1
|
Greisman JB, Dalton KM, Brookner DE, Klureza MA, Sheehan CJ, Kim IS, Henning RW, Russi S, Hekstra DR. Perturbative diffraction methods resolve a conformational switch that facilitates a two-step enzymatic mechanism. Proc Natl Acad Sci U S A 2024; 121:e2313192121. [PMID: 38386706 PMCID: PMC10907320 DOI: 10.1073/pnas.2313192121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/18/2023] [Indexed: 02/24/2024] Open
Abstract
Enzymes catalyze biochemical reactions through precise positioning of substrates, cofactors, and amino acids to modulate the transition-state free energy. However, the role of conformational dynamics remains poorly understood due to poor experimental access. This shortcoming is evident with Escherichia coli dihydrofolate reductase (DHFR), a model system for the role of protein dynamics in catalysis, for which it is unknown how the enzyme regulates the different active site environments required to facilitate proton and hydride transfer. Here, we describe ligand-, temperature-, and electric-field-based perturbations during X-ray diffraction experiments to map the conformational dynamics of the Michaelis complex of DHFR. We resolve coupled global and local motions and find that these motions are engaged by the protonated substrate to promote efficient catalysis. This result suggests a fundamental design principle for multistep enzymes in which pre-existing dynamics enable intermediates to drive rapid electrostatic reorganization to facilitate subsequent chemical steps.
Collapse
Affiliation(s)
- Jack B. Greisman
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA02138
| | - Kevin M. Dalton
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA02138
| | - Dennis E. Brookner
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA02138
| | - Margaret A. Klureza
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA02138
| | - Candice J. Sheehan
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA02138
| | - In-Sik Kim
- BioCARS, Argonne National Laboratory, The University of Chicago, Lemont, IL60439
| | - Robert W. Henning
- BioCARS, Argonne National Laboratory, The University of Chicago, Lemont, IL60439
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA94025
| | - Doeke R. Hekstra
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA02138
- School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
| |
Collapse
|
2
|
Smith N, Horswill AR, Wilson MA. X-ray-driven chemistry and conformational heterogeneity in atomic resolution crystal structures of bacterial dihydrofolate reductases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566054. [PMID: 37986818 PMCID: PMC10659368 DOI: 10.1101/2023.11.07.566054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate to tetrahydrofolate. Bacterial DHFRs are targets of several important antibiotics as well as model enzymes for the role of protein conformational dynamics in enzyme catalysis. We collected 0.93 Å resolution X-ray diffraction data from both Bacillus subtilis (Bs) and E. coli (Ec) DHFRs bound to folate and NADP+. These oxidized ternary complexes should not be able to perform chemistry, however electron density maps suggest hydride transfer is occurring in both enzymes. Comparison of low- and high-dose EcDHFR datasets show that X-rays drive partial production of tetrahydrofolate. Hydride transfer causes the nicotinamide moiety of NADP+ to move towards the folate as well as correlated shifts in nearby residues. Higher radiation dose also changes the conformational heterogeneity of Met20 in EcDHFR, supporting a solvent gating role during catalysis. BsDHFR has a different pattern of conformational heterogeneity and an unexpected disulfide bond, illustrating important differences between bacterial DHFRs. This work demonstrates that X-rays can drive hydride transfer similar to the native DHFR reaction and that X-ray photoreduction can be used to interrogate catalytically relevant enzyme dynamics in favorable cases.
Collapse
Affiliation(s)
- Nathan Smith
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Alexander R. Horswill
- Department of Immunology & Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO 80045
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| |
Collapse
|
3
|
Greisman JB, Dalton KM, Brookner DE, Klureza MA, Sheehan CJ, Kim IS, Henning RW, Russi S, Hekstra DR. Resolving conformational changes that mediate a two-step catalytic mechanism in a model enzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543507. [PMID: 37398233 PMCID: PMC10312612 DOI: 10.1101/2023.06.02.543507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Enzymes catalyze biochemical reactions through precise positioning of substrates, cofactors, and amino acids to modulate the transition-state free energy. However, the role of conformational dynamics remains poorly understood due to lack of experimental access. This shortcoming is evident with E. coli dihydrofolate reductase (DHFR), a model system for the role of protein dynamics in catalysis, for which it is unknown how the enzyme regulates the different active site environments required to facilitate proton and hydride transfer. Here, we present ligand-, temperature-, and electric-field-based perturbations during X-ray diffraction experiments that enable identification of coupled conformational changes in DHFR. We identify a global hinge motion and local networks of structural rearrangements that are engaged by substrate protonation to regulate solvent access and promote efficient catalysis. The resulting mechanism shows that DHFR's two-step catalytic mechanism is guided by a dynamic free energy landscape responsive to the state of the substrate.
Collapse
Affiliation(s)
- Jack B. Greisman
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Kevin M. Dalton
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Dennis E. Brookner
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Margaret A. Klureza
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Candice J. Sheehan
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, United States
| | - In-Sik Kim
- BioCARS, The University of Chicago, Argonne National Laboratory, Lemont, IL, United States
| | - Robert W. Henning
- BioCARS, The University of Chicago, Argonne National Laboratory, Lemont, IL, United States
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, United States
| | - Doeke R. Hekstra
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, United States
- School of Engineering & Applied Sciences, Harvard University, Allston, MA, United States
| |
Collapse
|
4
|
Insights into Molecular Structure of Pterins Suitable for Biomedical Applications. Int J Mol Sci 2022; 23:ijms232315222. [PMID: 36499560 PMCID: PMC9737128 DOI: 10.3390/ijms232315222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Pterins are an inseparable part of living organisms. Pterins participate in metabolic reactions mostly as tetrahydropterins. Dihydropterins are usually intermediates of these reactions, whereas oxidized pterins can be biomarkers of diseases. In this review, we analyze the available data on the quantum chemistry of unconjugated pterins as well as their photonics. This gives a comprehensive overview about the electronic structure of pterins and offers some benefits for biomedicine applications: (1) one can affect the enzymatic reactions of aromatic amino acid hydroxylases, NO synthases, and alkylglycerol monooxygenase through UV irradiation of H4pterins since UV provokes electron donor reactions of H4pterins; (2) the emission properties of H2pterins and oxidized pterins can be used in fluorescence diagnostics; (3) two-photon absorption (TPA) should be used in such pterin-related infrared therapy because single-photon absorption in the UV range is inefficient and scatters in vivo; (4) one can affect pathogen organisms through TPA excitation of H4pterin cofactors, such as the molybdenum cofactor, leading to its detachment from proteins and subsequent oxidation; (5) metal nanostructures can be used for the UV-vis, fluorescence, and Raman spectroscopy detection of pterin biomarkers. Therefore, we investigated both the biochemistry and physical chemistry of pterins and suggested some potential prospects for pterin-related biomedicine.
Collapse
|
5
|
Bhagat K, Kumar N, Kaur Gulati H, Sharma A, Kaur A, Singh JV, Singh H, Bedi PMS. Dihydrofolate reductase inhibitors: patent landscape and phases of clinical development (2001-2021). Expert Opin Ther Pat 2022; 32:1079-1095. [PMID: 36189616 DOI: 10.1080/13543776.2022.2130752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Dihydrofolate reductase (DHFR) plays an important role in the biosynthesis of amino acid and folic acid. It participates by reducing dihydrofolate to tetrahydrofolate, in the presence of nicotinamide dinucleotide phosphate cofactor, and has been verified by various clinical studies to use DHFR as a target for the treatment of cancer and various bacterial infections. AREA COVERED In this review, we have disclosed patents of synthetics and natural DHFR inhibitors with diaminopyrimidine and quinazoline nucleus from 2001. Additionally, this review highlights the clinical progression of numerous DHFR inhibitors received from the last five years. EXPERT OPINION From 2001 to 2021, numerous active chemical scaffolds have been introduced and are exposed as lead candidates that have entered clinical trials as potent DHFR inhibitors. Moreover, researchers have paid considerable attention to the development of a new class of DHFR inhibitors with higher selectivity and potency. This development includes synthesis of synthetic as well as natural compounds that are potent DHFR inhibitors. On the basis of literature review, we can anticipate that there are a huge number of novel active molecules available for the future that could possess superior abilities to target this enzyme with a profound pharmacological profile.
Collapse
Affiliation(s)
- Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India.,Department of Pharmaceutical Sciences, Khalsa College of Pharmacy, Amritsar, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | | | - Aanchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Amandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
6
|
Wan Q, Bennett BC, Wymore T, Li Z, Wilson MA, Brooks CL, Langan P, Kovalevsky A, Dealwis CG. Capturing the Catalytic Proton of Dihydrofolate Reductase: Implications for General Acid-Base Catalysis. ACS Catal 2021; 11:5873-5884. [PMID: 34055457 PMCID: PMC8154319 DOI: 10.1021/acscatal.1c00417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/19/2021] [Indexed: 02/04/2023]
Abstract
![]()
Acid–base
catalysis, which involves one or more proton transfer
reactions, is a chemical mechanism commonly employed by many enzymes.
The molecular basis for catalysis is often derived from structures
determined at the optimal pH for enzyme activity. However, direct
observation of protons from experimental structures is quite difficult;
thus, a complete mechanistic description for most enzymes remains
lacking. Dihydrofolate reductase (DHFR) exemplifies general acid–base
catalysis, requiring hydride transfer and protonation of its substrate,
DHF, to form the product, tetrahydrofolate (THF). Previous X-ray and
neutron crystal structures coupled with theoretical calculations have
proposed that solvent mediates the protonation step. However, visualization
of a proton transfer has been elusive. Based on a 2.1 Å resolution
neutron structure of a pseudo-Michaelis complex of E. coli DHFR determined at acidic pH, we report the
direct observation of the catalytic proton and its parent solvent
molecule. Comparison of X-ray and neutron structures elucidated at
acidic and neutral pH reveals dampened dynamics at acidic pH, even
for the regulatory Met20 loop. Guided by the structures and calculations,
we propose a mechanism where dynamics are crucial for solvent entry
and protonation of substrate. This mechanism invokes the release of
a sole proton from a hydronium (H3O+) ion, its
pathway through a narrow channel that sterically hinders the passage
of water, and the ultimate protonation of DHF at the N5 atom.
Collapse
Affiliation(s)
| | - Brad C. Bennett
- Biological and Environmental Science Department, Samford University, Birmingham, Alabama 35229, United States
| | - Troy Wymore
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul Langan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | |
Collapse
|
7
|
Mhashal AR, Major DT. Temperature-Dependent Kinetic Isotope Effects in R67 Dihydrofolate Reductase from Path-Integral Simulations. J Phys Chem B 2021; 125:1369-1377. [PMID: 33522797 PMCID: PMC7883348 DOI: 10.1021/acs.jpcb.0c10318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/05/2021] [Indexed: 11/28/2022]
Abstract
Calculation of temperature-dependent kinetic isotope effects (KIE) in enzymes presents a significant theoretical challenge. Additionally, it is not trivial to identify enzymes with available experimental accurate intrinsic KIEs in a range of temperatures. In the current work, we present a theoretical study of KIEs in the primitive R67 dihydrofolate reductase (DHFR) enzyme and compare with experimental work. The advantage of R67 DHFR is its significantly lower kinetic complexity compared to more evolved DHFR isoforms. We employ mass-perturbation-based path-integral simulations in conjunction with umbrella sampling and a hybrid quantum mechanics-molecular mechanics Hamiltonian. We obtain temperature-dependent KIEs in good agreement with experiments and ascribe the temperature-dependent KIEs primarily to zero-point energy effects. The active site in the primitive enzyme is found to be poorly preorganized, which allows excessive water access to the active site and results in loosely bound reacting ligands.
Collapse
Affiliation(s)
- Anil R. Mhashal
- Department of Chemistry and Institute
for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and Institute
for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
8
|
Eck T, Patel S, Candela T, Leon H K, Little M, Reis NE, Liyanagunawardana U, Gubler U, Janson CA, Catalano J, Goodey NM. Mutational analysis confirms the presence of distal inhibitor-selectivity determining residues in B. stearothermophilus dihydrofolate reductase. Arch Biochem Biophys 2020; 692:108545. [PMID: 32810476 PMCID: PMC10727455 DOI: 10.1016/j.abb.2020.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 11/20/2022]
Abstract
Many antibacterial and antiparasitic drugs work by competitively inhibiting dihydrofolate reductase (DHFR), a vital enzyme in folate metabolism. The interactions between inhibitors and DHFR active site residues are known in many homologs but the contributions from distal residues are less understood. Identifying distal residues that aid in inhibitor binding can improve targeted drug development programs by accounting for distant influences that may be less conserved and subject to frequent resistance causing mutations. Previously, a novel, homology-based, computational approach that mines ligand inhibition data was used to predict residues involved in inhibitor selectivity in the DHFR family. Expectedly, some inhibitor selectivity determining residue positions were predicted to lie in the active site and coincide with experimentally known inhibitor selectivity determining positions. However, other residues that group spatially in clusters distal to the active site have not been previously investigated. In this study, the effect of introducing amino acid substitutions at one of these predicted clusters (His38-Ala39-Ile40) on the inhibitor selectivity profile in Bacillus stearothermophilus dihydrofolate reductase (Bs DHFR) was investigated. Mutations were introduced into these cluster positions to change sidechain chemistry and size. We determined kcat and KM values and measured KD values at equilibrium for two competitive DHFR inhibitors, trimethoprim (TMP) and pyrimethamine (PYR). Mutations in the His38-Ala39-Ile40 cluster significantly impacted inhibitor binding and TMP/PYR selectivity - seven out of nine mutations resulted in tighter binding to PYR when compared to TMP. These data suggest that the His38-Ala39-Ile40 cluster is a distal inhibitor selectivity determining region that favors PYR binding in Bs DHFR and, possibly, throughout the DHFR family.
Collapse
Affiliation(s)
- Tyler Eck
- Dept. of Chemistry & Biochemistry, Montclair State University, Montclair, NJ, 07043, USA
| | - Seema Patel
- Dept. of Chemistry & Biochemistry, Montclair State University, Montclair, NJ, 07043, USA
| | - Thomas Candela
- Dept. of Chemistry & Biochemistry, Montclair State University, Montclair, NJ, 07043, USA
| | - Katherine Leon H
- Dept. of Chemistry & Biochemistry, Montclair State University, Montclair, NJ, 07043, USA
| | - Michael Little
- Dept. of Chemistry & Biochemistry, Montclair State University, Montclair, NJ, 07043, USA
| | - Natalia E Reis
- Dept. of Chemistry & Biochemistry, Montclair State University, Montclair, NJ, 07043, USA
| | | | - Ueli Gubler
- Dept. of Chemistry & Biochemistry, Montclair State University, Montclair, NJ, 07043, USA
| | - Cheryl A Janson
- Dept. of Chemistry & Biochemistry, Montclair State University, Montclair, NJ, 07043, USA
| | - Jaclyn Catalano
- Dept. of Chemistry & Biochemistry, Montclair State University, Montclair, NJ, 07043, USA
| | - Nina M Goodey
- Dept. of Chemistry & Biochemistry, Montclair State University, Montclair, NJ, 07043, USA.
| |
Collapse
|
9
|
Site-Specific Tryptophan Labels Reveal Local Microsecond-Millisecond Motions of Dihydrofolate Reductase. Molecules 2020; 25:molecules25173819. [PMID: 32842574 PMCID: PMC7503464 DOI: 10.3390/molecules25173819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
Many enzymes are known to change conformations during their catalytic cycle, but the role of these protein motions is not well understood. Escherichia coli dihydrofolate reductase (DHFR) is a small, flexible enzyme that is often used as a model system for understanding enzyme dynamics. Recently, native tryptophan fluorescence was used as a probe to study micro- to millisecond dynamics of DHFR. Yet, because DHFR has five native tryptophans, the origin of the observed conformational changes could not be assigned to a specific region within the enzyme. Here, we use DHFR mutants, each with a single tryptophan as a probe for temperature jump fluorescence spectroscopy, to further inform our understanding of DHFR dynamics. The equilibrium tryptophan fluorescence of the mutants shows that each tryptophan is in a different environment and that wild-type DHFR fluorescence is not a simple summation of all the individual tryptophan fluorescence signatures due to tryptophan–tryptophan interactions. Additionally, each mutant exhibits a two-phase relaxation profile corresponding to ligand association/dissociation convolved with associated conformational changes and a slow conformational change that is independent of ligand association and dissociation, similar to the wild-type enzyme. However, the relaxation rate of the slow phase depends on the location of the tryptophan within the enzyme, supporting the conclusion that the individual tryptophan fluorescence dynamics do not originate from a single collective motion, but instead report on local motions throughout the enzyme.
Collapse
|
10
|
Zheng H, Zheng YC, Cui Y, Zhu JJ, Zhong JY. Study on effects of co-solvents on the structure of DhaA by molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:5999-6007. [PMID: 32696722 DOI: 10.1080/07391102.2020.1796801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
With the increasing application of enzymes in various research fields, the choices of co-solvents in enzymatic preparations which directly related to the catalytic activity have been attracted attention. Thus, researching on the stabilization or destabilization behaviors of enzymes in different solvents is extremely essential. In this study, the structural changes of DhaA in two typical aprotic co-solvents (acetonitrile and tetrahydrofuran) were firstly investigated by molecular dynamics (MD) simulation. The simulation results revealed the strong van der Waals force between co-solvents and DhaA which could induce the structural change of enzyme. Interestingly, the differences of molecular size and the electrostatic force with enzyme of two co-solvents led to quite different influences on DhaA. As for acetonitrile, solvent molecules could penetrate into the catalytic site of DhaA which promoted by the electrostatic interaction. On the contrary, tetrahydrofuran molecules were mainly distributed around the catalytic site due to the relative weak electrostatic interaction and steric resistance effect. It can be concluded that different co-solvent can affect the key domains, substrate pathway and catalytic pocket of DhaA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- He Zheng
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Yong-Chao Zheng
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Yan Cui
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Jian-Jun Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| | - Jin-Yi Zhong
- State Key Laboratory of NBC Protection for Civilian, Beijing, China
| |
Collapse
|
11
|
Maffucci I, Laage D, Sterpone F, Stirnemann G. Thermal Adaptation of Enzymes: Impacts of Conformational Shifts on Catalytic Activation Energy and Optimum Temperature. Chemistry 2020; 26:10045-10056. [DOI: 10.1002/chem.202001973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Irene Maffucci
- PASTEUR, Département de chimie École Normale Supérieure, PSL University Sorbonne Université, CNRS 24 rue Lhomond 75005 Paris France
- CNRS Laboratoire de Biochimie Théorique Institut de Biologie Physico-Chimique PSL University, Université de Paris 13 rue Pierre et Marie Curie 75005 Paris France
- Present address: Centre de recherche Royallieu Université de Technologie de Compiègne, UPJV CNRS, Enzyme and Cell Engineering CS 60319-60203 Compiègne Cedex France
| | - Damien Laage
- PASTEUR, Département de chimie École Normale Supérieure, PSL University Sorbonne Université, CNRS 24 rue Lhomond 75005 Paris France
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie Théorique Institut de Biologie Physico-Chimique PSL University, Université de Paris 13 rue Pierre et Marie Curie 75005 Paris France
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique Institut de Biologie Physico-Chimique PSL University, Université de Paris 13 rue Pierre et Marie Curie 75005 Paris France
| |
Collapse
|
12
|
Adesina AS, Świderek K, Luk LYP, Moliner V, Allemann RK. Electric Field Measurements Reveal the Pivotal Role of Cofactor-Substrate Interaction in Dihydrofolate Reductase Catalysis. ACS Catal 2020; 10:7907-7914. [PMID: 32905264 PMCID: PMC7467645 DOI: 10.1021/acscatal.0c01856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/18/2020] [Indexed: 12/31/2022]
Abstract
![]()
The
contribution of ligand–ligand electrostatic interaction
to transition state formation during enzyme catalysis has remained
unexplored, even though electrostatic forces are known to play a major
role in protein functions and have been investigated by the vibrational
Stark effect (VSE). To monitor electrostatic changes along important
steps during catalysis, we used a nitrile probe (T46C-CN) inserted
proximal to the reaction center of three dihydrofolate reductases
(DHFRs) with different biophysical properties, Escherichia
coli DHFR (EcDHFR), its conformationally impaired variant
(EcDHFR-S148P), and Geobacillus stearothermophilus DHFR (BsDHFR). Our combined experimental and computational approach
revealed that the electric field projected by the substrate toward
the probe negates those exerted by the cofactor when both are bound
within the enzymes. This indicates that compared to previous models
that focus exclusively on subdomain reorganization and protein–ligand
contacts, ligand–ligand interactions are the key driving force
to generate electrostatic environments conducive for catalysis.
Collapse
Affiliation(s)
- Aduragbemi S. Adesina
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Katarzyna Świderek
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Louis Y. P. Luk
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Rudolf K. Allemann
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
13
|
Allostery and Epistasis: Emergent Properties of Anisotropic Networks. ENTROPY 2020; 22:e22060667. [PMID: 33286439 PMCID: PMC7517209 DOI: 10.3390/e22060667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/02/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022]
Abstract
Understanding the underlying mechanisms behind protein allostery and non-additivity of substitution outcomes (i.e., epistasis) is critical when attempting to predict the functional impact of mutations, particularly at non-conserved sites. In an effort to model these two biological properties, we extend the framework of our metric to calculate dynamic coupling between residues, the Dynamic Coupling Index (DCI) to two new metrics: (i) EpiScore, which quantifies the difference between the residue fluctuation response of a functional site when two other positions are perturbed with random Brownian kicks simultaneously versus individually to capture the degree of cooperativity of these two other positions in modulating the dynamics of the functional site and (ii) DCIasym, which measures the degree of asymmetry between the residue fluctuation response of two sites when one or the other is perturbed with a random force. Applied to four independent systems, we successfully show that EpiScore and DCIasym can capture important biophysical properties in dual mutant substitution outcomes. We propose that allosteric regulation and the mechanisms underlying non-additive amino acid substitution outcomes (i.e., epistasis) can be understood as emergent properties of an anisotropic network of interactions where the inclusion of the full network of interactions is critical for accurate modeling. Consequently, mutations which drive towards a new function may require a fine balance between functional site asymmetry and strength of dynamic coupling with the functional sites. These two tools will provide mechanistic insight into both understanding and predicting the outcome of dual mutations.
Collapse
|
14
|
Babu CS, Lim C. Sensitivity of Functional Loop Conformations on Long-Range Electrostatics: Implications for M20 Loop Dynamics in E. coli Dihydrofolate Reductase. J Chem Theory Comput 2020; 16:2028-2033. [PMID: 32192329 DOI: 10.1021/acs.jctc.9b01285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In E. coli dihydrofolate reductase, unusual conformational motions of a functional M20 loop that interacts with substrate and coenzyme have been construed as evidence for dynamical effects in enzyme catalysis. By computing this loop's conformational free energies in the apoenzyme, we show that it is sensitive to the treatment of long-range electrostatic interactions and the solvation box size in modeling/simulations. These results provide important guidelines for computing reaction/binding free energy profiles of proteins with functional loops.
Collapse
Affiliation(s)
- C Satheesan Babu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
15
|
Maffucci I, Laage D, Stirnemann G, Sterpone F. Differences in thermal structural changes and melting between mesophilic and thermophilic dihydrofolate reductase enzymes. Phys Chem Chem Phys 2020; 22:18361-18373. [DOI: 10.1039/d0cp02738c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The thermal resistance of two homolog enzymes is investigated, with an emphasis on their local stability and flexibility, and on the possible implications regarding their reactivity.
Collapse
Affiliation(s)
- Irene Maffucci
- CNRS Laboratoire de Biochimie Théorique
- Institut de Biologie Physico-Chimique
- PSL University
- Paris
- France
| | - Damien Laage
- PASTEUR
- Département de chimie
- École Normale Supérieure
- PSL University
- Sorbonne Université
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique
- Institut de Biologie Physico-Chimique
- PSL University
- Paris
- France
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie Théorique
- Institut de Biologie Physico-Chimique
- PSL University
- Paris
- France
| |
Collapse
|
16
|
Ruiz-Pernía JJ, Tuñón I, Moliner V, Allemann RK. Why are some Enzymes Dimers? Flexibility and Catalysis in Thermotoga Maritima Dihydrofolate Reductase. ACS Catal 2019; 9:5902-5911. [PMID: 31289693 PMCID: PMC6614790 DOI: 10.1021/acscatal.9b01250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Dihydrofolate
reductase from Thermotoga maritima (TmDFHFR) is a
dimeric thermophilic enzyme that catalyzes the hydride
transfer from the cofactor NADPH to dihydrofolate less efficiently
than other DHFR enzymes, such as the mesophilic analogue Escherichia
coli DHFR (EcDHFR). Using QM/MM potentials, we show that
the reduced catalytic efficiency of TmDHFR is most likely due to differences
in the amino acid sequence that stabilize the M20 loop in an open
conformation, which prevents the formation of some interactions in
the transition state and increases the number of water molecules in
the active site. However, dimerization provides two advantages to
the thermophilic enzyme: it protects its structure against denaturation
by reducing thermal fluctuations and it provides a less negative activation
entropy, toning down the increase of the activation free energy with
temperature. Our molecular picture is confirmed by the analysis of
the temperature dependence of enzyme kinetic isotope effects in different
DHFR enzymes.
Collapse
Affiliation(s)
- J. Javier Ruiz-Pernía
- Departamento de Química Física, Universitat de Valencia, 46100 Burjassot, Valencia, Spain
| | - Iñaki Tuñón
- Departamento de Química Física, Universitat de Valencia, 46100 Burjassot, Valencia, Spain
| | - Vicent Moliner
- Departamento de Química Física y Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Rudolf K. Allemann
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
17
|
DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents. Molecules 2019; 24:molecules24061140. [PMID: 30909399 PMCID: PMC6471984 DOI: 10.3390/molecules24061140] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022] Open
Abstract
Dihydrofolate reductase inhibitors are an important class of drugs, as evidenced by their use as antibacterial, antimalarial, antifungal, and anticancer agents. Progress in understanding the biochemical basis of mechanisms responsible for enzyme selectivity and antiproliferative effects has renewed the interest in antifolates for cancer chemotherapy and prompted the medicinal chemistry community to develop novel and selective human DHFR inhibitors, thus leading to a new generation of DHFR inhibitors. This work summarizes the mechanism of action, chemical, and anticancer profile of the DHFR inhibitors discovered in the last six years. New strategies in DHFR drug discovery are also provided, in order to thoroughly delineate the current landscape for medicinal chemists interested in furthering this study in the anticancer field.
Collapse
|
18
|
The crystal structure of a tetrahydrofolate-bound dihydrofolate reductase reveals the origin of slow product release. Commun Biol 2018; 1:226. [PMID: 30564747 PMCID: PMC6290769 DOI: 10.1038/s42003-018-0236-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/15/2018] [Indexed: 12/02/2022] Open
Abstract
Dihydrofolate reductase (DHFR) catalyzes the stereospecific reduction of 7,8-dihydrofolate (FH2) to (6s)-5,6,7,8-tetrahydrofolate (FH4) via hydride transfer from NADPH. The consensus Escherichia coli DHFR mechanism involves conformational changes between closed and occluded states occurring during the rate-limiting product release step. Although the Protein Data Bank (PDB) contains over 250 DHFR structures, the FH4 complex structure responsible for rate-limiting product release is unknown. We report to our knowledge the first crystal structure of an E. coli. DHFR:FH4 complex at 1.03 Å resolution showing distinct stabilizing interactions absent in FH2 or related (6R)-5,10-dideaza-FH4 complexes. We discover the time course of decay of the co-purified endogenous FH4 during crystal growth, with conversion from FH4 to FH2 occurring in 2–3 days. We also determine another occluded complex structure of E. coli DHFR with a slow-onset nanomolar inhibitor that contrasts with the methotrexate complex, suggesting a plausible strategy for designing DHFR antibiotics by targeting FH4 product conformations. Hongnan Cao et al. present the X-ray crystal structure of E. coli dihydrofolate reductase (DHFR) in complex with its reduced substrate, (6s)-5,6,7,8-tetrahydrofolate (FH4). This structure provides the first glimpse of the rate-limiting product release step of the DHFR mechanism and suggests a strategy for designing DHFR-targeting antibiotics.
Collapse
|
19
|
Mhashal AR, Pshetitsky Y, Cheatum CM, Kohen A, Major DT. Evolutionary Effects on Bound Substrate pKa in Dihydrofolate Reductase. J Am Chem Soc 2018; 140:16650-16660. [DOI: 10.1021/jacs.8b09089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anil R. Mhashal
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yaron Pshetitsky
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
20
|
Nagae T, Yamada H, Watanabe N. High-pressure protein crystal structure analysis of Escherichia coli dihydrofolate reductase complexed with folate and NADP . Acta Crystallogr D Struct Biol 2018; 74:895-905. [PMID: 30198899 PMCID: PMC6130465 DOI: 10.1107/s2059798318009397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/29/2018] [Indexed: 11/10/2022] Open
Abstract
A high-pressure crystallographic study was conducted on Escherichia coli dihydrofolate reductase (ecDHFR) complexed with folate and NADP+ in crystal forms containing both the open and closed conformations of the M20 loop under high-pressure conditions of up to 800 MPa. At pressures between 270 and 500 MPa the crystal form containing the open conformation exhibited a phase transition from P21 to C2. Several structural changes in ecDHFR were observed at high pressure that were also accompanied by structural changes in the NADP+ cofactor and the hydration structure. In the crystal form with the closed conformation the M20 loop moved as the pressure changed, with accompanying conformational changes around the active site, including NADP+ and folate. These movements were consistent with the suggested hypothesis that movement of the M20 loop was necessary for ecDHFR to catalyze the reaction. In the crystal form with the open conformation the nicotinamide ring of the NADP+ cofactor undergoes a large flip as an intermediate step in the reaction, despite being in a crystalline state. Furthermore, observation of the water molecules between Arg57 and folate elucidated an early step in the substrate-binding pathway. These results demonstrate the possibility of using high-pressure protein crystallography as a method to capture high-energy substates or transient structures related to the protein reaction cycle.
Collapse
Affiliation(s)
- Takayuki Nagae
- Synchrotron Radiation Research Center, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Hiroyuki Yamada
- Venture Business Laboratory, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Nobuhisa Watanabe
- Synchrotron Radiation Research Center, Nagoya University, Chikusa, Nagoya 464-8603, Japan
- Venture Business Laboratory, Nagoya University, Chikusa, Nagoya 464-8603, Japan
- Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
21
|
Mhashal AR, Pshetitsky Y, Eitan R, Cheatum CM, Kohen A, Major DT. Effect of Asp122 Mutation on the Hydride Transfer in E. coli DHFR Demonstrates the Goldilocks of Enzyme Flexibility. J Phys Chem B 2018; 122:8006-8017. [PMID: 30040418 DOI: 10.1021/acs.jpcb.8b05556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate (THF) in the presence of NADPH. The key hydride transfer step in the reaction is facilitated by a combination of enzyme active site preorganization and correlated protein motions in the Michaelis-Menten (E:NADPH:DHF) complex. The present theoretical study employs mutagenesis to examine the relation between structural and functional properties of the enzyme. We mutate Asp122 in Escherichia coli DHFR, which is a conserved amino acid in the DHFR family. The consequent effect of the mutation on enzyme catalysis is examined from an energetic, structural and short-time dynamic perspective. Our investigations suggest that the structural and short-time dynamic perturbations caused by Asp122X mutations (X = Asn, Ser, Ala) are along the reaction coordinate and lower the rate of hydride transfer. Importantly, analysis of the correlated and principle component motions in the enzyme suggest that the mutation alters the coupled motions that are present in the wild-type enzyme. In the case of D122N and D122S, the mutations inhibit coupled motion, whereas in the case of D122A, the mutation enhances coupled motion, although all mutations result in similar rate reduction. These results emphasize a Goldilocks principle of enzyme flexibility, that is, enzymes should neither be too rigid nor too flexible.
Collapse
Affiliation(s)
- Anil R Mhashal
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| | - Yaron Pshetitsky
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| | - Reuven Eitan
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| | - Christopher M Cheatum
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Amnon Kohen
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Dan Thomas Major
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| |
Collapse
|
22
|
Duff MR, Borreguero JM, Cuneo MJ, Ramanathan A, He J, Kamath G, Chennubhotla SC, Meilleur F, Howell EE, Herwig KW, Myles DAA, Agarwal PK. Modulating Enzyme Activity by Altering Protein Dynamics with Solvent. Biochemistry 2018; 57:4263-4275. [PMID: 29901984 DOI: 10.1021/acs.biochem.8b00424] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Optimal enzyme activity depends on a number of factors, including structure and dynamics. The role of enzyme structure is well recognized; however, the linkage between protein dynamics and enzyme activity has given rise to a contentious debate. We have developed an approach that uses an aqueous mixture of organic solvent to control the functionally relevant enzyme dynamics (without changing the structure), which in turn modulates the enzyme activity. Using this approach, we predicted that the hydride transfer reaction catalyzed by the enzyme dihydrofolate reductase (DHFR) from Escherichia coli in aqueous mixtures of isopropanol (IPA) with water will decrease by ∼3 fold at 20% (v/v) IPA concentration. Stopped-flow kinetic measurements find that the pH-independent khydride rate decreases by 2.2 fold. X-ray crystallographic enzyme structures show no noticeable differences, while computational studies indicate that the transition state and electrostatic effects were identical for water and mixed solvent conditions; quasi-elastic neutron scattering studies show that the dynamical enzyme motions are suppressed. Our approach provides a unique avenue to modulating enzyme activity through changes in enzyme dynamics. Further it provides vital insights that show the altered motions of DHFR cause significant changes in the enzyme's ability to access its functionally relevant conformational substates, explaining the decreased khydride rate. This approach has important implications for obtaining fundamental insights into the role of rate-limiting dynamics in catalysis and as well as for enzyme engineering.
Collapse
Affiliation(s)
- Michael R Duff
- Biochemistry & Cellular and Molecular Biology Department , University of Tennessee , Knoxville , Tennessee , United States
| | - Jose M Borreguero
- Neutron Data Analysis and Visualization Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Matthew J Cuneo
- Biology and Soft Matter Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Arvind Ramanathan
- Computer Science and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Junhong He
- Neutron Technologies Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Ganesh Kamath
- Computer Science and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - S Chakra Chennubhotla
- Department of Computational and Systems Biology , University of Pittsburgh , Pittsburgh , Pennsylvania , United States
| | - Flora Meilleur
- Biology and Soft Matter Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States.,Molecular and Structural Biochemistry Department , North Carolina State University , Raleigh , North Carolina , United States
| | - Elizabeth E Howell
- Biochemistry & Cellular and Molecular Biology Department , University of Tennessee , Knoxville , Tennessee , United States
| | - Kenneth W Herwig
- Neutron Technologies Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Dean A A Myles
- Biology and Soft Matter Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| | - Pratul K Agarwal
- Biochemistry & Cellular and Molecular Biology Department , University of Tennessee , Knoxville , Tennessee , United States.,Computer Science and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee , United States
| |
Collapse
|