1
|
Hou M, Yue M, Han X, Sun T, Zhu Y, Li Z, Han J, Zhao B, Tu M, An Y. Comparative analysis of BAG1 and BAG2: Insights into their structures, functions and implications in disease pathogenesis. Int Immunopharmacol 2024; 143:113369. [PMID: 39405938 DOI: 10.1016/j.intimp.2024.113369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/22/2024] [Accepted: 10/06/2024] [Indexed: 10/30/2024]
Abstract
As BAG family members, Bcl-2 associated athanogene family protein 1 (BAG1) and 2 (BAG2) are implicated in multiple cellular processes, including apoptosis, autophagy, protein folding and homeostasis. Although structurally similar, they considerably differ in many ways. Unlike BAG2, BAG1 has four isoforms (BAG1L, BAG1M, BAG1S and BAG1 p29) displaying different expression features and functional patterns. BAG1 and BAG2 play different cellular functions by interacting with different molecules to participate in the regulation of various diseases, including cancer/tumor and neurodegenerative diseases. Commonly, BAG1 acts as a protective factor to predict a good prognosis of patients with some types of cancer or a risk factor in some other cancers, while BAG2 is regarded as a risk factor to promote cancer/tumor progression. In neurodegenerative diseases, BAG2 commonly acts as a neuroprotective factor. In this review, we summarized the differences in molacular structure and biological function between BAG1 and BAG2, as well as the influences of them on pathogenesis of diseases, and explore the prospects for their clinical therapy application by specifying the activators and inhibitors of BAG1 and BAG2, which might provide a better understanding of the underlying pathogenesis and developing the targeted therapy strategies for diseases.
Collapse
Affiliation(s)
- Mengwen Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Man Yue
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; School of Stomatology, Henan University, Kaifeng 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Egly CL, Barny LA, Do T, McDonald EF, Knollmann BC, Plate L. The proteostasis interactomes of trafficking-deficient variants of the voltage-gated potassium channel K V11.1 associated with long QT syndrome. J Biol Chem 2024; 300:107465. [PMID: 38876300 PMCID: PMC11284683 DOI: 10.1016/j.jbc.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024] Open
Abstract
The voltage-gated potassium ion channel KV11.1 plays a critical role in cardiac repolarization. Genetic variants that render Kv11.1 dysfunctional cause long QT syndrome (LQTS), which is associated with fatal arrhythmias. Approximately 90% of LQTS-associated variants cause intracellular protein transport (trafficking) dysfunction, which pharmacological chaperones like E-4031 can rescue. Protein folding and trafficking decisions are regulated by chaperones, protein quality control factors, and trafficking machinery comprising the cellular proteostasis network. Here, we test whether trafficking dysfunction is associated with alterations in the proteostasis network of pathogenic Kv11.1 variants and whether pharmacological chaperones can normalize the proteostasis network of responsive variants. We used affinity-purification coupled with tandem mass tag-based quantitative mass spectrometry to assess protein interaction changes of WT KV11.1 or trafficking-deficient channel variants in the presence or absence of E-4031. We identified 572 core KV11.1 protein interactors. Trafficking-deficient variants KV11.1-G601S and KV11.1-G601S-G965∗ had significantly increased interactions with proteins responsible for folding, trafficking, and degradation compared to WT. We confirmed previous findings that the proteasome is critical for KV11.1 degradation. Our report provides the first comprehensive characterization of protein quality control mechanisms of KV11.1. We find extensive interactome remodeling associated with trafficking-deficient KV11.1 variants and with pharmacological chaperone rescue of KV11.1 cell surface expression. The identified protein interactions could be targeted therapeutically to improve KV11.1 trafficking and treat LQTS.
Collapse
Affiliation(s)
- Christian L Egly
- Department of Medicine, Vanderbilt University Medical Center, Nasville, Tennessee, USA
| | - Lea A Barny
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Tri Do
- Department of Medicine, Vanderbilt University Medical Center, Nasville, Tennessee, USA
| | - Eli F McDonald
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Björn C Knollmann
- Department of Medicine, Vanderbilt University Medical Center, Nasville, Tennessee, USA.
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
3
|
Inose-Maruyama A, Irokawa H, Takeda K, Taguchi K, Morita M, Yamamoto M, Sasaki M, Kuge S. Bag1 protein loss sensitizes mouse embryonic fibroblasts to glutathione depletion. Cell Stress Chaperones 2024; 29:497-509. [PMID: 38763404 PMCID: PMC11170100 DOI: 10.1016/j.cstres.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024] Open
Abstract
Bcl2-associated athanogene-1 protein (Bag1) acts as a co-chaperone of heat shock protein 70 and heat shock cognate 70 and regulates multiple cellular processes, including cell proliferation, apoptosis, environmental stress response, and drug resistance. Since Bag1 knockout mice exhibited fetal lethality, the in vivo function of Bag1 remains unclear. In this study, we established a mouse line expressing Bag1 gene missing exon 5, which corresponds to an encoding region for the interface of heat shock protein 70/heat shock cognate 70. Despite mice carrying homoalleles of the Bag1 mutant (Bag1Δex5) expressing undetectable levels of Bag1, Bag1Δex5 homozygous mice developed without abnormalities. Bag1Δex5 protein was found to be highly unstable in cells and in vitro. We found that the growth of mouse embryonic fibroblasts derived from Bag1Δex5-homo mice was attenuated by doxorubicin and a glutathione (GSH) synthesis inhibitor, buthionine sulfoximine. In response to buthionine sulfoximine, Bag1Δex5-mouse embryonic fibroblasts exhibited a higher dropping rate of GSH relative to the oxidized glutathione level. In addition, Bag1 might mitigate cellular hydrogen peroxide levels. Taken together, our results demonstrate that the loss of Bag1 did not affect mouse development and that Bag1 is involved in intracellular GSH homeostasis, namely redox homeostasis.
Collapse
Affiliation(s)
- Atsushi Inose-Maruyama
- Faculty of Pharmaceutical Sciences, Division of Microbiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hayato Irokawa
- Faculty of Pharmaceutical Sciences, Division of Microbiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kouki Takeda
- Faculty of Pharmaceutical Sciences, Division of Microbiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Keiko Taguchi
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Biochemistry and Molecular Biology, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masato Sasaki
- Faculty of Pharmaceutical Sciences, Division of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Shusuke Kuge
- Faculty of Pharmaceutical Sciences, Division of Microbiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| |
Collapse
|
4
|
Cao H, Zhou X, Xu B, Hu H, Guo J, Ma Y, Wang M, Li N, Jun Z. Advances in the study of protein folding and endoplasmic reticulum-associated degradation in mammal cells. J Zhejiang Univ Sci B 2024; 25:212-232. [PMID: 38453636 PMCID: PMC10918413 DOI: 10.1631/jzus.b2300403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/03/2023] [Indexed: 03/09/2024]
Abstract
The endoplasmic reticulum is a key site for protein production and quality control. More than one-third of proteins are synthesized and folded into the correct three-dimensional conformation in the endoplasmic reticulum. However, during protein folding, unfolded and/or misfolded proteins are prone to occur, which may lead to endoplasmic reticulum stress. Organisms can monitor the quality of the proteins produced by endoplasmic reticulum quality control (ERQC) and endoplasmic reticulum-associated degradation (ERAD), which maintain endoplasmic reticulum protein homeostasis by degrading abnormally folded proteins. The underlying mechanisms of protein folding and ERAD in mammals have not yet been fully explored. Therefore, this paper reviews the process and function of protein folding and ERAD in mammalian cells, in order to help clinicians better understand the mechanism of ERAD and to provide a scientific reference for the treatment of diseases caused by abnormal ERAD.
Collapse
Affiliation(s)
- Hong Cao
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Xuchang Zhou
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Bowen Xu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Han Hu
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China
| | - Jianming Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Yuwei Ma
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Miao Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China
| | - Nan Li
- National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai 200433, China.
| | - Zou Jun
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
5
|
Egly CL, Barny L, Do T, McDonald EF, Plate L, Knollmann BC. The proteostasis interactomes of trafficking-deficient K V 11.1 variants associated with Long QT Syndrome and pharmacological chaperone rescue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.574410. [PMID: 38352392 PMCID: PMC10862811 DOI: 10.1101/2024.01.31.574410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Introduction The voltage gated potassium ion channel K V 11.1 plays a critical role in cardiac repolarization. Genetic variants that render Kv11.1 dysfunctional cause Long QT Syndrome (LQTS), which is associated with fatal arrhythmias. Approximately 90% of LQTS-associated variants cause intracellular protein transport (trafficking) dysfunction, which can be rescued by pharmacological chaperones like E-4031. Protein folding and trafficking decisions are regulated by chaperones, protein quality control factors, and trafficking machinery, comprising the cellular proteostasis network. Here, we test whether trafficking dysfunction is associated with alterations in the proteostasis network of pathogenic Kv11.1 variants, and whether pharmacological chaperones can normalize the proteostasis network of responsive variants. Methods We used affinity-purification coupled with tandem mass tag-based quantitative mass spectrometry to assess protein interaction changes in human embryonic kidney (HEK293) cells expressing wild-type (WT) K V 11.1 or trafficking-deficient channel variants in the presence or absence of E-4031. Resultsa We identified 573 core K V 11.1 protein interactors. Both variants K V 11.1-G601S and K V 11.1-G601S-G965* had significantly increased interactions with proteins responsible for folding, trafficking, and degradation compared to WT. We found that proteasomal degradation is a key component for K V 11.1 degradation and that the K V 11.1-G601S-G965* variant was more responsive to E-4031 treatment. This suggests a role in the C-terminal domain and the ER retention motif of K V 11.1 in regulating trafficking. Conclusion Our report characterizes the proteostasis network of K V 11.1, two trafficking deficient K V 11.1 variants, and variants treated with a pharmacological chaperone. The identified protein interactions could be targeted therapeutically to improve K V 11.1 trafficking and treat Long QT Syndrome.
Collapse
|
6
|
Gawden-Bone CM, Lehner PJ, Volkmar N. As a matter of fat: Emerging roles of lipid-sensitive E3 ubiquitin ligases. Bioessays 2023; 45:e2300139. [PMID: 37890275 DOI: 10.1002/bies.202300139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
The dynamic structure and composition of lipid membranes need to be tightly regulated to control the vast array of cellular processes from cell and organelle morphology to protein-protein interactions and signal transduction pathways. To maintain membrane integrity, sense-and-response systems monitor and adjust membrane lipid composition to the ever-changing cellular environment, but only a relatively small number of control systems have been described. Here, we explore the emerging role of the ubiquitin-proteasome system in monitoring and maintaining membrane lipid composition. We focus on the ER-resident RNF145 E3 ubiquitin ligase, its role in regulating adiponectin receptor 2 (ADIPOR2), its lipid hydrolase substrate, and the broader implications for understanding the homeostatic processes that fine-tune cellular membrane composition.
Collapse
Affiliation(s)
- Christian M Gawden-Bone
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Norbert Volkmar
- Institute for Molecular Systems Biology (IMSB), ETH Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Kohler V, Andréasson C. Reversible protein assemblies in the proteostasis network in health and disease. Front Mol Biosci 2023; 10:1155521. [PMID: 37021114 PMCID: PMC10067754 DOI: 10.3389/fmolb.2023.1155521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
While proteins populating their native conformations constitute the functional entities of cells, protein aggregates are traditionally associated with cellular dysfunction, stress and disease. During recent years, it has become clear that large aggregate-like protein condensates formed via liquid-liquid phase separation age into more solid aggregate-like particles that harbor misfolded proteins and are decorated by protein quality control factors. The constituent proteins of the condensates/aggregates are disentangled by protein disaggregation systems mainly based on Hsp70 and AAA ATPase Hsp100 chaperones prior to their handover to refolding and degradation systems. Here, we discuss the functional roles that condensate formation/aggregation and disaggregation play in protein quality control to maintain proteostasis and why it matters for understanding health and disease.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Claes Andréasson
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Nguyen NH, Brodsky JL. The cellular pathways that maintain the quality control and transport of diverse potassium channels. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194908. [PMID: 36638864 PMCID: PMC9908860 DOI: 10.1016/j.bbagrm.2023.194908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Potassium channels are multi-subunit transmembrane proteins that permit the selective passage of potassium and play fundamental roles in physiological processes, such as action potentials in the nervous system and organismal salt and water homeostasis, which is mediated by the kidney. Like all ion channels, newly translated potassium channels enter the endoplasmic reticulum (ER) and undergo the error-prone process of acquiring post-translational modifications, folding into their native conformations, assembling with other subunits, and trafficking through the secretory pathway to reach their final destinations, most commonly the plasma membrane. Disruptions in these processes can result in detrimental consequences, including various human diseases. Thus, multiple quality control checkpoints evolved to guide potassium channels through the secretory pathway and clear potentially toxic, aggregation-prone misfolded species. We will summarize current knowledge on the mechanisms underlying potassium channel quality control in the secretory pathway, highlight diseases associated with channel misfolding, and suggest potential therapeutic routes.
Collapse
Affiliation(s)
- Nga H Nguyen
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
9
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
10
|
Kuznik NC, Solozobova V, Lee II, Jung N, Yang L, Nienhaus K, Ntim EA, Rottenberg JT, Muhle-Goll C, Kumar AR, Peravali R, Gräßle S, Gourain V, Deville C, Cato L, Neeb A, Dilger M, Cramer von Clausbruch CA, Weiss C, Kieffer B, Nienhaus GU, Brown M, Bräse S, Cato ACB. A chemical probe for BAG1 targets androgen receptor-positive prostate cancer through oxidative stress signaling pathway. iScience 2022; 25:104175. [PMID: 35479411 PMCID: PMC9036123 DOI: 10.1016/j.isci.2022.104175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis, and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17, that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth. BAG1L interacts with a sequence overlapping a polyalanine tract in the AR NTD Knockdown of BAG1L increase AR dynamics in the nucleus BAG1L uses ROS pathway to regulate AR+ prostate cancer cell proliferation A small molecule BAG1 inhibitor inhibits prostate tumor growth in mouse xenografts
Collapse
Affiliation(s)
- Nane C Kuznik
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Valeria Solozobova
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Irene I Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicole Jung
- Institute of Biological and Chemical Systems, Functional Molecular Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Linxiao Yang
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Emmanuel A Ntim
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jaice T Rottenberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Claudia Muhle-Goll
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Amrish Rajendra Kumar
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ravindra Peravali
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Simone Gräßle
- Institute of Biological and Chemical Systems, Functional Molecular Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Victor Gourain
- LabEx IGO "Immunotherapy, Graft, Oncology", Centre de Recherche en Transplantation et Immunologie - UMR1064, 44093 Nantes, France
| | - Célia Deville
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR-7104, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - Laura Cato
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Antje Neeb
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Marco Dilger
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christina A Cramer von Clausbruch
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Carsten Weiss
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Bruno Kieffer
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR-7104, Université de Strasbourg, 67404 Illkirch-Graffenstaden, France
| | - G Ulrich Nienhaus
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, Functional Molecular Systems, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Andrew C B Cato
- Institute of Biological and Chemical Systems, Biological Information Processing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
Can ND, Basturk E, Kizilboga T, Akcay IM, Dingiloglu B, Tatli O, Acar S, Ozfiliz Kilbas P, Elbeyli E, Muratcioglu S, Jannuzzi AT, Gursoy A, Keskin O, Doganay HL, Karademir Yilmaz B, Dinler Doganay G. Interactome analysis of Bag-1 isoforms reveals novel interaction partners in endoplasmic reticulum-associated degradation. PLoS One 2021; 16:e0256640. [PMID: 34428256 PMCID: PMC8384158 DOI: 10.1371/journal.pone.0256640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Bag-1 is a multifunctional protein that regulates Hsp70 chaperone activity, apoptosis, and proliferation. The three major Bag-1 isoforms have different subcellular localizations and partly non-overlapping functions. To identify the detailed interaction network of each isoform, we utilized mass spectrometry-based proteomics and found that interactomes of Bag-1 isoforms contained many common proteins, with variations in their abundances. Bag-1 interactomes were enriched with proteins involved in protein processing and degradation pathways. Novel interaction partners included VCP/p97; a transitional ER ATPase, Rad23B; a shuttling factor for ubiquitinated proteins, proteasome components, and ER-resident proteins, suggesting a role for Bag-1 also in ER-associated protein degradation (ERAD). Bag-1 pull-down from cells and tissues from breast cancer patients validated these interactions and showed cancer-related prominence. Using in silico predictions we detected hotspot residues of Bag-1. Mutations of these residues caused loss of binding to protein quality control elements and impaired proteasomal activity in MCF-7 cells. Following CD147 glycosylation pattern, we showed that Bag-1 downregulated VCP/p97-dependent ERAD. Overall, our data extends the interaction map of Bag-1, and broadens its role in protein homeostasis. Targeting the interaction surfaces revealed in this study might be an effective strategy in the treatment of cancer.
Collapse
Affiliation(s)
- Nisan Denizce Can
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Ezgi Basturk
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Tugba Kizilboga
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Izzet Mehmet Akcay
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Baran Dingiloglu
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Ozge Tatli
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
- Molecular Biology and Genetics Department, Istanbul Medeniyet University, Istanbul, Turkey
| | - Sevilay Acar
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Pelin Ozfiliz Kilbas
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Istanbul, Turkey
| | - Efe Elbeyli
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Ayse Tarbin Jannuzzi
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | | | - Betul Karademir Yilmaz
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Gizem Dinler Doganay
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
12
|
Karunanayake C, Page RC. Cytosolic protein quality control machinery: Interactions of Hsp70 with a network of co-chaperones and substrates. Exp Biol Med (Maywood) 2021; 246:1419-1434. [PMID: 33730888 PMCID: PMC8243209 DOI: 10.1177/1535370221999812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The chaperone heat shock protein 70 (Hsp70) and its network of co-chaperones serve as a central hub of cellular protein quality control mechanisms. Domain organization in Hsp70 dictates ATPase activity, ATP dependent allosteric regulation, client/substrate binding and release, and interactions with co-chaperones. The protein quality control activities of Hsp70 are classified as foldase, holdase, and disaggregase activities. Co-chaperones directly assisting protein refolding included J domain proteins and nucleotide exchange factors. However, co-chaperones can also be grouped and explored based on which domain of Hsp70 they interact. Here we discuss how the network of cytosolic co-chaperones for Hsp70 contributes to the functions of Hsp70 while closely looking at their structural features. Comparison of domain organization and the structures of co-chaperones enables greater understanding of the interactions, mechanisms of action, and roles played in protein quality control.
Collapse
Affiliation(s)
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
13
|
Ninagawa S, George G, Mori K. Mechanisms of productive folding and endoplasmic reticulum-associated degradation of glycoproteins and non-glycoproteins. Biochim Biophys Acta Gen Subj 2020; 1865:129812. [PMID: 33316349 DOI: 10.1016/j.bbagen.2020.129812] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The quality of proteins destined for the secretory pathway is ensured by two distinct mechanisms in the endoplasmic reticulum (ER): productive folding of newly synthesized proteins, which is assisted by ER-localized molecular chaperones and in most cases also by disulfide bond formation and transfer of an oligosaccharide unit; and ER-associated degradation (ERAD), in which proteins unfolded or misfolded in the ER are recognized and processed for delivery to the ER membrane complex, retrotranslocated through the complex with simultaneous ubiquitination, extracted by AAA-ATPase to the cytosol, and finally degraded by the proteasome. SCOPE OF REVIEW We describe the mechanisms of productive folding and ERAD, with particular attention to glycoproteins versus non-glycoproteins, and to yeast versus mammalian systems. MAJOR CONCLUSION Molecular mechanisms of the productive folding of glycoproteins and non-glycoproteins mediated by molecular chaperones and protein disulfide isomerases are well conserved from yeast to mammals. Additionally, mammals have gained an oligosaccharide structure-dependent folding cycle for glycoproteins. The molecular mechanisms of ERAD are also well conserved from yeast to mammals, but redundant expression of yeast orthologues in mammals has been encountered, particularly for components involved in recognition and processing of glycoproteins and components of the ER membrane complex involved in retrotranslocation and simultaneous ubiquitination of glycoproteins and non-glycoproteins. This may reflect an evolutionary consequence of increasing quantity or quality needs toward mammals. GENERAL SIGNIFICANCE The introduction of innovative genome editing technology into analysis of the mechanisms of mammalian ERAD, as exemplified here, will provide new insights into the pathogenesis of various diseases.
Collapse
Affiliation(s)
- Satoshi Ninagawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | - Ginto George
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
14
|
Abildgaard AB, Gersing SK, Larsen-Ledet S, Nielsen SV, Stein A, Lindorff-Larsen K, Hartmann-Petersen R. Co-Chaperones in Targeting and Delivery of Misfolded Proteins to the 26S Proteasome. Biomolecules 2020; 10:E1141. [PMID: 32759676 PMCID: PMC7463752 DOI: 10.3390/biom10081141] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis (proteostasis) is essential for the cell and is maintained by a highly conserved protein quality control (PQC) system, which triages newly synthesized, mislocalized and misfolded proteins. The ubiquitin-proteasome system (UPS), molecular chaperones, and co-chaperones are vital PQC elements that work together to facilitate degradation of misfolded and toxic protein species through the 26S proteasome. However, the underlying mechanisms are complex and remain partly unclear. Here, we provide an overview of the current knowledge on the co-chaperones that directly take part in targeting and delivery of PQC substrates for degradation. While J-domain proteins (JDPs) target substrates for the heat shock protein 70 (HSP70) chaperones, nucleotide-exchange factors (NEFs) deliver HSP70-bound substrates to the proteasome. So far, three NEFs have been established in proteasomal delivery: HSP110 and the ubiquitin-like (UBL) domain proteins BAG-1 and BAG-6, the latter acting as a chaperone itself and carrying its substrates directly to the proteasome. A better understanding of the individual delivery pathways will improve our ability to regulate the triage, and thus regulate the fate of aberrant proteins involved in cell stress and disease, examples of which are given throughout the review.
Collapse
Affiliation(s)
- Amanda B. Abildgaard
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sarah K. Gersing
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sven Larsen-Ledet
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Sofie V. Nielsen
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Amelie Stein
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (S.V.N.); (A.S.)
| | - Kresten Lindorff-Larsen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| | - Rasmus Hartmann-Petersen
- Department of Biology, The Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (A.B.A.); (S.K.G.); (S.L.-L.); (K.L.-L.)
| |
Collapse
|
15
|
Zhou J, Chow HM, Liu Y, Wu D, Shi M, Li J, Wen L, Gao Y, Chen G, Zhuang K, Lin H, Zhang G, Xie W, Li H, Leng L, Wang M, Zheng N, Sun H, Zhao Y, Zhang Y, Xue M, Huang TY, Bu G, Xu H, Yuan Z, Herrup K, Zhang J. Cyclin-Dependent Kinase 5-Dependent BAG3 Degradation Modulates Synaptic Protein Turnover. Biol Psychiatry 2020; 87:756-769. [PMID: 31955914 DOI: 10.1016/j.biopsych.2019.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Synaptic protein dyshomeostasis and functional loss is an early invariant feature of Alzheimer's disease (AD), yet the unifying etiological pathway remains largely unknown. Knowing that cyclin-dependent kinase 5 (CDK5) plays critical roles in synaptic formation and degeneration, its phosphorylation targets were reexamined in search of candidates with direct global impacts on synaptic protein dynamics, and the associated regulatory network was also analyzed. METHODS Quantitative phosphoproteomics and bioinformatics analyses were performed to identify top-ranked candidates. A series of biochemical assays was used to investigate the associated regulatory signaling networks. Histological, electrochemical, and behavioral assays were performed in conditional knockout, small hairpin RNA-mediated knockdown, and AD-related mice models to evaluate the relevance of CDK5 to synaptic homeostasis and functions. RESULTS Among candidates with known implications in synaptic modulations, BAG3 ranked the highest. CDK5-mediated phosphorylation on S297/S291 (mouse/human) destabilized BAG3. Loss of BAG3 unleashed the selective protein degradative function of the HSP70 machinery. In neurons, this resulted in enhanced degradation of a number of glutamatergic synaptic proteins. Conditional neuronal knockout of Bag3 in vivo led to impairment of learning and memory functions. In human AD and related mouse models, aberrant CDK5-mediated loss of BAG3 yielded similar effects on synaptic homeostasis. Detrimental effects of BAG3 loss on learning and memory functions were confirmed in these mice, and such effects were reversed by ectopic BAG3 reexpression. CONCLUSIONS Our results highlight that the neuronal CDK5-BAG3-HSP70 signaling axis plays a critical role in modulating synaptic homeostasis. Dysregulation of the signaling pathway directly contributes to synaptic dysfunction and AD pathogenesis.
Collapse
Affiliation(s)
- Jiechao Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
| | - Yan Liu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China; Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Di Wu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Meng Shi
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jieyin Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lei Wen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China; Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Yuehong Gao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guimiao Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Kai Zhuang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hui Lin
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guanyun Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wenting Xie
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Huifang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Lige Leng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mengdan Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Naizhen Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hao Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yingjun Zhao
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Yunwu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Maoqiang Xue
- Department of Basic Medical Science, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jie Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
16
|
Thioridazine Induces Cardiotoxicity via Reactive Oxygen Species-Mediated hERG Channel Deficiency and L-Type Calcium Channel Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3690123. [PMID: 32064022 PMCID: PMC6998749 DOI: 10.1155/2020/3690123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/01/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Thioridazine (THIO) is a phenothiazine derivative that is mainly used for the treatment of psychotic disorders. However, cardiac arrhythmias especially QT interval prolongation associated with the application of this compound have received serious attention after its introduction into clinical practice, and the mechanisms underlying the cardiotoxicity induced by THIO have not been well defined. The present study was aimed at exploring the long-term effects of THIO on the hERG and L-type calcium channels, both of which are relevant to the development of QT prolongation. The hERG current (I hERG) and the calcium current (I Ca-L) were measured by patch clamp techniques. Protein levels were analyzed by Western blot, and channel-chaperone interactions were determined by coimmunoprecipitation. Reactive oxygen species (ROS) were determined by flow cytometry and laser scanning confocal microscopy. Our results demonstrated that THIO induced hERG channel deficiency but did not alter channel kinetics. THIO promoted ROS production and stimulated endoplasmic reticulum (ER) stress and the related proteins. The ROS scavenger N-acetyl cysteine (NAC) significantly attenuated hERG reduction induced by THIO and abolished the upregulation of ER stress marker proteins. Meanwhile, THIO increased the degradation of hERG channels via disrupting hERG-Hsp70 interactions. The disordered hERG proteins were degraded in proteasomes after ubiquitin modification. On the other hand, THIO increased I Ca-L density and intracellular Ca2+ ([Ca2+]i) in neonatal rat ventricular cardiomyocytes (NRVMs). The specific CaMKII inhibitor KN-93 attenuated the intracellular Ca2+ overload, indicating that ROS-mediated CaMKII activation promoted calcium channel activation induced by THIO. Optical mapping analysis demonstrated the slowing effects of THIO on cardiac repolarization in mouse hearts. THIO significantly prolonged APD50 and APD90 and increased the incidence of early afterdepolarizations (EADs). In human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), THIO also resulted in APD prolongation. In conclusion, dysfunction of hERG channel proteins and activation of L-type calcium channels via ROS production might be the ionic mechanisms for QT prolongation induced by THIO.
Collapse
|
17
|
Locascio A, Marqués MC, García-Martínez G, Corratgé-Faillie C, Andrés-Colás N, Rubio L, Fernández JA, Véry AA, Mulet JM, Yenush L. BCL2-ASSOCIATED ATHANOGENE4 Regulates the KAT1 Potassium Channel and Controls Stomatal Movement. PLANT PHYSIOLOGY 2019; 181:1277-1294. [PMID: 31451552 PMCID: PMC6836829 DOI: 10.1104/pp.19.00224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/05/2019] [Indexed: 05/18/2023]
Abstract
Potassium (K+) is a key monovalent cation necessary for multiple aspects of cell growth and survival. In plants, this cation also plays a key role in the control of stomatal movement. KAT1 and its homolog KAT2 are the main inward rectifying channels present in guard cells, mediating K+ influx into these cells, resulting in stomatal opening. To gain further insight into the regulation of these channels, we performed a split-ubiquitin protein-protein interaction screen searching for KAT1 interactors in Arabidopsis (Arabidopsis thaliana). We characterized one of these candidates, BCL2-ASSOCIATED ATHANOGENE4 (BAG4), in detail using biochemical and genetic approaches to confirm this interaction and its effect on KAT1 activity. We show that BAG4 improves KAT1-mediated K+ transport in two heterologous systems and provide evidence that in plants, BAG4 interacts with KAT1 and favors the arrival of KAT1 at the plasma membrane. Importantly, lines lacking or overexpressing the BAG4 gene show altered KAT1 plasma membrane accumulation and alterations in stomatal movement. Our data allowed us to identify a KAT1 regulator and define a potential target for the plant BAG family. The identification of physiologically relevant regulators of K+ channels will aid in the design of approaches that may impact drought tolerance and pathogen susceptibility.
Collapse
Affiliation(s)
- Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Maria Carmen Marqués
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Guillermo García-Martínez
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Claire Corratgé-Faillie
- Biochimie et Physiologie Moléculaire des Plantes, Université Montpellier, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique (INRA), SupAgro Montpellier, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - Nuria Andrés-Colás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Lourdes Rubio
- Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos S/N, 29010 Málaga, Spain
| | - José Antonio Fernández
- Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos S/N, 29010 Málaga, Spain
| | - Anne-Aliénor Véry
- Biochimie et Physiologie Moléculaire des Plantes, Université Montpellier, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique (INRA), SupAgro Montpellier, Campus SupAgro-INRA, 34060 Montpellier Cedex 2, France
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| |
Collapse
|
18
|
Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines. Biochem J 2019; 476:1653-1677. [PMID: 31201219 DOI: 10.1042/bcj20170380] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
The Hsp70 family of chaperones works with its co-chaperones, the nucleotide exchange factors and J-domain proteins, to facilitate a multitude of cellular functions. Central players in protein homeostasis, these jacks-of-many-trades are utilized in a variety of ways because of their ability to bind with selective promiscuity to regions of their client proteins that are exposed when the client is unfolded, either fully or partially, or visits a conformational state that exposes the binding region in a regulated manner. The key to Hsp70 functions is that their substrate binding is transient and allosterically cycles in a nucleotide-dependent fashion between high- and low-affinity states. In the past few years, structural insights into the molecular mechanism of this allosterically regulated binding have emerged and provided deep insight into the deceptively simple Hsp70 molecular machine that is so widely harnessed by nature for diverse cellular functions. In this review, these structural insights are discussed to give a picture of the current understanding of how Hsp70 chaperones work.
Collapse
|
19
|
Mutation-specific peripheral and ER quality control of hERG channel cell-surface expression. Sci Rep 2019; 9:6066. [PMID: 30988392 PMCID: PMC6465299 DOI: 10.1038/s41598-019-42331-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
Impaired functional plasma membrane (PM) expression of the hERG K+-channel is associated with Long-QT syndrome type-2 (LQT2) and increased risk of cardiac arrhythmia. Reduced PM-expression is primarily attributed to retention and degradation of misfolded channels by endoplasmic reticulum (ER) protein quality control (QC) systems. However, as the molecular pathogenesis of LQT2 was defined using severely-misfolded hERG variants with limited PM-expression, the potential contribution of post-ER (peripheral) QC pathways to the disease phenotype remains poorly established. Here, we investigate the cellular processing of mildly-misfolded Per-Arnt-Sim (PAS)-domain mutant hERGs, which display incomplete ER-retention and PM-expression defects at physiological temperature. We show that the attenuated PM-expression of hERG is dictated by mutation-specific contributions from both the ER and peripheral QC systems. At the ER, PAS-mutants experience inefficient conformational maturation coupled with rapid ubiquitin-dependent proteasomal degradation. In post-ER compartments, they are rapidly endocytosed from the PM via a ubiquitin-independent mechanism and rapidly targeted for lysosomal degradation. Conformational destabilization underlies aberrant cellular processing at both ER- and post-ER compartments, since conformational correction by a hERG-specific pharmacochaperone or low-temperatures can restore WT-like trafficking. Our results demonstrate that the post-ER QC alone or jointly with the ER QC determines the loss-of-PM-expression phenotype of a subset of LQT2 mutations.
Collapse
|
20
|
Roder K, Kabakov A, Moshal KS, Murphy KR, Xie A, Dudley S, Turan NN, Lu Y, MacRae CA, Koren G. Trafficking of the human ether-a-go-go-related gene (hERG) potassium channel is regulated by the ubiquitin ligase rififylin (RFFL). J Biol Chem 2018; 294:351-360. [PMID: 30401747 DOI: 10.1074/jbc.ra118.003852] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/17/2018] [Indexed: 11/06/2022] Open
Abstract
The QT interval is an important diagnostic feature on surface electrocardiograms because it reflects the duration of the ventricular action potential. A previous genome-wide association study has reported a significant linkage between a single-nucleotide polymorphism ∼11.7 kb downstream of the gene encoding the RING finger ubiquitin ligase rififylin (RFFL) and variability in the QT interval. This, along with results in animal studies, suggests that RFFL may have effects on cardiac repolarization. Here, we sought to determine the role of RFFL in cardiac electrophysiology. Adult rabbit cardiomyocytes with adenovirus-expressed RFFL exhibited reduced rapid delayed rectifier current (I Kr). Neonatal rabbit cardiomyocytes transduced with RFFL-expressing adenovirus exhibited reduced total expression of the potassium channel ether-a-go-go-related gene (rbERG). Using transfections of 293A cells and Western blotting experiments, we observed that RFFL and the core-glycosylated form of the human ether-a-go-go-related gene (hERG) potassium channel interact. Furthermore, RFFL overexpression led to increased polyubiquitination and proteasomal degradation of hERG protein and to an almost complete disappearance of I Kr, which depended on the intact RING domain of RFFL. Blocking the ER-associated degradation (ERAD) pathway with a dominant-negative form of the ERAD core component, valosin-containing protein (VCP), in 293A cells partially abolished RFFL-mediated hERG degradation. We further substantiated the link between RFFL and ERAD by showing an interaction between RFFL and VCP in vitro We conclude that RFFL is an important regulator of voltage-gated hERG potassium channel activity and therefore cardiac repolarization and that this ubiquitination-mediated regulation requires parts of the ERAD pathway.
Collapse
Affiliation(s)
- Karim Roder
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - Anatoli Kabakov
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - Karni S Moshal
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - Kevin R Murphy
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - An Xie
- Department of Medicine, University of Minnesota, Cardiovascular Division, Minneapolis, Minnesota 55455
| | - Samuel Dudley
- Department of Medicine, University of Minnesota, Cardiovascular Division, Minneapolis, Minnesota 55455
| | - Nilüfer N Turan
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - Yichun Lu
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903
| | - Calum A MacRae
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Gideon Koren
- Department of Medicine, Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903.
| |
Collapse
|
21
|
Sun F, Jiang X, Wang X, Bao Y, Feng G, Liu H, Kou X, Zhu Q, Jiang L, Yang Y. Vincristine ablation of Sirt2 induces cell apoptosis and mitophagy via Hsp70 acetylation in MDA-MB-231 cells. Biochem Pharmacol 2018; 162:142-153. [PMID: 30352233 DOI: 10.1016/j.bcp.2018.10.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
Abstract
Cancer cells are continuously challenged by adverse environmental stress and adopt diverse strategies to survive. Hsp70 plays pivotal roles in invasion, migration, drug resistance, and the survival of tumor cells. Hsp70 functions as molecular chaperone to protect tumor cells from stress-induced cell death. Hsp70 acetylation alters its chaperone activity in cell death pathways, but its relevance in the process of cell death and the underlying mechanisms involved are not well understood. In this study, we demonstrated that vincristine induces mitophagy via the disruption of Hsp70 binding with Sirt2, leading to Hsp70 acetylation at K126 and elevated sequestration of Bcl2 by Hsp70 for autophagosome creation. Acetylation at K126 significantly changes the physiological function of Hsp70 compared to acetylation at other sites. It also attenuates the protein folding and renaturation function of Hsp70 by altering the binding co-chaperones. In addition, acetylation at K126 inhibits Hsp70-mediated tumor cell invasion and migration, and the binding of Hsp70 to AIF1 and Apaf1 for promoting mitochondrial-mediated apoptosis. In conclusion, this study describes the molecular mechanism of vincristine induction of cell apoptosis and mitophagy via ablation of Sirt2 induced Hsp70 acetylation at K126 in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Fanghui Sun
- Department of Pharmacology and Biochemistry, School of Pharmacy Fudan University, Shanghai 201203, China
| | - Xiaoxiao Jiang
- Department of Pharmacology and Biochemistry, School of Pharmacy Fudan University, Shanghai 201203, China
| | - Xuan Wang
- Department of Pharmacology and Biochemistry, School of Pharmacy Fudan University, Shanghai 201203, China
| | - Yong Bao
- Department of Pharmacology and Biochemistry, School of Pharmacy Fudan University, Shanghai 201203, China
| | - Guize Feng
- Department of Pharmacology and Biochemistry, School of Pharmacy Fudan University, Shanghai 201203, China
| | - Huijuan Liu
- Department of Pharmacology and Biochemistry, School of Pharmacy Fudan University, Shanghai 201203, China
| | - Xinhui Kou
- Department of Pharmacology and Biochemistry, School of Pharmacy Fudan University, Shanghai 201203, China
| | - Qing Zhu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Lan Jiang
- Department of Biological Sciences, Oakland University, 2200 N. Squirrel Road, Rochester, MI 48309, USA
| | - Yonghua Yang
- Department of Pharmacology and Biochemistry, School of Pharmacy Fudan University, Shanghai 201203, China.
| |
Collapse
|
22
|
Hutt DM, Mishra SK, Roth DM, Larsen MB, Angles F, Frizzell RA, Balch WE. Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy. J Biol Chem 2018; 293:13682-13695. [PMID: 29986884 DOI: 10.1074/jbc.ra118.002607] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/05/2018] [Indexed: 01/11/2023] Open
Abstract
The protein chaperones heat shock protein 70 (Hsp70) and Hsp90 are required for de novo folding of proteins and protect against misfolding-related cellular stresses by directing misfolded or slowly folding proteins to the ubiquitin/proteasome system (UPS) or autophagy/lysosomal degradation pathways. Here, we examined the role of the Bcl2-associated athanogene (BAG) family of Hsp70-specific nucleotide-exchange factors in the biogenesis and functional correction of genetic variants of the cystic fibrosis transmembrane conductance regulator (CFTR) whose mutations cause cystic fibrosis (CF). We show that siRNA-mediated silencing of BAG1 and -3, two BAG members linked to the clearance of misfolded proteins via the UPS and autophagy pathways, respectively, leads to functional correction of F508del-CFTR and other disease-associated CFTR variants. BAG3 silencing was the most effective, leading to improved F508del-CFTR stability, trafficking, and restoration of cell-surface function, both alone and in combination with the FDA-approved CFTR corrector, VX-809. We also found that the BAG3 silencing-mediated correction of F508del-CFTR restores the autophagy pathway, which is defective in F508del-CFTR-expressing cells, likely because of the maladaptive stress response in CF pathophysiology. These results highlight the potential therapeutic benefits of targeting the cellular chaperone system to improve the functional folding of CFTR variants contributing to CF and possibly other protein-misfolding-associated diseases.
Collapse
Affiliation(s)
- Darren M Hutt
- From the Department of Molecular Medicine, Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037 and
| | - Sanjay Kumar Mishra
- the Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Daniela Martino Roth
- From the Department of Molecular Medicine, Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037 and
| | - Mads Breum Larsen
- the Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Frédéric Angles
- From the Department of Molecular Medicine, Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037 and
| | - Raymond A Frizzell
- the Departments of Pediatrics and Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - William E Balch
- From the Department of Molecular Medicine, Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037 and
| |
Collapse
|
23
|
Nillegoda NB, Wentink AS, Bukau B. Protein Disaggregation in Multicellular Organisms. Trends Biochem Sci 2018; 43:285-300. [PMID: 29501325 DOI: 10.1016/j.tibs.2018.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022]
Abstract
Protein aggregates are formed in cells with profoundly perturbed proteostasis, where the generation of misfolded proteins exceeds the cellular refolding and degradative capacity. They are a hallmark of protein conformational disorders and aged and/or environmentally stressed cells. Protein aggregation is a reversible process in vivo, which counteracts proteotoxicities derived from aggregate persistence, but the chaperone machineries involved in protein disaggregation in Metazoa were uncovered only recently. Here we highlight recent advances in the mechanistic understanding of the major protein disaggregation machinery mediated by the Hsp70 chaperone system and discuss emerging alternative disaggregation activities in multicellular organisms.
Collapse
Affiliation(s)
- Nadinath B Nillegoda
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Anne S Wentink
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|