1
|
Tower Z, Chang H. Improved method for detecting protein-protein interactions using proximity ligation assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.01.610697. [PMID: 39282310 PMCID: PMC11398341 DOI: 10.1101/2024.09.01.610697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Proximity ligation assay has been widely used to detect protein-protein interaction in cells and tissues. While with great sensitivity, its specificity was often neglected. Here, we report the existence of varying levels of false positives observed with this assay and provide suggestions to minimize false positives for more accurate detection of protein-protein interactions, especially for membrane proteins.
Collapse
Affiliation(s)
- Zach Tower
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Hao Chang
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- William S. Middleton VA Medical Center, Madison, Wisconsin 53705
| |
Collapse
|
2
|
Bauleo A, Montesanto A, Pace V, Brando R, De Stefano L, Puntorieri D, Cento L, Loddo S, Calacci C, Novelli A, Falcone E. Rare copy number variants in ASTN2 gene in patients with neurodevelopmental disorders. Psychiatr Genet 2021; 31:239-245. [PMID: 34412080 DOI: 10.1097/ypg.0000000000000296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION In humans the normal development of cortical regions depends on the complex interactions between a number of proteins that promote the migrations of neuronal precursors from germinal zones and assembly into neuronal laminae. ASTN2 is one of the proteins implicated in such a complex process. Recently it has been observed that ASTN2 also regulates the surface expression of multiple synaptic proteins resulting in a modulation of synaptic activity. Several rare copy number variants (CNVs) in ASTN2 gene were identified in patients with neurodevelopmental disorders (NDDs) including autism spectrum disorders (ASD), attention deficit-hyperactivity disorders and intellectual disability. METHODS By using comparative genomic hybridization array technology, we analyzed the genomic profiles of five patients of three unrelated families with NDDs. Clinical diagnosis of ASD was established according to the Statistical Manual of Mental Disorders, Fifth Edition (APA 2013) criteria. RESULTS We identified new rare CNVs encompassing ASTN2 gene in three unrelated families with different clinical phenotypes of NDDs. In particular, we identified a deletion of about 70 Kb encompassing intron 19, a 186 Kb duplication encompassing the sequence between the 5'-end and the first intron of the gene and a 205 Kb deletion encompassing exons 6-11. CONCLUSION The CNVs reported here involve regions not usually disrupted in patients with NDDs with two of them affecting only the expression of the long isoforms. Further studies will be needed to analyze the impact of these CNVs on gene expression regulation and to better understand their impact on the protein function.
Collapse
Affiliation(s)
- Alessia Bauleo
- BIOGENET, Medical and Forensic Genetics Laboratory, Cosenza
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende
| | - Vincenza Pace
- BIOGENET, Medical and Forensic Genetics Laboratory, Cosenza
| | | | | | - Domenica Puntorieri
- Dipartimento Materno Infantile Neuropsichiatria Infanzia e Adolescenza Rossano - Cariati, Azienda Sanitaria Provinciale di Cosenza, Cosenza
| | - Luca Cento
- Translational Cytogenomics Research Unit, Associazione Equilibri Pedagogici, Studio Pedagogico Interdisciplinare, Reggio Calabria
| | - Sara Loddo
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Calacci
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elena Falcone
- BIOGENET, Medical and Forensic Genetics Laboratory, Cosenza
| |
Collapse
|
3
|
Inoue R, Nishizawa D, Hasegawa J, Nakayama K, Fukuda KI, Ichinohe T, Mieda T, Tsujita M, Nakagawa H, Kitamura A, Sumikura H, Ikeda K, Hayashida M. Effects of rs958804 and rs7858836 single-nucleotide polymorphisms of the ASTN2 gene on pain-related phenotypes in patients who underwent laparoscopic colectomy and mandibular sagittal split ramus osteotomy. Neuropsychopharmacol Rep 2021; 41:82-90. [PMID: 33476460 PMCID: PMC8182957 DOI: 10.1002/npr2.12159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/10/2023] Open
Abstract
Background Opioids are widely used as effective analgesics, but opioid sensitivity varies widely among individuals. The underlying genetic and nongenetic factors are not fully understood. Based on the results of our previous genome‐wide association study, we investigated the effects of single nucleotide polymorphisms (SNPs) of the astrotactin 2 (ASTN2) gene on pain‐related phenotypes in surgical patients. Methods We investigated the effects of two SNPs, rs958804 T/C and rs7858836 C/T, of the ASTN2 gene on eight and seven pain‐related phenotypes in 350 patients who underwent laparoscopic colectomy (LAC) and 358 patients who underwent mandibular sagittal split ramus osteotomy (SSRO), respectively. In both surgical groups, intravenous fentanyl patient‐controlled analgesia (PCA) was used for postoperative analgesia, and 24‐hour postoperative PCA fentanyl use was the primary endpoint. Results The association analyses among the two SNPs and pain‐related traits showed that 24‐hour fentanyl use was significantly associated with the two SNP genotypes in both surgical groups. The Mann‐Whitney test showed that 24‐hour fentanyl use was lower in patients with the C allele than in patients with the TT genotype of the rs958804 T/C SNP (P = .0019 and .0200 in LAC and SSRO patients, respectively), and it was lower in patients with the T allele than in patients with the CC genotype of the rs7858836 C/T SNP (P = .0017 and .0098 in LAC and SSRO patients, respectively). Conclusion The two SNPs of the ASTN2 gene were consistently associated with fentanyl requirements after two different types of surgery. These findings may contribute to personalized pain control. We investigated the effects of two SNPs, rs958804 T/C and rs7858836 C/T, which are located in the same LD block of the ASTN2 gene, on pain‐related phenotypes in two groups of patients who underwent laparoscopic colectomy and mandibular sagittal split ramus osteotomy. We found that these SNPs consistently reduced fentanyl requirements for postoperative analgesia, possibly by enhancing the analgesic effect of fentanyl.![]()
Collapse
Affiliation(s)
- Rie Inoue
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Nakayama
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ken-Ichi Fukuda
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | - Tsutomu Mieda
- Department of Anesthesiology, Saitama Medical University Hospital, Saitama, Japan
| | - Miki Tsujita
- Department of Anesthesiology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Hideyuki Nakagawa
- Department of Anesthesiology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Akira Kitamura
- Department of Anesthesiology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Hiroyuki Sumikura
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masakazu Hayashida
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Anesthesiology, Saitama Medical University International Medical Center, Saitama, Japan
| |
Collapse
|
4
|
Lara P, Tellgren-Roth Å, Behesti H, Horn Z, Schiller N, Enquist K, Cammenberg M, Liljenström A, Hatten ME, von Heijne G, Nilsson I. Murine astrotactins 1 and 2 have a similar membrane topology and mature via endoproteolytic cleavage catalyzed by a signal peptidase. J Biol Chem 2019; 294:4538-4545. [PMID: 30696770 PMCID: PMC6433051 DOI: 10.1074/jbc.ra118.007093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/09/2019] [Indexed: 11/06/2022] Open
Abstract
Astrotactin 1 (Astn1) and Astn2 are membrane proteins that function in glial-guided migration, receptor trafficking, and synaptic plasticity in the brain as well as in planar polarity pathways in the skin. Here we used glycosylation mapping and protease protection approaches to map the topologies of mouse Astn1 and Astn2 in rough microsomal membranes and found that Astn2 has a cleaved N-terminal signal peptide, an N-terminal domain located in the lumen of the rough microsomal membranes (topologically equivalent to the extracellular surface in cells), two transmembrane helices, and a large C-terminal lumenal domain. We also found that Astn1 has the same topology as Astn2, but we did not observe any evidence of signal peptide cleavage in Astn1. Both Astn1 and Astn2 mature through endoproteolytic cleavage in the second transmembrane helix; importantly, we identified the endoprotease responsible for the maturation of Astn1 and Astn2 as the endoplasmic reticulum signal peptidase. Differences in the degree of Astn1 and Astn2 maturation possibly contribute to the higher levels of the C-terminal domain of Astn1 detected on neuronal membranes of the central nervous system. These differences may also explain the distinct cellular functions of Astn1 and Astn2, such as in membrane adhesion, receptor trafficking, and planar polarity signaling.
Collapse
Affiliation(s)
- Patricia Lara
- From the Department of Biochemistry and Biophysics, Stockholm University 10691 Stockholm, Sweden and
| | - Åsa Tellgren-Roth
- From the Department of Biochemistry and Biophysics, Stockholm University 10691 Stockholm, Sweden and
| | - Hourinaz Behesti
- the Laboratory of Developmental Neurobiology, Rockefeller University, New York, New York 10065
| | - Zachi Horn
- the Laboratory of Developmental Neurobiology, Rockefeller University, New York, New York 10065
| | - Nina Schiller
- From the Department of Biochemistry and Biophysics, Stockholm University 10691 Stockholm, Sweden and
| | - Karl Enquist
- From the Department of Biochemistry and Biophysics, Stockholm University 10691 Stockholm, Sweden and
| | - Malin Cammenberg
- From the Department of Biochemistry and Biophysics, Stockholm University 10691 Stockholm, Sweden and
| | - Amanda Liljenström
- From the Department of Biochemistry and Biophysics, Stockholm University 10691 Stockholm, Sweden and
| | - Mary E. Hatten
- the Laboratory of Developmental Neurobiology, Rockefeller University, New York, New York 10065
| | - Gunnar von Heijne
- From the Department of Biochemistry and Biophysics, Stockholm University 10691 Stockholm, Sweden and , To whom correspondence may be addressed:
Dept. of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden. Tel.:
46-8-162590; E-mail:
| | - IngMarie Nilsson
- From the Department of Biochemistry and Biophysics, Stockholm University 10691 Stockholm, Sweden and , To whom correspondence may be addressed:
Dept. of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden. Tel.:
46-8-162590; E-mail:
| |
Collapse
|
5
|
Chang H. Cleave but not leave: Astrotactin proteins in development and disease. IUBMB Life 2017; 69:572-577. [PMID: 28517363 DOI: 10.1002/iub.1641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023]
Abstract
Over the years, animal studies have identified astrotactins as important membrane proteins for glial-guided neuronal migration during central nervous system development and hair follicle polarity control during skin development. Biochemical studies have revealed intramembrane proteolysis as an important feature of astrotactins. The two fragments of astrotactins remain linked together by a disulfide bond after the proteolytic cleavage. In humans, mutations in astrotactin genes have also been linked to a wide range of diseases, including several developmental brain disorders, neurodegenerative diseases and cancer. In this review, I will summarize the current knowledge of the biological function of astrotactins in development, highlight the linkage between mutations in astrotactin genes and human disease and discuss several outstanding questions that remain unanswered. © 2017 IUBMB Life, 69(8):572-577, 2017.
Collapse
Affiliation(s)
- Hao Chang
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Berkowicz SR, Giousoh A, Bird PI. Neurodevelopmental MACPFs: The vertebrate astrotactins and BRINPs. Semin Cell Dev Biol 2017; 72:171-181. [PMID: 28506896 DOI: 10.1016/j.semcdb.2017.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 04/27/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
Abstract
Astrotactins (ASTNs) and Bone morphogenetic protein/retinoic acid inducible neural-specific proteins (BRINPs) are two groups of Membrane Attack Complex/Perforin (MACPF) superfamily proteins that show overlapping expression in the developing and mature vertebrate nervous system. ASTN(1-2) and BRINP(1-3) genes are found at conserved loci in humans that have been implicated in neurodevelopmental disorders (NDDs). Here we review the tissue distribution and cellular localization of these proteins, and discuss recent studies that provide insight into their structure and interactions. We highlight the genetic relationships and co-expression of Brinps and Astns; and review recent knock-out mouse phenotypes that indicate a possible overlap in protein function between ASTNs and BRINPs.
Collapse
Affiliation(s)
- Susan R Berkowicz
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, 3800, Australia.
| | - Aminah Giousoh
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, 3800, Australia
| | - Phillip I Bird
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, 3800, Australia
| |
Collapse
|