1
|
Li A, Wang Y, Li R, Lin Y, Li Y, Wang Y, Liu W, Yan X. Neuron-derived neurotrophic factor promotes the differentiation of intramuscular and subcutaneous adipocytes in goat. Anim Biotechnol 2024; 35:2346223. [PMID: 38739480 DOI: 10.1080/10495398.2024.2346223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Adipocyte play an important role in human health and meat quality by influencing the tenderness, flavor, and juiciness of mutton It has been shown that neuron-derived neurotrophic factor (NENF) is closely related to energy metabolism and adipocyte differentiation in bovine. However, the role of NENF in the goats remains unclear. The aim of this study was to detect the expression of NENF in goat subcutaneous and intramuscular adipocytes, temporal expression profiles of the NENF, and overexpressed NENF on the differentiation of different adipocytes. In this study, PCR amplification successfully cloned the goat NENF gene with a fragment length of 521 bp. In addition, the time point of highest expression of NENF differed between these two adipocytes differentiation processes. Overexpression of NENF in intramuscular and subcutaneous adipocytes promoted the expression levels of differentiation markers CEBPβ and SREBP, which in turn promoted the differentiation of intramuscular and subcutaneous adipocytes. This study will provide basic data for further study of the role of goats in goat adipocyte differentiation and for the final elucidation of its molecular mechanisms in regulating goat adipocyte deposition.
Collapse
Affiliation(s)
- An Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Youli Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Ruiwen Li
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yaqiu Lin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Yanyan Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Wei Liu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Xiong Yan
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| |
Collapse
|
2
|
Wang P, Xiao H, Wu T, Fu Q, Song X, Zhao Y, Li Y, Huang J, Song Z. Activation of skeletal carbohydrate-response element binding protein (ChREBP)-mediated de novo lipogenesis increases intramuscular fat content in chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:107-118. [PMID: 39091296 PMCID: PMC11292260 DOI: 10.1016/j.aninu.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 08/04/2024]
Abstract
The intracellular lipids in muscle cells of farm animals play a crucial role in determining the overall intramuscular fat (IMF) content, which has a positive impact on meat quality. However, the mechanisms underlying the deposition of lipids in muscle cells of farm animals are not yet fully understood. The purpose of this study was to determine the roles of carbohydrate-response element binding protein (ChREBP) and fructose in IMF deposition of chickens. For virus-mediated ChREBP overexpression in tibialis anterior (TA) muscle of chickens, seven 5-d-old male yellow-feather chickens were used. At 10 d after virus injection, the chickens were slaughtered to obtain TA muscles for analysis. For fructose administration trial, sixty 9-wk-old male yellow-feather chickens were randomly divided into 2 groups, with 6 replicates per group and 5 chickens per replicate. The chickens were fed either a basal diet or a basal diet supplemented with 10% fructose (purity ≥ 99%). At 4 wk later, the chickens were slaughtered, and breast and thigh muscles were collected for analysis. The results showed that the skeletal ChREBP mRNA levels were positively associated with IMF content in multiple species, including the chickens, pigs, and mice (P < 0.05). ChREBP overexpression increased lipid accumulation in both muscle cells in vitro and the TA muscles of mice and chickens in vivo (P < 0.05), by activation of the de novo lipogenesis (DNL) pathway. Moreover, activation of ChREBP by dietary fructose administration also resulted in increased IMF content in mice and notably chickens (P < 0.05). Furthermore, the lipidomics analysis revealed that ChREBP activation altered the lipid composition of chicken IMF and tented to improve the flavor profile of the meat. In conclusion, this study found that ChREBP plays a pivotal role in mediating the deposition of fat in chicken muscles in response to fructose-rich diets, which provides a novel strategy for improving meat quality in the livestock industry.
Collapse
Affiliation(s)
- Peng Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Haihan Xiao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Tian Wu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Qinghua Fu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xudong Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yameng Zhao
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yan Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Jieping Huang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ziyi Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
3
|
Li Q, Hao Z, Xu H, Wang X. Investigation on the lipid-lowering effect and mechanism by combining turmeric with hawthorn in C57BL/6 obese mice. J Food Sci 2024; 89:4493-4504. [PMID: 38804852 DOI: 10.1111/1750-3841.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024]
Abstract
Study on the hypolipidemic effect of turmeric combined with hawthorn on C57BL/6 obese mice and its possible mechanism. C57 mice were fed with 60% high-fat diet for 8 weeks to establish an obesity model, and 4 mice were slaughtered to verify whether the modeling was successful. The successful mice were divided into model group (HFD), positive group (high fat feed group [HFD] + simvastatin group [SIM]), turmeric group (HFD + TUR), hawthorn group (HFD + HAW), and para-medicine group (HFD + para-drug group [DOU]) for 4 weeks by gavage intervention. Different intervention groups had certain lipid-lowering effects, and the para-medicine group showed significant differences (p < 0.05, p < 0.01, p < 0.001) in reducing serum total cholesterol, triglycerides, low-density lipoprotein cholesterol, glutamic acid transaminase (ALT), glutamic acid transaminase (AST), and increasing high-density lipoprotein cholesterol. In the para-medicine group, the protein expression of peroxisome proliferator-activated receptor γ, fatty acid synthase, platelet-reactive protein receptor 36, and CCAAT/enhancer binding protein α were significantly downregulated, and the protein expression of carnitine palmitoyl transferase1 and peroxisome proliferator-activated receptor α protein expression (p < 0.01, p < 0.001), thus suggesting that turmeric and hawthorn are superior to turmeric and hawthorn alone in enhancing lipid metabolism-related mechanisms. Combined effects of turmeric and hawthorn improve lipid metabolism in mice, protect the liver, and improve the protein expression of liver-related genes. This study can lay the theoretical basis for the future association of medicinal food products and the development of related weight loss products.
Collapse
Affiliation(s)
- Qiang Li
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Zongwei Hao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Huajian Xu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing, China
| | - Xueyan Wang
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Song Z, Xiaoli AM, Li Y, Siqin G, Wu T, Strich R, Pessin JE, Yang F. The conserved Mediator subunit cyclin C (CCNC) is required for brown adipocyte development and lipid accumulation. Mol Metab 2022; 64:101548. [PMID: 35863637 PMCID: PMC9386464 DOI: 10.1016/j.molmet.2022.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Cyclin C (CCNC) is the most conserved subunit of the Mediator complex, which is an important transcription cofactor. Recently, we have found that CCNC facilitates brown adipogenesis in vitro by activating C/EBPα-dependent transcription. However, the role of CCNC in brown adipose tissue (BAT) in vivo remains unclear. METHODS We generated conditional knock-out mice by crossing Ccncflox/flox mice with Myf5Cre, Ucp1Cre or AdipoqCre transgenic mice to investigate the role of CCNC in BAT development and function. We applied glucose and insulin tolerance test, cold exposure and indirect calorimetry to capture the physiological phenotypes and used immunostaining, immunoblotting, qRT-PCR, RNA-seq and cell culture to elucidate the underlying mechanisms. RESULTS Here, we show that deletion of CCNC in Myf5+ progenitor cells caused BAT paucity, despite the fact that there was significant neonatal lethality. Mechanistically different from in vitro, CCNC deficiency impaired the proliferation of embryonic brown fat progenitor cells without affecting brown adipogenesis or cell death. Interestingly, CCNC deficiency robustly reduced age-dependent lipid accumulation in differentiated brown adipocytes in all three mouse models. Mechanistically, CCNC in brown adipocytes is required for lipogenic gene expression through the activation of the C/EBPα/GLUT4/ChREBP axis. Consistent with the importance of de novo lipogenesis under carbohydrate-rich diets, high-fat diet (HFD) feeding abolished CCNC deficiency -caused defects of lipid accumulation in BAT. Although insulin sensitivity and response to acute cold exposure were not affected, CCNC deficiency in Ucp1+ cells enhanced the browning of white adipose tissue (beiging) upon prolonged cold exposure. CONCLUSIONS Together, these data indicate an important role of CCNC-Mediator in the regulation of BAT development and lipid accumulation in brown adipocytes.
Collapse
Affiliation(s)
- Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Norman Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Alus M Xiaoli
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Norman Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Youlei Li
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Norman Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gerile Siqin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Norman Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Tian Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Randy Strich
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08055, USA
| | - Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Norman Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Fajun Yang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Norman Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
5
|
Venigalla S, Straub J, Idigo O, Rinderle C, Stephens JM, Newman JJ. MED12 Regulates Human Adipose-Derived Stem Cell Adipogenesis and Mediator Kinase Subunit Expression in Murine Adipose Depots. Stem Cells Dev 2022; 31:119-131. [PMID: 35018809 PMCID: PMC9206493 DOI: 10.1089/scd.2021.0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mediator kinase module plays a critical role in the regulation of transcription during metabolic processes. Here we demonstrate that in human adipose-derived stem cells (hASCs), kinase module subunits have distinct mRNA and protein expression profiles during different stages of adipogenesis. In addition, siRNA-mediated loss of MED12 results in decreased adipogenesis as evident through decreased lipid accumulation and decreased expression of PPARγ, a master regulator of adipogenesis. Moreover, the decrease in adipogenesis and reduced PPARγ expression are observed only during the early stages of MED12 knockdown. At later stages, knockdown of MED12 did not have any significant effects on adipogenesis or PPARγ expression. We also observed that MED12 was present in a protein complex with PPARγ and C/EBPα during all stages of adipogenesis in hASCs. In 3T3-L1 preadipocytes and adipocytes, MED12 is present in protein complexes with PPARγ1, C/EBPα, and STAT5A. CDK8, another member of the kinase module, was only found to interact with C/EBPα. We found that the expression of all kinase module subunits decreased in inguinal, gonadal, and retroperitoneal white adipose tissue (WAT) depots in the fed state after an overnight fast, whereas the expression of kinase module subunits remained consistent in mesenteric WAT (mWAT) and brown adipose tissue. These data demonstrate that the kinase module undergoes physiologic regulation during fasting and feeding in specific mouse adipose tissue depots, and that MED12 likely plays a specific role in initiating and maintaining adipogenesis.
Collapse
Affiliation(s)
- Sree Venigalla
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Joseph Straub
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Onyekachi Idigo
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Caroline Rinderle
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | | | - Jamie J. Newman
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA.,Address correspondence to: Dr. Jamie J. Newman, School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
6
|
Chu XY, Zhang CC, Zhang RX, Zhang JF, Xia B, Wu JW. Identification of Dacinostat as a potential anti-obesity compound through transcriptional activation of adipose thermogenesis in mice. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166169. [PMID: 34000373 DOI: 10.1016/j.bbadis.2021.166169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Obesity is a worldwide health problem. Activating fat mobilization and reducing fat synthesis is a promising strategy to mitigate obesity and its complicated metabolic diseases. However, few clinically effective and safe agents conform to the strategy. In the present study, by screening the next-generation L1000-based CMAP small molecule library, we identify histone deacetylase inhibitor Dacinostat, which has been previously tested in clinical trials for patients with advanced solid tumors, as an anti-obesity candidate. Administration of Dacinostat prevents high-fat diet-induced obesity, insulin resistance, and fatty liver in mice without causing adverse effects. Dacinostat treatment enhances adipose thermogenesis as shown by elevated body temperature, accompanied with high mRNA expression of Ucp1 and Ppargc1α. Mechanistically, we show that the thermogenic effect of Dacinostat is achieved by acetylation of histone 3 lysine 27 mediated transcriptional activation of Ucp1 and Ppargc1α in adipose tissue. In conclusion, these findings suggest that Dacinostat is a potential anti-obesity compound through transcriptional activation of adipose thermogenesis.
Collapse
Affiliation(s)
- Xin Yi Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Cong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Xin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Feng Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Straub J, Venigalla S, Newman JJ. Mediator's Kinase Module: A Modular Regulator of Cell Fate. Stem Cells Dev 2020; 29:1535-1551. [PMID: 33161841 DOI: 10.1089/scd.2020.0164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Selective gene expression is crucial in maintaining the self-renewing and multipotent properties of stem cells. Mediator is a large, evolutionarily conserved, multi-subunit protein complex that modulates gene expression by relaying signals from cell type-specific transcription factors to RNA polymerase II. In humans, this complex consists of 30 subunits arranged in four modules. One critical module of the Mediator complex is the kinase module consisting of four subunits: MED12, MED13, CDK8, and CCNC. The kinase module exists in variable association with the 26-subunit Mediator core and affects transcription through phosphorylation of transcription factors and by controlling Mediator structure and function. Many studies have shown the kinase module to be a key player in the maintenance of stem cells that is distinct from a general role in transcription. Genetic studies have revealed that dysregulation of this kinase subunit contributes to the development of many human diseases. In this review, we discuss the importance of the Mediator kinase module by examining how this module functions with the more recently identified transcriptional super-enhancers, how changes in the kinase module and its activity can lead to the development of human disease, and the role of this unique module in directing and maintaining cell state. As we look to use stem cells to understand human development and treat human disease through both cell-based therapies and tissue engineering, we need to remain aware of the on-going research and address critical gaps in knowledge related to the molecular mechanisms that control cell fate.
Collapse
Affiliation(s)
- Joseph Straub
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Sree Venigalla
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| | - Jamie J Newman
- School of Biological Sciences, Louisiana Tech University, Ruston, Louisiana, USA
| |
Collapse
|
8
|
Martínez-Alonso D, Malumbres M. Mammalian cell cycle cyclins. Semin Cell Dev Biol 2020; 107:28-35. [PMID: 32334991 DOI: 10.1016/j.semcdb.2020.03.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Proper progression throughout the cell division cycle depends on the expression level of a family of proteins known as cyclins, and the subsequent activation of cyclin-dependent kinases (Cdks). Among the numerous members of the mammalian cyclin family, only a few of them, cyclins A, B, C, D and E, are known to display critical roles in the cell cycle. These functions will be reviewed here with a special focus on their relevance in different cell types in vivo and their implications in human disease.
Collapse
Affiliation(s)
- Diego Martínez-Alonso
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Spain.
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Spain.
| |
Collapse
|
9
|
Youn DY, Xiaoli AM, Kwon H, Yang F, Pessin JE. The subunit assembly state of the Mediator complex is nutrient-regulated and is dysregulated in a genetic model of insulin resistance and obesity. J Biol Chem 2019; 294:9076-9083. [PMID: 31028171 PMCID: PMC6556571 DOI: 10.1074/jbc.ra119.007850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/18/2019] [Indexed: 01/22/2023] Open
Abstract
The Mediator complex plays a critical role in the regulation of transcription by linking transcription factors to RNA polymerase II. By examining mouse livers, we have found that in the fasted state, the Mediator complex exists primarily as an approximately 1.2-MDa complex, consistent with the size of the large Mediator complex, whereas following feeding, it converts to an approximately 600-kDa complex, consistent with the size of the core Mediator complex. This dynamic change is due to the dissociation and degradation of the kinase module that includes the MED13, MED12, cyclin-dependent kinase 8 (CDK8), and cyclin C (CCNC) subunits. The dissociation and degradation of the kinase module are dependent upon nutrient activation of mTORC1 that is necessary for the induction of lipogenic gene expression because pharmacological or genetic inhibition of mTORC1 in the fed state restores the kinase module. The degradation but not dissociation of the kinase module depends upon the E3 ligase, SCFFBW7 In addition, genetically insulin-resistant and obese db/db mice in the fasted state displayed elevated lipogenic gene expression and loss of the kinase module that was reversed following mTORC1 inhibition. These data demonstrate that the assembly state of the Mediator complex undergoes physiologic regulation during normal cycles of fasting and feeding in the mouse liver. Furthermore, the assembly state of the Mediator complex is dysregulated in states of obesity and insulin resistance.
Collapse
Affiliation(s)
- Dou Yeon Youn
- From the Departments of Medicine
- Molecular Pharmacology and
| | - Alus M Xiaoli
- From the Departments of Medicine
- Developmental and Molecular Biology, and
| | - Hyokjoon Kwon
- the Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901
| | - Fajun Yang
- From the Departments of Medicine
- Developmental and Molecular Biology, and
- the Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Jeffrey E Pessin
- From the Departments of Medicine,
- Molecular Pharmacology and
- the Fleischer Institute of Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York 10461 and
| |
Collapse
|
10
|
Xiong Y, Yue F, Jia Z, Gao Y, Jin W, Hu K, Zhang Y, Zhu D, Yang G, Kuang S. A novel brown adipocyte-enriched long non-coding RNA that is required for brown adipocyte differentiation and sufficient to drive thermogenic gene program in white adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:409-419. [PMID: 29341928 DOI: 10.1016/j.bbalip.2018.01.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 01/08/2023]
Abstract
The thermogenic activities of brown and beige adipocytes can be exploited to reduce energy surplus and counteract obesity. Recent RNA sequencing studies have uncovered a number of long noncoding RNAs (lncRNAs) uniquely expressed in white and brown adipose tissues (WAT and BAT), but whether and how these lncRNAs function in adipogenesis remain largely unknown. Here, we report the identification of a novel brown adipocyte-enriched LncRNA (AK079912), and its nuclear localization, function and regulation. The expression of AK079912 increases during brown preadipocyte differentiation and in response to cold-stimulated browning of white adipocytes. Knockdown of AK079912 inhibits brown preadipocyte differentiation, manifested by reductions in lipid accumulation and down-regulation of adipogenic and BAT-specific genes. Conversely, ectopic expression of AK079912 in white preadipocytes up-regulates the expression of genes involved in thermogenesis. Mechanistically, inhibition of AK079912 reduces mitochondrial copy number and protein levels of mitochondria electron transport chain (ETC) complexes, whereas AK079912 overexpression increases the levels of ETC proteins. Lastly, reporter and pharmacological assays identify Pparγ as an upstream regulator of AK079912. These results provide new insights into the function of non-coding RNAs in brown adipogenesis and regulating browning of white adipocytes.
Collapse
Affiliation(s)
- Yan Xiong
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zhihao Jia
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Yun Gao
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wen Jin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Keping Hu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Yong Zhang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Dahai Zhu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Ranjan A, Ansari SA. Therapeutic potential of Mediator complex subunits in metabolic diseases. Biochimie 2017; 144:41-49. [PMID: 29061530 DOI: 10.1016/j.biochi.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/16/2017] [Indexed: 01/16/2023]
Abstract
The multisubunit Mediator is an evolutionary conserved transcriptional coregulatory complex in eukaryotes. It is needed for the transcriptional regulation of gene expression in general as well as in a gene specific manner. Mediator complex subunits interact with different transcription factors as well as components of RNA Pol II transcription initiation complex and in doing so act as a bridge between gene specific transcription factors and general Pol II transcription machinery. Specific interaction of various Mediator subunits with nuclear receptors (NRs) and other transcription factors involved in metabolism has been reported in different studies. Evidences indicate that ligand-activated NRs recruit Mediator complex for RNA Pol II-dependent gene transcription. These NRs have been explored as therapeutic targets in different metabolic diseases; however, they show side-effects as targets due to their overlapping involvement in different signaling pathways. Here we discuss the interaction of various Mediator subunits with transcription factors involved in metabolism and whether specific interaction of these transcription factors with Mediator subunits could be potentially utilized as therapeutic strategy in a variety of metabolic diseases.
Collapse
Affiliation(s)
- Amol Ranjan
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, MO, 64110, USA
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, UAE University, AlAin, Abu Dhabi, United Arab Emirates.
| |
Collapse
|