity detected amongst A. baumannii isolates and its impact on the bacterial intracellular features. We also discuss the need for standardized methods to characterize this pathogen robustly and consequently consider some strains as facultative intracellular bacteria.
Collapse
Affiliation(s)
- Alexandra Maure
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Etienne Robino
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
12
|
Vo N, Sidner BS, Yu Y, Piepenbrink KH. Type IV Pilus-Mediated Inhibition of Acinetobacter baumannii Biofilm Formation by Phenothiazine Compounds. Microbiol Spectr 2023; 11:e0102323. [PMID: 37341603 PMCID: PMC10433872 DOI: 10.1128/spectrum.01023-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
Infections by pathogenic Acinetobacter species represent a significant burden on the health care system, despite their relative rarity, due to the difficulty of treating infections through oral antibiotics. Multidrug resistance is commonly observed in clinical Acinetobacter infections and multiple molecular mechanisms have been identified for this resistance, including multidrug efflux pumps, carbapenemase enzymes, and the formation of bacterial biofilm in persistent infections. Phenothiazine compounds have been identified as a potential inhibitor of type IV pilus production in multiple Gram-negative bacterial species. Here, we report the ability of two phenothiazines to inhibit type IV pilus-dependent surface (twitching) motility and biofilm formation in multiple Acinetobacter species. Biofilm formation was inhibited in both static and continuous flow models at micromolar concentrations without significant cytotoxicity, suggesting that type IV pilus biogenesis was the primary molecular target for these compounds. These results suggest that phenothiazines may be useful lead compounds for the development of biofilm dispersal agents against Gram-negative bacterial infections. IMPORTANCE Acinetobacter infections are a growing burden on health care systems worldwide due to increasing antimicrobial resistance through multiple mechanisms. Biofilm formation is an established mechanism of antimicrobial resistance, and its inhibition has the potential to potentiate the use of existing drugs against pathogenic Acinetobacter. Additionally, as discussed in the manuscript, anti-biofilm activity by phenothiazines has the potential to help to explain their known activity against other bacteria, including Staphylococcus aureus and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Nam Vo
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Benjamin S. Sidner
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yafan Yu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kurt H. Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
13
|
Iruegas R, Pfefferle K, Göttig S, Averhoff B, Ebersberger I. Feature architecture aware phylogenetic profiling indicates a functional diversification of type IVa pili in the nosocomial pathogen Acinetobacter baumannii. PLoS Genet 2023; 19:e1010646. [PMID: 37498819 PMCID: PMC10374093 DOI: 10.1371/journal.pgen.1010646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/06/2023] [Indexed: 07/29/2023] Open
Abstract
The Gram-negative bacterial pathogen Acinetobacter baumannii is a major cause of hospital-acquired opportunistic infections. The increasing spread of pan-drug resistant strains makes A. baumannii top-ranking among the ESKAPE pathogens for which novel routes of treatment are urgently needed. Comparative genomics approaches have successfully identified genetic changes coinciding with the emergence of pathogenicity in Acinetobacter. Genes that are prevalent both in pathogenic and a-pathogenic Acinetobacter species were not considered ignoring that virulence factors may emerge by the modification of evolutionarily old and widespread proteins. Here, we increased the resolution of comparative genomics analyses to also include lineage-specific changes in protein feature architectures. Using type IVa pili (T4aP) as an example, we show that three pilus components, among them the pilus tip adhesin ComC, vary in their Pfam domain annotation within the genus Acinetobacter. In most pathogenic Acinetobacter isolates, ComC displays a von Willebrand Factor type A domain harboring a finger-like protrusion, and we provide experimental evidence that this finger conveys virulence-related functions in A. baumannii. All three genes are part of an evolutionary cassette, which has been replaced at least twice during A. baumannii diversification. The resulting strain-specific differences in T4aP layout suggests differences in the way how individual strains interact with their host. Our study underpins the hypothesis that A. baumannii uses T4aP for host infection as it was shown previously for other pathogens. It also indicates that many more functional complexes may exist whose precise functions have been adjusted by modifying individual components on the domain level.
Collapse
Affiliation(s)
- Ruben Iruegas
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Katharina Pfefferle
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIK-F), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| |
Collapse
|
14
|
Sidner B, Lerma A, Biswas B, Ronish LA, McCullough H, Auchtung JM, Piepenbrink KH. Flagellin is essential for initial attachment to mucosal surfaces by Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541533. [PMID: 37292962 PMCID: PMC10245794 DOI: 10.1101/2023.05.19.541533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mucins are glycoproteins which can be found in host cell membranes and as a gelatinous surface formed from secreted mucins. Mucosal surfaces in mammals form a barrier to invasive microbes, particularly bacteria, but are a point of attachment for others. Clostridioides difficile is anaerobic bacterium which colonizes the mammalian GI tract and is a common cause of acute GI inflammation leading to a variety of negative outcomes. Although C. difficile toxicity stems from secreted toxins, colonization is a prerequisite for C. difficile disease. While C. difficile is known to associate with the mucus layer and underlying epithelium, the mechanisms underlying these interactions that facilitate colonization are less well-understood. To understand the molecular mechanisms by which C. difficile interacts with mucins, we used ex vivo mucosal surfaces to test the ability of C. difficile to bind to mucins from different mammalian tissues. We found significant differences in C. difficile adhesion based upon the source of mucins, with highest levels of binding observed to mucins purified from the human colonic adenocarcinoma line LS174T and lowest levels of binding to porcine gastric mucin. We also observed that defects in adhesion by mutants deficient in flagella, but not type IV pili. These results imply that interactions between host mucins and C. difficile flagella facilitate the initial host attachment of C. difficile to host cells and secreted mucus.
Collapse
|
15
|
Swain A, Pan A. Protein Therapeutic Target Candidates Against Acinetobacter baumannii, a Pathogen of Concern to Planetary Health: A Network-Based Integrative Omics Drug Discovery Approach. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:62-74. [PMID: 36735546 DOI: 10.1089/omi.2022.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acinetobacter baumannii, an opportunistic gram-negative pathogen responsible for several nosocomial infections, has developed resistance to various antibiotics. Proteins involved in the two-component system (TCS), virulence, and antibiotic resistance (AR), help this pathogen in regulating antibiotic susceptibility and virulence mechanisms. The present study reports a network-based integrative omics approach to drug discovery to identify key regulatory proteins as therapeutic candidates against A. baumannii. We collected data on the TCS, virulence, and AR proteins from various databases (P2CS, VFDB, ARDB, and PAIDB), which were subjected to network, host-pathogen, and gene expression data analysis. Network analysis identified 43 hubs, and 10 proteins were found to be interacting with human proteins associated with vital pathways. Of the 53 (43 + 10) pathogen proteins, 46 had no orthologs in the human host. Twelve proteins, namely, RpfC, Wzc, OmpR, EnvZ, BfmS, PilG, histidine kinase, ABC 3 transport family protein, outer membrane porin OprD family, CsuD, Pgm, and LpxA, were differentially expressed in the resistant strain. We propose these proteins as key regulators that warrant evaluation as therapeutic target candidates in the future. Furthermore, structure prediction of ABC 3 transport family protein was performed as a case study. The findings from this study are poised to facilitate and inform drug discovery and development against A. baumannii.
Collapse
Affiliation(s)
- Aishwarya Swain
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Archana Pan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
16
|
Tajuelo A, Terrón MC, López-Siles M, McConnell MJ. Role of peptidoglycan recycling enzymes AmpD and AnmK in Acinetobacter baumannii virulence features. Front Cell Infect Microbiol 2023; 12:1064053. [PMID: 36710969 PMCID: PMC9880065 DOI: 10.3389/fcimb.2022.1064053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023] Open
Abstract
Acinetobacter baumannii is an important causative agent of hospital acquired infections. In addition to acquired resistance to many currently-available antibiotics, it is intrinsically resistant to fosfomycin. It has previously been shown that AmpD and AnmK contribute to intrinsic fosfomycin resistance in A. baumannii due to their involvement in the peptidoglycan recycling pathway. However, the role that these two enzymes play in the fitness and virulence of A. baumannii has not been studied. The aim of this study was to characterize several virulence-related phenotypic traits in A. baumannii mutants lacking AmpD and AnmK. Specifically, cell morphology, peptidoglycan thickness, membrane permeability, growth under iron-limiting conditions, fitness, resistance to disinfectants and antimicrobial agents, twitching motility and biofilm formation of the mutant strains A. baumannii ATCC 17978 ΔampD::Kan and ΔanmK::Kan were compared to the wild type strain. Our results demonstrate that bacterial growth and fitness of both mutants were compromised, especially in the ΔampD::Kan mutant. In addition, biofilm formation was decreased by up to 69%, whereas twitching movement was reduced by about 80% in both mutants. These results demonstrate that, in addition to increased susceptibility to fosfomycin, alteration of the peptidoglycan recycling pathway affects multiple aspects related to virulence. Inhibition of these enzymes could be explored as a strategy to develop novel treatments for A. baumannii in the future. Furthermore, this study establishes a link between intrinsic fosfomycin resistance mechanisms and bacterial fitness and virulence traits.
Collapse
Affiliation(s)
- Ana Tajuelo
- Intrahospital Infections Laboratory, Instituto de Salud Carlos III (ISCIII), National Centre for Microbiology, Madrid, Spain,Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - María C. Terrón
- Electron Microscopy Unit, Scientific-Technical Central Units, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mireia López-Siles
- Intrahospital Infections Laboratory, Instituto de Salud Carlos III (ISCIII), National Centre for Microbiology, Madrid, Spain,Serra Húnter Fellow, Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, Girona, Spain,*Correspondence: Mireia López-Siles,
| | - Michael J. McConnell
- Intrahospital Infections Laboratory, Instituto de Salud Carlos III (ISCIII), National Centre for Microbiology, Madrid, Spain
| |
Collapse
|
17
|
Dubay MM, Acres J, Riekeles M, Nadeau JL. Recent advances in experimental design and data analysis to characterize prokaryotic motility. J Microbiol Methods 2023; 204:106658. [PMID: 36529156 DOI: 10.1016/j.mimet.2022.106658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Bacterial motility plays a key role in important cell processes such as chemotaxis and biofilm formation, but is challenging to quantify due to the small size of the individual microorganisms and the complex interplay of biological and physical factors that influence motility phenotypes. Swimming, the first type of motility described in bacteria, still remains largely unquantified. Light microscopy has enabled qualitative characterization of swimming patterns seen in different strains, such as run and tumble, run-reverse-flick, run and slow, stop and coil, and push and pull, which has allowed for elucidation of the underlying physics. However, quantifying these behaviors (e.g., identifying run distances and speeds, turn angles and behavior by surfaces or cell-cell interactions) remains a challenging task. A qualitative and quantitative understanding of bacterial motility is needed to bridge the gap between experimentation, omics analysis, and bacterial motility theory. In this review, we discuss the strengths and limitations of how phase contrast microscopy, fluorescence microscopy, and digital holographic microscopy have been used to quantify bacterial motility. Approaches to automated software analysis, including cell recognition, tracking, and track analysis, are also discussed with a view to providing a guide for experimenters to setting up the appropriate imaging and analysis system for their needs.
Collapse
Affiliation(s)
- Megan Marie Dubay
- Department of Physics, Portland State University, 1719 SW 10(th) Ave., Portland, OR 97201, United States of America
| | - Jacqueline Acres
- Department of Physics, Portland State University, 1719 SW 10(th) Ave., Portland, OR 97201, United States of America
| | - Max Riekeles
- Astrobiology Group, Center of Astronomy and Astrophysics, Technical University Berlin, Hardenbergstraße 36A, 10623 Berlin, Germany
| | - Jay L Nadeau
- Department of Physics, Portland State University, 1719 SW 10(th) Ave., Portland, OR 97201, United States of America.
| |
Collapse
|
18
|
Discovery of Two Inhibitors of the Type IV Pilus Assembly ATPase PilB as Potential Antivirulence Compounds. Microbiol Spectr 2022; 10:e0387722. [PMID: 36377931 PMCID: PMC9769694 DOI: 10.1128/spectrum.03877-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
With the pressing antibiotic resistance pandemic, antivirulence has been increasingly explored as an alternative strategy against bacterial infections. The bacterial type IV pilus (T4P) is a well-documented virulence factor and an attractive target for small molecules for antivirulence purposes. The PilB ATPase is essential for T4P biogenesis because it catalyzes the assembly of monomeric pilins into the polymeric pilus filament. Here, we describe the identification of two PilB inhibitors by a high-throughput screen (HTS) in vitro and their validation as effective inhibitors of T4P assembly in vivo. We used Chloracidobacterium thermophilum PilB as a model enzyme to optimize an ATPase assay for the HTS. From a library of 2,320 compounds, benserazide and levodopa, two approved drugs for Parkinson's disease, were identified and confirmed biochemically to be PilB inhibitors. We demonstrate that both compounds inhibited the T4P-dependent motility of the bacteria Myxoccocus xanthus and Acinetobacter nosocomialis. Additionally, benserazide and levodopa were shown to inhibit A. nosocomialis biofilm formation, a T4P-dependent process. Using M. xanthus as a model, we showed that both compounds inhibited T4P assembly in a dose-dependent manner. These results suggest that these two compounds are effective against the PilB protein in vivo. The potency of benserazide and levodopa as PilB inhibitors both in vitro and in vivo demonstrate potentials of the HTS and its two hits here for the development of anti-T4P chemotherapeutics. IMPORTANCE Many bacterial pathogens use their type IV pilus (T4P) to facilitate and maintain an infection in a human host. Small-molecule inhibitors of the production or assembly of the T4P are promising for the treatment and prevention of infections by these bacteria, especially in our fight against antibiotic-resistant pathogens. Here, we report the development and implementation of a method to identify anti-T4P chemicals from compound libraries by high-throughput screen. This led to the identification and validation of two T4P inhibitors both in the test tubes and in bacteria. The discovery and validation pipeline reported here as well as the confirmation of two anti-T4P inhibitors provide new venues and leads for the development of chemotherapeutics against antibiotic-resistant infections.
Collapse
|
19
|
Vahvelainen N, Bozkurt E, Maula T, Johansson A, Pöllänen MT, Ihalin R. Pilus PilA of the naturally competent HACEK group pathogen Aggregatibacter actinomycetemcomitans stimulates human leukocytes and interacts with both DNA and proinflammatory cytokines. Microb Pathog 2022; 173:105843. [DOI: 10.1016/j.micpath.2022.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
|
20
|
Ronish LA, Sidner B, Yu Y, Piepenbrink KH. Recognition of extracellular DNA by type IV pili promotes biofilm formation by Clostridioides difficile. J Biol Chem 2022; 298:102449. [PMID: 36064001 PMCID: PMC9556784 DOI: 10.1016/j.jbc.2022.102449] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
Clostridioides difficile is a Gram-positive bacillus, which is a frequent cause of gastrointestinal infections triggered by the depletion of the gut microbiome. Because of the frequent recurrence of these infections after antibiotic treatment, mechanisms of C. difficile persistence and recurrence, including biofilm formation, are of increasing interest. Previously, our group and others found that type IV pili, filamentous helical appendages polymerized from protein subunits, promoted microcolony and biofilm formation in C. difficile. In Gram-negative bacteria, the ability of type IV pili to mediate bacterial self-association has been explained through interactions between the pili of adjacent cells, but type IV pili from several Gram-negative species are also required for natural competence through DNA uptake. Here, we report the ability of two C. difficile pilin subunits, PilJ and PilW, to bind to DNA in vitro, as well as the defects in biofilm formation in the pilJ and pilW gene-interruption mutants. Additionally, we have resolved the X-ray crystal structure of PilW, which we use to model possible structural mechanisms for the formation of C. difficile biofilm through interactions between type IV pili and the DNA of the extracellular matrix. Taken together, our results provide further insight into the relationship between type IV pilus function and biofilm formation in C. difficile and, more broadly, suggest that DNA recognition by type IV pili and related structures may have functional importance beyond DNA uptake for natural competence.
Collapse
Affiliation(s)
- Leslie A Ronish
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Ben Sidner
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yafan Yu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
21
|
Alteri CJ, Rios-Sarabia N, De la Cruz MA, González-y-Merchand JA, Soria-Bustos J, Maldonado-Bernal C, Cedillo ML, Yáñez-Santos JA, Martínez-Laguna Y, Torres J, Friedman RL, Girón JA, Ares MA. The Flp type IV pilus operon of Mycobacterium tuberculosis is expressed upon interaction with macrophages and alveolar epithelial cells. Front Cell Infect Microbiol 2022; 12:916247. [PMID: 36204636 PMCID: PMC9531140 DOI: 10.3389/fcimb.2022.916247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The genome of Mycobacterium tuberculosis (Mtb) harbors the genetic machinery for assembly of the Fimbrial low-molecular-weight protein (Flp) type IV pilus. Presumably, the Flp pilus is essential for pathogenesis. However, it remains unclear whether the pili genes are transcribed in culture or during infection of host cells. This study aimed to shed light on the expression of the Flp pili-assembly genes (tadZ, tadA, tadB, tadC, flp, tadE, and tadF) in Mtb growing under different growth conditions (exponential phase, stationary phase, and dormancy NRP1 and NRP2 phases induced by hypoxia), during biofilm formation, and in contact with macrophages and alveolar epithelial cells. We found that expression of tad/flp genes was significantly higher in the stationary phase than in exponential or NRP1 or NRP2 phases suggesting that the bacteria do not require type IV pili during dormancy. Elevated gene expression levels were recorded when the bacilli were in contact for 4 h with macrophages or epithelial cells, compared to mycobacteria propagated alone in the cultured medium. An antibody raised against a 12-mer peptide derived from the Flp pilin subunit detected the presence of Flp pili on intra- and extracellular bacteria infecting eukaryotic cells. Altogether, these are compelling data showing that the Flp pili genes are expressed during the interaction of Mtb with host cells and highlight a role for Flp pili in colonization and invasion of the host, subsequently promoting bacterial survival during dormancy.
Collapse
Affiliation(s)
- Christopher J. Alteri
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, United States
| | - Nora Rios-Sarabia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Miguel A. De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge A. González-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge Soria-Bustos
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Hidalgo, Mexico
| | - Carmen Maldonado-Bernal
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - María L. Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Jorge A. Yáñez-Santos
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Richard L. Friedman
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Jorge A. Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Miguel A. Ares, ; Jorge A. Girón,
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- *Correspondence: Miguel A. Ares, ; Jorge A. Girón,
| |
Collapse
|
22
|
InvL, an Invasin-Like Adhesin, Is a Type II Secretion System Substrate Required for Acinetobacter baumannii Uropathogenesis. mBio 2022; 13:e0025822. [PMID: 35638734 PMCID: PMC9245377 DOI: 10.1128/mbio.00258-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen of growing concern, as isolates are commonly multidrug resistant. While A. baumannii is most frequently associated with pulmonary infections, a significant proportion of clinical isolates come from urinary sources, highlighting its uropathogenic potential. The type II secretion system (T2SS) of commonly used model Acinetobacter strains is important for virulence in various animal models, but the potential role of the T2SS in urinary tract infection (UTI) remains unknown. Here, we used a catheter-associated UTI (CAUTI) model to demonstrate that a modern urinary isolate, UPAB1, requires the T2SS for full virulence. A proteomic screen to identify putative UPAB1 T2SS effectors revealed an uncharacterized lipoprotein with structural similarity to the intimin-invasin family, which serve as type V secretion system (T5SS) adhesins required for the pathogenesis of several bacteria. This protein, designated InvL, lacked the β-barrel domain associated with T5SSs but was confirmed to require the T2SS for both surface localization and secretion. This makes InvL the first identified T2SS effector belonging to the intimin-invasin family. InvL was confirmed to be an adhesin, as the protein bound to extracellular matrix components and mediated adhesion to urinary tract cell lines in vitro. Additionally, the invL mutant was attenuated in the CAUTI model, indicating a role in Acinetobacter uropathogenesis. Finally, bioinformatic analyses revealed that InvL is present in nearly all clinical isolates belonging to international clone 2, a lineage of significant clinical importance. In all, we conclude that the T2SS substrate InvL is an adhesin required for A. baumannii uropathogenesis. IMPORTANCE While pathogenic Acinetobacter can cause various infections, we recently found that 20% of clinical isolates come from urinary sources. Despite the clinical relevance of Acinetobacter as a uropathogen, few virulence factors involved in urinary tract colonization have been defined. Here, we identify a novel type II secretion system effector, InvL, which is required for full uropathogenesis by a modern urinary isolate. Although InvL has predicted structural similarity to the intimin-invasin family of autotransporter adhesins, InvL is predicted to be anchored to the membrane as a lipoprotein. Similar to other invasin homologs, however, we demonstrate that InvL is a bona fide adhesin capable of binding extracellular matrix components and mediating adhesion to urinary tract cell lines. In all, this work establishes InvL as an adhesin important for Acinetobacter's urinary tract virulence and represents the first report of a type II secretion system effector belonging to the intimin-invasin family.
Collapse
|
23
|
Willcocks SJ, Denman C, Cia F, McCarthy E, Cuccui J, Wren BW. Virulence of the emerging pathogen, Burkholderia pseudomallei, depends upon the O-linked oligosaccharyltransferase, PglL. Future Microbiol 2021; 15:241-257. [PMID: 32271107 PMCID: PMC7611010 DOI: 10.2217/fmb-2019-0165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aim We sought to characterize the contribution of the O-OTase, PglL, to virulence in two Burkholderia spp. by comparing isogenic mutants in Burkholderia pseudomallei with the related species, Burkholderia thailandensis. Materials & methods We utilized an array of in vitro assays in addition to Galleria mellonella and murine in vivo models to assess virulence of the mutant and wild-type strains in each Burkholderia species. Results We found that pglL contributes to biofilm and twitching motility in both species. PglL uniquely affected morphology; cell invasion; intracellular motility; plaque formation and intergenus competition in B. pseudomallei. This mutant was attenuated in the murine model, and extended survival in a vaccine-challenge experiment. Conclusion Our data support a broad role for pglL in bacterial fitness and virulence, particularly in B. pseudomallei.
Collapse
Affiliation(s)
| | - Carmen Denman
- The London School of Hygiene & Tropical Medicine, WC1E 7HT, London, UK
| | - Felipe Cia
- The London School of Hygiene & Tropical Medicine, WC1E 7HT, London, UK
| | | | - Jon Cuccui
- The London School of Hygiene & Tropical Medicine, WC1E 7HT, London, UK
| | - Brendan W Wren
- The London School of Hygiene & Tropical Medicine, WC1E 7HT, London, UK
| |
Collapse
|
24
|
Knoot CJ, Robinson LS, Harding CM. A minimal sequon sufficient for O-linked glycosylation by the versatile oligosaccharyltransferase PglS. Glycobiology 2021; 31:1192-1203. [PMID: 33997889 PMCID: PMC8457361 DOI: 10.1093/glycob/cwab043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 11/19/2022] Open
Abstract
Bioconjugate vaccines, consisting of polysaccharides attached to carrier proteins, are enzymatically generated using prokaryotic glycosylation systems in a process termed bioconjugation. Key to bioconjugation are a group of enzymes known as oligosaccharyltransferases (OTases) that transfer polysaccharides to engineered carrier proteins containing conserved amino acid sequences known as sequons. The most recently discovered OTase, PglS, has been shown to have the broadest substrate scope, transferring many different types of bacterial glycans including those with glucose at the reducing end. However, PglS is currently the least understood in terms of the sequon it recognizes. PglS is a pilin-specific O-linking OTase that naturally glycosylates a single protein, ComP. In addition to ComP, we previously demonstrated that an engineered carrier protein containing a large fragment of ComP is also glycosylated by PglS. Here we sought to identify the minimal ComP sequon sufficient for PglS glycosylation. We tested >100 different ComP fragments individually fused to Pseudomonas aeruginosa exotoxin A (EPA), leading to the identification of an 11-amino acid sequence sufficient for robust glycosylation by PglS. We also demonstrate that the placement of the ComP sequon on the carrier protein is critical for stability and subsequent glycosylation. Moreover, we identify novel sites on the surface of EPA that are amenable to ComP sequon insertion and find that Cross-Reactive Material 197 fused to a ComP fragment is also glycosylated. These results represent a significant expansion of the glycoengineering toolbox as well as our understanding of bacterial O-linking sequons.
Collapse
|
25
|
Acinetobacter baumannii: An Ancient Commensal with Weapons of a Pathogen. Pathogens 2021; 10:pathogens10040387. [PMID: 33804894 PMCID: PMC8063835 DOI: 10.3390/pathogens10040387] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii is regarded as a life-threatening pathogen associated with community-acquired and nosocomial infections, mainly pneumonia. The rise in the number of A. baumannii antibiotic-resistant strains reduces effective therapies and increases mortality. Bacterial comparative genomic studies have unraveled the innate and acquired virulence factors of A. baumannii. These virulence factors are involved in antibiotic resistance, environmental persistence, host-pathogen interactions, and immune evasion. Studies on host–pathogen interactions revealed that A. baumannii evolved different mechanisms to adhere to in order to invade host respiratory cells as well as evade the host immune system. In this review, we discuss current data on A. baumannii genetic features and virulence factors. An emphasis is given to the players in host–pathogen interaction in the respiratory tract. In addition, we report recent investigations into host defense systems using in vitro and in vivo models, providing new insights into the innate immune response to A. baumannii infections. Increasing our knowledge of A. baumannii pathogenesis may help the development of novel therapeutic strategies based on anti-adhesive, anti-virulence, and anti-cell to cell signaling pathways drugs.
Collapse
|
26
|
Pilus Production in Acinetobacter baumannii Is Growth Phase Dependent and Essential for Natural Transformation. J Bacteriol 2021; 203:JB.00034-21. [PMID: 33495250 PMCID: PMC8088505 DOI: 10.1128/jb.00034-21] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
Rapid bacterial evolution has alarming negative impacts on animal and human health which can occur when pathogens acquire antimicrobial resistance traits. As a major cause of antibiotic-resistant opportunistic infections, A. baumannii is a high-priority health threat which has motivated renewed interest in studying how this pathogen acquires new, dangerous traits. Acinetobacter baumannii is a severe threat to human health as a frequently multidrug-resistant hospital-acquired pathogen. Part of the danger from this bacterium comes from its genome plasticity and ability to evolve quickly by taking up and recombining external DNA into its own genome in a process called natural competence for transformation. This mode of horizontal gene transfer is one of the major ways that bacteria can acquire new antimicrobial resistances and toxic traits. Because these processes in A. baumannii are not well studied, we herein characterized new aspects of natural transformability in this species that include the species’ competence window. We uncovered a strong correlation with a growth phase-dependent synthesis of a type IV pilus (TFP), which constitutes the central part of competence-induced DNA uptake machinery. We used bacterial genetics and microscopy to demonstrate that the TFP is essential for the natural transformability and surface motility of A. baumannii, whereas pilus-unrelated proteins of the DNA uptake complex do not affect the motility phenotype. Furthermore, TFP biogenesis and assembly is subject to input from two regulatory systems that are homologous to Pseudomonas aeruginosa, namely, the PilSR two-component system and the Pil-Chp chemosensory system. We demonstrated that these systems affect not only the piliation status of cells but also their ability to take up DNA for transformation. Importantly, we report on discrepancies between TFP biogenesis and natural transformability within the same genus by comparing data for our work on A. baumannii to data reported for Acinetobacter baylyi, the latter of which served for decades as a model for natural competence. IMPORTANCE Rapid bacterial evolution has alarming negative impacts on animal and human health which can occur when pathogens acquire antimicrobial resistance traits. As a major cause of antibiotic-resistant opportunistic infections, A. baumannii is a high-priority health threat which has motivated renewed interest in studying how this pathogen acquires new, dangerous traits. In this study, we deciphered a specific time window in which these bacteria can acquire new DNA and correlated that with its ability to produce the external appendages that contribute to the DNA acquisition process. These cell appendages function doubly for motility on surfaces and for DNA uptake. Collectively, we showed that A. baumannii is similar in its TFP production to Pseudomonas aeruginosa, though it differs from the well-studied species A. baylyi.
Collapse
|
27
|
Abstract
The bacterial type IV pilus (T4P) is a prominent virulence factor in many significant human pathogens, some of which have become increasingly antibiotic resistant. Antivirulence chemotherapeutics are considered a promising alternative to antibiotics because they target the disease process instead of bacterial viability. However, a roadblock to the discovery of anti-T4P compounds is the lack of a high-throughput screen (HTS) that can be implemented relatively easily and economically. Here, we describe the first HTS for the identification of inhibitors specifically against the T4P assembly ATPase PilB in vitro. Chloracidobacterium thermophilum PilB (CtPilB) had been demonstrated to have robust ATPase activity and the ability to bind its expected ligands in vitro. We utilized CtPilB and MANT-ATP, a fluorescent ATP analog, to develop a binding assay and adapted it for an HTS. As a proof of principle, we performed a pilot screen with a small compound library of kinase inhibitors and identified quercetin as a PilB inhibitor in vitro. Using Myxococcus xanthus as a model bacterium, we found quercetin to reduce its T4P-dependent motility and T4P assembly in vivo. These results validated our HTS as effective in identifying PilB inhibitors. This assay may prove valuable in seeking leads for the development of antivirulence chemotherapeutics against PilB, an essential and universal component of all bacterial T4P systems. IMPORTANCE Many bacterial pathogens use their type IV pili (T4P) to facilitate and maintain infection of a human host. Small chemical compounds that inhibit the production or assembly of T4P hold promise in the treatment and prevention of infections, especially in the era of increasing threats from antibiotic-resistant bacteria. However, few chemicals are known to have inhibitory or anti-T4P activity. Their identification has not been easy due to the lack of a method for the screening of compound collections or libraries on a large scale. Here, we report the development of an assay that can be scaled up to screen compound libraries for inhibitors of a critical T4P assembly protein. We further demonstrate that it is feasible to use whole cells to examine potential inhibitors for their activity against T4P assembly in a bacterium.
Collapse
|
28
|
Mea HJ, Yong PVC, Wong EH. An overview of Acinetobacter baumannii pathogenesis: Motility, adherence and biofilm formation. Microbiol Res 2021; 247:126722. [PMID: 33618061 DOI: 10.1016/j.micres.2021.126722] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
The Gram-negative opportunistic pathogen Acinetobacter baumannii has gain notoriety in recent decades, primarily due to its propensity to cause nosocomial infections in critically ill patients. Its global spread, multi-drug resistance features and plethora of virulence factors make it a serious threat to public health worldwide. Though much effort has been expended in uncovering its successes, it continues to confound researchers due to its highly adaptive nature, mutating to meet the needs of a given environment. Its persistence in the clinical setting allows it to be in close proximity to a potential host, where contact can be made facilitating infection and colonization. In this article, we aim to provide a current overview of the bacterial virulence factors, specifically focusing on factors involved in the initial stages of infection, highlighting the role of adaptation facilitated by two-component systems and biofilm formation. Finally, the study of host-pathogen interactions using available animal models, their suitability, notable findings and some perspectives moving forward are also discussed.
Collapse
Affiliation(s)
- Hing Jian Mea
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Phelim Voon Chen Yong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
29
|
Li M, Aye SM, Ahmed MU, Han ML, Li C, Song J, Boyce JD, Powell DR, Azad MAK, Velkov T, Zhu Y, Li J. Pan-transcriptomic analysis identified common differentially expressed genes of Acinetobacter baumannii in response to polymyxin treatments. Mol Omics 2020; 16:327-338. [PMID: 32469363 DOI: 10.1039/d0mo00015a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multidrug-resistant Acinetobacter baumannii is a top-priority Gram-negative pathogen and polymyxins are a last-line therapeutic option. Previous systems pharmacological studies examining polymyxin killing and resistance usually focused on individual strains, and the derived knowledge could be limited by strain-specific genomic context. In this study, we examined the gene expression of five A. baumannii strains (34654, 1207552, 1428368, 1457504 and ATCC 19606) to determine the common differentially expressed genes in response to polymyxin treatments. A pan-genome containing 6061 genes was identified for 89 A. baumannii genomes from RefSeq database which included the five strains examined in this study; 2822 of the 6061 genes constituted the core genome. After 2 mg L-1 or 0.75 × MIC polymyxin treatments for 15 min, 41 genes were commonly up-regulated, including those involved in membrane biogenesis and homeostasis, lipoprotein and phospholipid trafficking, efflux pump and poly-N-acetylglucosamine biosynthesis; six genes were commonly down-regulated, three of which were related to fatty acid biosynthesis. Additionally, comparison of the gene expression at 15 and 60 min in ATCC 19606 revealed that polymyxin treatment resulted in a rapid change in amino acid metabolism at 15 min and perturbations on envelope biogenesis at both time points. This is the first pan-transcriptomic study for polymyxin-treated A. baumannii and our results identified that the remodelled outer membrane, up-regulated efflux pumps and down-regulated fatty acid biosynthesis might be essential for early responses to polymyxins in A. baumannii. Our findings provide important mechanistic insights into bacterial responses to polymyxin killing and may facilitate the optimisation of polymyxin therapy against this problematic 'superbug'.
Collapse
Affiliation(s)
- Mengyao Li
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, 19 Innovation Walk, Melbourne 3800, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Neuhaus A, Selvaraj M, Salzer R, Langer JD, Kruse K, Kirchner L, Sanders K, Daum B, Averhoff B, Gold VAM. Cryo-electron microscopy reveals two distinct type IV pili assembled by the same bacterium. Nat Commun 2020; 11:2231. [PMID: 32376942 PMCID: PMC7203116 DOI: 10.1038/s41467-020-15650-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Type IV pili are flexible filaments on the surface of bacteria, consisting of a helical assembly of pilin proteins. They are involved in bacterial motility (twitching), surface adhesion, biofilm formation and DNA uptake (natural transformation). Here, we use cryo-electron microscopy and mass spectrometry to show that the bacterium Thermus thermophilus produces two forms of type IV pilus ('wide' and 'narrow'), differing in structure and protein composition. Wide pili are composed of the major pilin PilA4, while narrow pili are composed of a so-far uncharacterized pilin which we name PilA5. Functional experiments indicate that PilA4 is required for natural transformation, while PilA5 is important for twitching motility.
Collapse
Affiliation(s)
- Alexander Neuhaus
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Muniyandi Selvaraj
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
- Laboratory of Structural Biology, Helsinki Institute of Life Science, 00014 University of Helsinki, Helsinki, Finland
| | - Ralf Salzer
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
- Structural Studies Division, Medical Research Council-Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Julian D Langer
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
- Proteomics, Max Planck Institute for Brain Research, Max-von-Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Kerstin Kruse
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Lennart Kirchner
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Kelly Sanders
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Beate Averhoff
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
31
|
M Campos JC, Antunes LCM, Ferreira RBR. Global priority pathogens: virulence, antimicrobial resistance and prospective treatment options. Future Microbiol 2020; 15:649-677. [DOI: 10.2217/fmb-2019-0333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Salmonella spp. are part of a group of pathogens that pose a major threat to human health due to the emergence of multidrug-resistant strains. Moreover, these bacteria have several virulence factors that allow them to successfully colonize their hosts, such as toxins and the ability to produce biofilms, resulting in an urgent need to develop new strategies to fight these pathogens. In this review, we compile the most up-to-date information on the epidemiology, virulence and resistance of these clinically important microorganisms. Additionally, we address new therapeutic alternatives, with a focus on molecules with antivirulence activity, which are considered promising to combat multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Juliana C de M Campos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis CM Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosana BR Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Mutation of the Carboxy-Terminal Processing Protease in Acinetobacter baumannii Affects Motility, Leads to Loss of Membrane Integrity, and Reduces Virulence. Pathogens 2020; 9:pathogens9050322. [PMID: 32357487 PMCID: PMC7281292 DOI: 10.3390/pathogens9050322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 01/17/2023] Open
Abstract
Motility plays an essential role in the host–parasite relationship of pathogenic bacteria, and is often associated with virulence. While many pathogenic bacteria use flagella for locomotion, Acinetobacter baumannii strains do not have flagella, but have other features that aid in their motility. To study the genes involved in motility, transposon mutagenesis was performed to construct A. baumannii mutant strains. Mutant strain MR14 was found to have reduced motility, compared to wild-type ATCC 17978. NCBI BLAST analysis revealed that the Tn10 transposon in the MR14 genome is integrated into the gene that encodes for carboxy-terminal processing protease (Ctp). Additionally, MR14 exhibits a mucoidy, sticky phenotype as the result of increased extracellular DNA (eDNA) caused by bacterial autolysis. Transmission and scanning electron microscopy revealed cytoplasmic content leaving the cell and multiple cell membrane depressions, respectively. MR14 showed higher sensitivity to environmental stressors. Mutation of the ctp gene reduced invasion and adhesion of A. baumannii to airway epithelial cells, potentially due to increased hydrophobicity. In the zebrafish model of infection, MR14 increased the survival rate by 40% compared to the wild-type. Taken together, the ctp gene in A. baumannii has a pivotal role in maintaining membrane integrity, adaptation to environmental stress, and controlling virulence.
Collapse
|
33
|
Williams AN, Stavrinides J. Pantoea Natural Product 3 is encoded by an eight-gene biosynthetic gene cluster and exhibits antimicrobial activity against multi-drug resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Microbiol Res 2020; 234:126412. [PMID: 32062363 DOI: 10.1016/j.micres.2020.126412] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/22/2019] [Accepted: 01/10/2020] [Indexed: 01/08/2023]
Abstract
Multi-drug resistant Acinetobacter baumannii and Pseudomonas aeruginosa continue to pose a serious health threat worldwide. Two Pantoea agglomerans strains, 3581 and SN01080, produce an antibiotic effective against these pathogens. To identify the antibiotic biosynthetic gene clusters, independent genetic screens were conducted for each strain using a mini-Tn5 transposon, which resulted in the identification of the same conserved eight-gene cluster. We have named this antibiotic Pantoea Natural Product 3 (PNP-3). The PNP-3 biosynthetic cluster is composed of genes encoding two Major Facilitator Superfamily (MFS) transporters, an ArsR family regulator, and five predicted enzymes. The biosynthetic gene cluster is found in only a few Pantoea strains and is not present within the antiSMASH and BAGEL4 databases, suggesting it may be novel. In strain 3581, PNP-3 production is linked to pantocin A production, where loss of pantocin A production results in a larger PNP-3 zone of inhibition. To evaluate the spectrum of activity, PNP-3 producers, including several PNP-3 mutants and pantocin A site-directed mutants, were tested against a collection of clinical, drug-resistant strains of A. baumannii and P. aeruginosa, as well as, Klebsiella, Escherichia coli, Enterobacter, Staphylococcus aureus, and Streptococcus mutans. PNP-3 was found to be effective against all strains except vancomycin-resistant Enterococcus under the tested conditions. Heterologous expression of the four predicted biosynthetic genes in Erwinia amylovora resulted in antibiotic production, providing a means for future overexpression and purification. PNP-3 is a natural product that is effective against drug-resistant A. baumannii, P. aeruginosa, and enteric species for which there are currently few treatment options.
Collapse
Affiliation(s)
- Ashley N Williams
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S0A2, Canada.
| |
Collapse
|
34
|
May HC, Yu JJ, Shrihari S, Seshu J, Klose KE, Cap AP, Chambers JP, Guentzel MN, Arulanandam BP. Thioredoxin Modulates Cell Surface Hydrophobicity in Acinetobacter baumannii. Front Microbiol 2019; 10:2849. [PMID: 31921031 PMCID: PMC6927278 DOI: 10.3389/fmicb.2019.02849] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/25/2019] [Indexed: 12/04/2022] Open
Abstract
Acinetobacter baumannii, a Gram-negative coccobacillus, has become a prevalent nosocomial health threat affecting the majority of hospitals both in the U.S. and around the globe. Microbial cell surface hydrophobicity (CSH) has previously been correlated with virulence, uptake by immune cells, and attachment to epithelial cells. A mutant strain of A. baumannii (ΔtrxA) lacking the redox protein thioredoxin A was found to be more hydrophobic than its wild type (WT) and complemented counterparts, as measured by both Microbial Adhesion to Hydrocarbon (MATH) and salt aggregation. The hydrophobicity of the mutant could be abrogated through treatment with sodium cyanoborohydride (SCBH). This modulation correlated with reduction of disulfide bonds, as SCBH was able to reduce 5,5′-dithio-bis-[2-nitrobenzoic acid] and treatment with the known disulfide reducer, β-mercaptoethanol, also decreased ΔtrxA CSH. Additionally, the ΔtrxA mutant was more readily taken up than WT by J774 macrophages and this differential uptake could be abrogated though SCBH treatment. When partitioned into aqueous and hydrophobic phases, ΔtrxA recovered from the hydrophobic partition was phagocytosed more readily than from the aqueous phase further supporting the contribution of CSH to A. baumannii uptake by phagocytes. A second Gram-negative bacterium, Francisella novicida, also showed the association of TrxA deficiency (FnΔtrxA) with increased hydrophobicity and uptake by J774 cells. We previously have demonstrated that modification of the type IV pilus system (T4P) was associated with the A. baumannii ΔtrxA phenotype, and the Francisella FnΔtrxA mutant also was found to have a marked T4P deficiency. Interestingly, a F. novicida mutant lacking pilT also showed increased hydrophobicity over FnWT. Collective evidence presented in this study suggests that Gram-negative bacterial thioredoxin mediates CSH through multiple mechanisms including disulfide-bond reduction and T4P modulation.
Collapse
Affiliation(s)
- Holly C May
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
| | - Jieh-Juen Yu
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
| | - Swathi Shrihari
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
| | - Janakiram Seshu
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
| | - Karl E Klose
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
| | - Andrew P Cap
- Acute Combat Casualty Care Research Division, U.S. Army Institute for of Surgical Research, JBSA-Fort Sam Houston, San Antonio, TX, United States
| | - James P Chambers
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
| | - M Neal Guentzel
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
| | - Bernard P Arulanandam
- Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
35
|
Zadeh Hosseingholi E, Zarrini G, Pashazadeh M, Gheibi Hayat SM, Molavi G. In Silico Identification of Probable Drug and Vaccine Candidates Against Antibiotic-Resistant Acinetobacter baumannii. Microb Drug Resist 2019; 26:456-467. [PMID: 31742478 DOI: 10.1089/mdr.2019.0236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is known as a Gram-negative bacterium that has become one of the most important health problems due to antibiotic resistance. Today, numerous efforts are being made to find new antibiotics against this nosocomial pathogen. As an alternative solution, finding bacterial target(s), necessary for survival and spread of most resistant strains, can be a benefit exploited in drug and vaccine design. In this study, a list of extensive drug-resistant and carbapenem-resistant (multidrug resistant) A. bumannii strains with complete sequencing of genome were prepared and common hypothetical proteins (HPs) composed of more than 200 amino acids were selected. Then, a number of bioinformatics tools were combined for functional assignments of HPs using their sequence. Overall, among 18 in silico investigated proteins, the results showed that 7 proteins implicated in transcriptional regulation, pilus assembly, protein catabolism, fatty acid biosynthesis, adhesion, urea catalysis, and hydrolysis of phosphate monoesters have theoretical potential of involvement in successful survival and pathogenesis of A. baumannii. In addition, immunological analyses with prediction softwares indicated 4 HPs to be probable vaccine candidates. The outcome of this work will be helpful to find novel vaccine design candidates and therapeutic targets for A. baumannii through experimental investigations.
Collapse
Affiliation(s)
| | - Gholamreza Zarrini
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Marayam Pashazadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Geisinger E, Huo W, Hernandez-Bird J, Isberg RR. Acinetobacter baumannii: Envelope Determinants That Control Drug Resistance, Virulence, and Surface Variability. Annu Rev Microbiol 2019; 73:481-506. [DOI: 10.1146/annurev-micro-020518-115714] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acinetobacter baumannii has emerged as an important nosocomial pathogen, particularly for patients in intensive care units and with invasive indwelling devices. The most recent clinical isolates are resistant to several classes of clinically important antibiotics, greatly restricting the ability to effectively treat critically ill patients. The bacterial envelope is an important driver of A. baumannii disease, both at the level of battling against antibiotic therapy and at the level of protecting from host innate immune function. This review provides a comprehensive overview of key features of the envelope that interface with both the host and antimicrobial therapies. Carbohydrate structures that contribute to protecting from the host are detailed, and mutations that alter these structures, resulting in increased antimicrobial resistance, are explored. In addition, protein complexes involved in both intermicrobial and host-microbe interactions are described. Finally we discuss regulatory mechanisms that control the nature of the cell envelope and its impact on host innate immune function.
Collapse
Affiliation(s)
- Edward Geisinger
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Wenwen Huo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Juan Hernandez-Bird
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
37
|
Abstract
Type IV pilus (T4P)-like systems have been identified in almost every major phylum of prokaryotic life. They include the type IVa pilus (T4aP), type II secretion system (T2SS), type IVb pilus (T4bP), Tad/Flp pilus, Com pilus, and archaeal flagellum (archaellum). These systems are used for adhesion, natural competence, phage adsorption, folded-protein secretion, surface sensing, swimming motility, and twitching motility. The T4aP allows for all of these functions except swimming and is therefore a good model system for understanding T4P-like systems. Recent structural analyses have revolutionized our understanding of how the T4aP machinery assembles and functions. Here we review the structure and function of the T4aP.
Collapse
|
38
|
Adams MD, Wright MS, Karichu JK, Venepally P, Fouts DE, Chan AP, Richter SS, Jacobs MR, Bonomo RA. Rapid Replacement of Acinetobacter baumannii Strains Accompanied by Changes in Lipooligosaccharide Loci and Resistance Gene Repertoire. mBio 2019; 10:e00356-19. [PMID: 30914511 PMCID: PMC6437055 DOI: 10.1128/mbio.00356-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
The population structure of health care-associated pathogens reflects patterns of diversification, selection, and dispersal over time. Empirical data detailing the long-term population dynamics of nosocomial pathogens provide information about how pathogens adapt in the face of exposure to diverse antimicrobial agents and other host and environmental pressures and can inform infection control priorities. Extensive sequencing of clinical isolates from one hospital spanning a decade and a second hospital in the Cleveland, OH, metropolitan area over a 3-year time period provided high-resolution genomic analysis of the Acinetobacter baumannii metapopulation. Genomic analysis demonstrated an almost complete replacement of the predominant strain groups with a new, genetically distinct strain group during the study period. The new group, termed clade F, differs from other global clone 2 (GC2) strains of A. baumannii in several ways, including its antibiotic resistance and lipooligosaccharide biosynthesis genes. Clade F strains are part of a large phylogenetic group with broad geographic representation. Phylogenetic analysis of single-nucleotide variants in core genome regions showed that although the Cleveland strains are phylogenetically distinct from those isolated from other locations, extensive intermixing of strains from the two hospital systems was apparent, suggesting either substantial exchange of strains or a shared, but geographically restricted, external pool from which infectious isolates were drawn. These findings document the rapid evolution of A. baumannii strains in two hospitals, with replacement of the predominant clade by a new clade with altered lipooligosaccharide loci and resistance gene repertoires.IMPORTANCE Multidrug-resistant (MDR) A. baumannii is a difficult-to-treat health care-associated pathogen. Knowing the resistance genes present in isolates causing infection aids in empirical treatment selection. Furthermore, knowledge of the genetic background can assist in tracking patterns of transmission to limit the spread of infections in hospitals. The appearance of a new genetic background in A. baumannii strains with a different set of resistance genes and cell surface structures suggests that strong selective pressures exist, even in highly MDR pathogens. Because the new strains have levels of antimicrobial resistance similar to those of the strains that were displaced, we hypothesize that other features, including host colonization and infection, may confer additional selective advantages and contribute to their increased prevalence.
Collapse
Affiliation(s)
- Mark D Adams
- The J. Craig Venter Institute, La Jolla, California, USA
| | | | - James K Karichu
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Agnes P Chan
- The J. Craig Venter Institute, Rockville, Maryland, USA
| | - Sandra S Richter
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Michael R Jacobs
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University and CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University and CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University and CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University and CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
- Center for Proteomics, Case Western Reserve University and CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
39
|
Li FJ, Starrs L, Burgio G. Tug of war between Acinetobacter baumannii and host immune responses. Pathog Dis 2019; 76:5290314. [PMID: 30657912 DOI: 10.1093/femspd/ftz004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is an emerging nosocomial, opportunistic pathogen with growing clinical significance. Acinetobacter baumannii has an exceptional ability to rapidly develop drug resistance and to adhere to abiotic surfaces, including medical equipment, significantly promoting bacterial spread and also limiting our ability to control A. baumannii infections. Consequently, A. baumannii is frequently responsible for ventilator-associated pneumonia in clinical settings. In order to develop an effective treatment strategy, understanding host-pathogen interactions during A. baumannii infection is crucial. Various A. baumannii virulence factors have been identified as targets of host innate pattern-recognition receptors, which leads to activation of downstream inflammasomes to develop inflammatory responses, and the recruitment of innate immune effectors against A. baumannii infection. To counteract host immune attack, A. baumannii regulates its expression of different virulence factors. This review summarizes the significance of mechanisms of host-bacteria interaction, as well as different bacteria and host defense mechanisms during A. baumannii infection.
Collapse
Affiliation(s)
- Fei-Ju Li
- Department of Immunology and infectious Diseases, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Acton, ACT 2601, Australia
| | - Lora Starrs
- Department of Immunology and infectious Diseases, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Acton, ACT 2601, Australia
| | - Gaetan Burgio
- Department of Immunology and infectious Diseases, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Acton, ACT 2601, Australia
| |
Collapse
|
40
|
Abstract
Bacterial uptake of DNA through type IV filaments is an essential component of natural competence in numerous gram-positive and gram-negative species. Recent advances in the field have broadened our understanding of the structures used to take up extracellular DNA. Here, we review seminal experiments in the literature describing DNA binding by type IV pili, competence pili and the flp pili of Micrococcus luteus; collectively referred to here as type IV filaments. We compare the current state of the field on mechanisms of DNA uptake for these three appendage systems and describe the current mechanistic understanding of both DNA-binding and DNA-uptake by these versatile molecular machines.
Collapse
Affiliation(s)
- Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States.,Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States.,Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
41
|
Skerniškytė J, Krasauskas R, Péchoux C, Kulakauskas S, Armalytė J, Sužiedėlienė E. Surface-Related Features and Virulence Among Acinetobacter baumannii Clinical Isolates Belonging to International Clones I and II. Front Microbiol 2019; 9:3116. [PMID: 30671029 PMCID: PMC6331429 DOI: 10.3389/fmicb.2018.03116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/03/2018] [Indexed: 01/07/2023] Open
Abstract
Acinetobacter baumannii currently represents one of the most important nosocomial infection agent due to its multidrug-resistance and a propensity for the epidemic spread. The A. baumannii strains belonging to the international clonal lineages I (IC I) and II (IC II) are associated with the hospital outbreaks and a high virulence. However, the intra and inter lineage-specific features of strains belonging to these most worldwide spread A. baumannii clones are not thoroughly explored. In this study we have investigated a set of cell surface-related features of A. baumannii IC I (n = 20) and IC II (n = 16) lineage strains, representing 30 distinct pulsed-field gel electrophoresis types in the collection of clinical isolates obtained in Lithuanian tertiary care hospitals. We show that A. baumannii IC II strains are non-motile, do not form pellicle and display distinct capsular polysaccharide profile compared with the IC I strains. Moreover, in contrast to the overall highly hydrophobic IC I strains, IC II strains showed a greater variation in cell surface hydrophobicity. Within the IC II lineage, hydrophilic strains demonstrated reduced ability to form biofilm and adhere to the abiotic surfaces, also possessed twofold thicker cell wall and exhibited higher resistance to desiccation. Furthermore, these strains showed increased adherence to the lung epithelial cells and were more virulent in nematode and mouse infection model compared with the hydrophobic IC II strains. According to the polymerase chain reaction-based locus-typing, the reduction in hydrophobicity of IC II strains was not capsule or lipooligosaccharide locus type-dependent. Hence, this study shows that the most widespread A. baumannii clonal lineages I and II markedly differ in the series of cell surface-related phenotypes including the considerable phenotypic diversification of IC II strains at the intra-lineage level. These findings suggest that the genotypically related A. baumannii strains might evolve the features which could provide an advantage at the specific conditions outside or within the host.
Collapse
Affiliation(s)
- Jūratė Skerniškytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Renatas Krasauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Saulius Kulakauskas
- INRA, MICALIS Institute, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
42
|
Ronish LA, Lillehoj E, Fields JK, Sundberg EJ, Piepenbrink KH. The structure of PilA from Acinetobacter baumannii AB5075 suggests a mechanism for functional specialization in Acinetobacter type IV pili. J Biol Chem 2018; 294:218-230. [PMID: 30413536 DOI: 10.1074/jbc.ra118.005814] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/19/2018] [Indexed: 11/06/2022] Open
Abstract
Type IV pili (T4P) are bacterial appendages composed of protein subunits, called pilins, noncovalently assembled into helical fibers. T4P are essential, in many bacterial species, for processes as diverse as twitching motility, natural competence, biofilm or microcolony formation, and host cell adhesion. The genes encoding type IV pili are found universally in the Gram-negative, aerobic, nonflagellated, and pathogenic coccobacillus Acinetobacter baumannii, but there is considerable variation in PilA, the major protein subunit, both in amino acid sequence and in glycosylation patterns. Here we report the X-ray crystal structure of PilA from AB5075, a recently characterized, highly virulent isolate, at 1.9 Å resolution and compare it to homologues from A. baumannii strains ACICU and BIDMC57, which are C-terminally glycosylated. These structural comparisons revealed that PilAAB5075 exhibits a distinctly electronegative surface chemistry. To understand the functional consequences of this change in surface electrostatics, we complemented a ΔpilA knockout strain with divergent pilA genes from ACICU, BIDMC57, and AB5075. The resulting transgenic strains showed differential twitching motility and biofilm formation while maintaining the ability to adhere to epithelial cells. PilAAB5075 and PilAACICU, although structurally similar, promote different characteristics, favoring twitching motility and biofilm formation, respectively. These results support a model in which differences in pilus electrostatics affect the equilibrium of microcolony formation, which in turn alters the balance between motility and biofilm formation in Acinetobacter.
Collapse
Affiliation(s)
- Leslie A Ronish
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Erik Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - James K Fields
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201; Departments of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588; Departments of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588; Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska 68588.
| |
Collapse
|
43
|
Abstract
Complex carbohydrates are ubiquitous in nature, and together with proteins and nucleic acids they comprise the building blocks of life. But unlike proteins and nucleic acids, carbohydrates form nonlinear polymers, and they are not characterized by robust secondary or tertiary structures but rather by distributions of well-defined conformational states. Their molecular flexibility means that oligosaccharides are often refractory to crystallization, and nuclear magnetic resonance (NMR) spectroscopy augmented by molecular dynamics (MD) simulation is the leading method for their characterization in solution. The biological importance of carbohydrate-protein interactions, in organismal development as well as in disease, places urgency on the creation of innovative experimental and theoretical methods that can predict the specificity of such interactions and quantify their strengths. Additionally, the emerging realization that protein glycosylation impacts protein function and immunogenicity places the ability to define the mechanisms by which glycosylation impacts these features at the forefront of carbohydrate modeling. This review will discuss the relevant theoretical approaches to studying the three-dimensional structures of this fascinating class of molecules and interactions, with reference to the relevant experimental data and techniques that are key for validation of the theoretical predictions.
Collapse
Affiliation(s)
- Robert J Woods
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States
| |
Collapse
|
44
|
Wang F, Coureuil M, Osinski T, Orlova A, Altindal T, Gesbert G, Nassif X, Egelman EH, Craig L. Cryoelectron Microscopy Reconstructions of the Pseudomonas aeruginosa and Neisseria gonorrhoeae Type IV Pili at Sub-nanometer Resolution. Structure 2018; 25:1423-1435.e4. [PMID: 28877506 DOI: 10.1016/j.str.2017.07.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/03/2017] [Accepted: 07/25/2017] [Indexed: 01/17/2023]
Abstract
We report here cryoelectron microscopy reconstructions of type IV pili (T4P) from two important human pathogens, Pseudomonas aeruginosa and Neisseria gonorrhoeae, at ∼ 8 and 5 Å resolution, respectively. The two structures reveal distinct arrangements of the pilin globular domains on the pilus surfaces, which impart different helical parameters, but similar packing of the conserved N-terminal α helices, α1, in the filament core. In contrast to the continuous α helix seen in the X-ray crystal structures of the P. aeruginosa and N. gonorrhoeae pilin subunits, α1 in the pilus filaments has a melted segment located between conserved helix-breaking residues Gly14 and Pro22, as seen for the Neisseria meningitidis T4P. Using mutagenesis we show that Pro22 is critical for pilus assembly, as are Thr2 and Glu5, which are positioned to interact in the hydrophobic filament core. These structures provide a framework for understanding T4P assembly, function, and biophysical properties.
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mathieu Coureuil
- Institut Necker-Enfants Malades, INSERM U1151, 14 Rue Maria Helena Vieira Da Silva, CS 61431, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, 15 Rue de l'École de Médecine, 75006 Paris, France
| | - Tomasz Osinski
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Albina Orlova
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Tuba Altindal
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Gaël Gesbert
- Institut Necker-Enfants Malades, INSERM U1151, 14 Rue Maria Helena Vieira Da Silva, CS 61431, 75014 Paris, France
| | - Xavier Nassif
- Institut Necker-Enfants Malades, INSERM U1151, 14 Rue Maria Helena Vieira Da Silva, CS 61431, 75014 Paris, France
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| | - Lisa Craig
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
45
|
Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol 2017; 16:91-102. [PMID: 29249812 DOI: 10.1038/nrmicro.2017.148] [Citation(s) in RCA: 572] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acinetobacter baumannii is a nosocomial pathogen that causes ventilator-associated as well as bloodstream infections in critically ill patients, and the spread of multidrug-resistant Acinetobacter strains is cause for concern. Much of the success of A. baumannii can be directly attributed to its plastic genome, which rapidly mutates when faced with adversity and stress. However, fundamental virulence mechanisms beyond canonical drug resistance were recently uncovered that enable A. baumannii and, to a limited extent, other medically relevant Acinetobacter species to successfully thrive in the health-care environment. In this Review, we explore the molecular features that promote environmental persistence, including desiccation resistance, biofilm formation and motility, and we discuss the most recently identified virulence factors, such as secretion systems, surface glycoconjugates and micronutrient acquisition systems that collectively enable these pathogens to successfully infect their hosts.
Collapse
Affiliation(s)
- Christian M Harding
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA.,VaxNewMo LLC, St. Louis, Missouri 63108, USA
| | - Seth W Hennon
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, USA.,VaxNewMo LLC, St. Louis, Missouri 63108, USA
| |
Collapse
|
46
|
Pseudomonas aeruginosa defends against phages through type IV pilus glycosylation. Nat Microbiol 2017; 3:47-52. [DOI: 10.1038/s41564-017-0061-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/12/2017] [Indexed: 01/21/2023]
|
47
|
Ambrosi C, Scribano D, Aleandri M, Zagaglia C, Di Francesco L, Putignani L, Palamara AT. Acinetobacter baumannii Virulence Traits: A Comparative Study of a Novel Sequence Type with Other Italian Endemic International Clones. Front Microbiol 2017; 8:1977. [PMID: 29075243 PMCID: PMC5643476 DOI: 10.3389/fmicb.2017.01977] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/25/2017] [Indexed: 01/20/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAb) have emerged in recent decades as major causes of nosocomial infections. Resistance is mainly due to overexpression of intrinsic and/or acquired carbapenemases, especially oxacillinases (OXA). In Italy, although the sequence type (ST) 2 and the ST78 are the most frequently detected, we recently reported ST632, a single locus variant of ST2. Therefore, this study was aimed at unraveling common bacterial surface virulence factors involved in pathogenesis and antibiotic resistance in representative CRAb of these ST genotypes. Outer membrane protein (OMP) composition together with motility, biofilm formation, in vitro adherence to, invasion of, and survival within pneumocytes were analyzed. Differently from the carbapenem-susceptible reference strain ATCC 17978, either overexpressed OXA-51 or both OXA-23 and OXA-51 co-purified with OMPs in CRAb. This tight association ensures their maximal concentration on the inner surface of the outer membrane to provide the best protection against carbapenems. These findings led us to propose for the first time a common behavior of OXA enzymes in CRAb. Despite the presence of both OmpA and phosphorylcholine-porinD and the ability of all the strains to adhere to cells, invasion, and survival within pneumocytes was shown only by ST2 and ST78 isolates, sharing the highest number of identified OMPs. Conversely, notwithstanding genetic and OMPs similarities with ST2, ST632 was unable to invade and survive within epithelial cells. Overall, our study shows that different STs share a specific OMP composition, also shaped by overexpressed OXA, that is needed for invasiveness and survival of CRAb.
Collapse
Affiliation(s)
- Cecilia Ambrosi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Dani Di Giò Foundation-Onlus, Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Department of Medical, Oral and Biotechnological Sciences, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Marta Aleandri
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Carlo Zagaglia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Laura Di Francesco
- Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur Italia, Cenci-Bolognetti Foundation, Rome, Italy.,San Raffaele Pisana, IRCCS, Telematic University, Rome, Italy
| |
Collapse
|
48
|
Motility and adhesion through type IV pili in Gram-positive bacteria. Biochem Soc Trans 2017; 44:1659-1666. [PMID: 27913675 DOI: 10.1042/bst20160221] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022]
Abstract
Type IV pili are hair-like bacterial surface appendages that play a role in diverse processes such as cellular adhesion, colonization, twitching motility, biofilm formation, and horizontal gene transfer. These extracellular fibers are composed exclusively or primarily of many copies of one or more pilin proteins, tightly packed in a helix so that the highly hydrophobic amino-terminus of the pilin is buried in the pilus core. Type IV pili have been characterized extensively in Gram-negative bacteria, and recent advances in high-throughput genomic sequencing have revealed that they are also widespread in Gram-positive bacteria. Here, we review the current state of knowledge of type IV pilus systems in Gram-positive bacterial species and discuss them in the broader context of eubacterial type IV pili.
Collapse
|