1
|
Kopp J, Jahn D, Vogt G, Psoma A, Ratto E, Morelle W, Stelzer N, Hausser I, Hoffmann A, de Los Santos MR, Koch LA, Fischer-Zirnsak B, Thiel C, Palm W, Meierhofer D, van den Bogaart G, Foulquier F, Meinhardt A, Kornak U. Golgi pH elevation due to loss of V-ATPase subunit V0a2 function correlates with tissue-specific glycosylation changes and globozoospermia. Cell Mol Life Sci 2024; 82:4. [PMID: 39680136 DOI: 10.1007/s00018-024-05506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/01/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Abstract
Loss-of-function variants in ATP6V0A2, encoding the trans Golgi V-ATPase subunit V0a2, cause wrinkly skin syndrome (WSS), a connective tissue disorder with glycosylation defects and aberrant cortical neuron migration. We used knock-out (Atp6v0a2-/-) and knock-in (Atp6v0a2RQ/RQ) mice harboring the R755Q missense mutation selectively abolishing V0a2-mediated proton transport to investigate the WSS pathomechanism. Homozygous mutants from both strains displayed a reduction of growth, dermis thickness, and elastic fiber formation compatible with WSS. A hitherto unrecognized male infertility due to globozoospermia was evident in both mouse lines with impaired Golgi-derived acrosome formation and abolished mucin-type O-glycosylation in spermatids. Atp6v0a2-/- mutants showed enhanced fucosylation and glycosaminoglycan modification, but reduced levels of glycanated decorin and sialylation in skin and/or fibroblasts, which were absent or milder in Atp6v0a2RQ/RQ. Atp6v0a2RQ/RQ mutants displayed more abnormal migration of cortical neurons, correlating with seizures and a reduced O-mannosylation of α-dystroglycan. While anterograde transport within the secretory pathway was similarly delayed in both mutants the brefeldin A-induced retrograde fusion of Golgi membranes with the endoplasmic reticulum was less impaired in Atp6v0a2RQ/RQ. Measurement of the pH in the trans Golgi compartment revealed a shift from 5.80 in wildtype to 6.52 in Atp6v0a2-/- and 6.25 in Atp6v0a2RQ/RQ. Our findings suggest that altered O-glycosylation is more relevant for the WSS pathomechanism than N-glycosylation and leads to a secondary dystroglycanopathy. Most phenotypic and cellular properties correlate with the different degrees of trans Golgi pH elevation in both mutants underlining the fundamental relevance of pH regulation in the secretory pathway.
Collapse
Affiliation(s)
- Johannes Kopp
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195, Berlin, Germany
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Denise Jahn
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute - Center for Musculoskeletal Biomechanics and Regeneration, 13353, Berlin, Germany
| | - Guido Vogt
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195, Berlin, Germany
| | - Anthi Psoma
- Department of Molecular Immunology (MI), University of Groningen, 9747AG, Groningen, The Netherlands
| | - Edoardo Ratto
- Cell Signaling and Metabolism, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
| | - Willy Morelle
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Nina Stelzer
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute - Center for Musculoskeletal Biomechanics and Regeneration, 13353, Berlin, Germany
| | - Ingrid Hausser
- Institute of Pathology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Anne Hoffmann
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
| | - Miguel Rodriguez de Los Santos
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195, Berlin, Germany
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leonard A Koch
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
| | - Björn Fischer-Zirnsak
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Medical Genetics and Human Genetics, 13353, Berlin, Germany
- Max Planck Institute for Molecular Genetics, RG Development & Disease, 14195, Berlin, Germany
| | - Christian Thiel
- Centre for Child and Adolescent Medicine, Department I, University Hospital Heidelberg, 69115, Heidelberg, Germany
| | - Wilhelm Palm
- Cell Signaling and Metabolism, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass-Spectrometry Facility, 14195, Berlin, Germany
| | - Geert van den Bogaart
- Department of Molecular Immunology (MI), University of Groningen, 9747AG, Groningen, The Netherlands
| | - François Foulquier
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Justus-Liebig-Universität Gießen, 35385, Gießen, Germany
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, 37073, Göttingen, Germany.
| |
Collapse
|
2
|
Mohammadi H, Khaltabadi Farahani AH, Moradi MH, Moradi-Shahrbabak H, Gholizadeh M, Najafi A, Tolone M, D’Alessandro E. Genome-Wide Scan for Selective Sweeps Reveals Novel Loci Associated with Prolificacy in Iranian Sheep Breeds in Comparison with Highly Prolific Exotic Breed. Animals (Basel) 2024; 14:3245. [PMID: 39595298 PMCID: PMC11591336 DOI: 10.3390/ani14223245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Domestication and selection significantly changed phenotypic traits in modern domestic animals. To identify the genomic regions associated with prolificacy in this study, 837 ewes from three Iranian indigenous sheep breeds, consisting of Baluchi, Lori-Bakhtiari, and Zandi uniparous breeds, and one Greek highly prolific dairy sheep, namely Chios, were genotyped using OvineSNP50K arrays. Statistical tests were then performed using different and complementary methods based on either site frequency (FST) and haplotype (hapFLK) between populations, followed by a pathway analysis of the genes contained in the selected regions. The results revealed that for the top 0.01 percentile of the obtained FST values, 16 genomic regions on chromosomes 2, 3, 4, 7, 8, 9, 13, 14, 16, 18, 19, and 20, and for hapFLK values, 3 regions located on chromosomes 3, 7, and 13, were under selection. A bioinformatic analysis of these genomic regions showed that these loci overlapped with potential candidate genes associated with prolificacy in sheep including GNAQ, COL5A2, COL3A1, HECW1, FBN1, COMMD3, RYR1, CCL28, SERPINA14, and HSPA2. These regions also overlapped with some quantitative trait loci (QTLs) linked to prolificacy traits, milk yield, and body weight. These findings suggest that future research could further link these genomic regions to prolificacy traits in sheep.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
| | - Amir Hossein Khaltabadi Farahani
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
| | - Mohammad Hossein Moradi
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
| | - Hossein Moradi-Shahrbabak
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-11167, Iran;
| | - Mohsen Gholizadeh
- Department of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari 4818166996, Iran;
| | - Abouzar Najafi
- Departments of Animal and Poultry Science, College of Aburaihan, University of Tehran, Pakdasht 33916-53755, Iran;
| | - Marco Tolone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres, 98166 Messina, Italy;
| | - Enrico D’Alessandro
- Department of Veterinary Sciences, University of Messina, Viale G. Palatucci, 98168 Messina, Italy
| |
Collapse
|
3
|
Wang J, Yin Y, Yang L, Qin J, Wang Z, Qiu C, Gao Y, Lu G, Gao F, Chen ZJ, Zhang X, Liu H, Liu Z. TMC7 deficiency causes acrosome biogenesis defects and male infertility in mice. eLife 2024; 13:RP95888. [PMID: 39269275 PMCID: PMC11398861 DOI: 10.7554/elife.95888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Transmembrane channel-like (TMC) proteins are a highly conserved ion channel family consisting of eight members (TMC1-TMC8) in mammals. TMC1/2 are components of the mechanotransduction channel in hair cells, and mutations of TMC1/2 cause deafness in humans and mice. However, the physiological roles of other TMC proteins remain largely unknown. Here, we show that Tmc7 is specifically expressed in the testis and that it is required for acrosome biogenesis during spermatogenesis. Tmc7-/- mice exhibited abnormal sperm head, disorganized mitochondrial sheaths, and reduced number of elongating spermatids, similar to human oligo-astheno-teratozoospermia. We further demonstrate that TMC7 is colocalized with GM130 at the cis-Golgi region in round spermatids. TMC7 deficiency leads to aberrant Golgi morphology and impaired fusion of Golgi-derived vesicles to the developing acrosome. Moreover, upon loss of TMC7 intracellular ion homeostasis is impaired and ROS levels are increased, which in turn causes Golgi and endoplasmic reticulum stress. Taken together, these results suggest that TMC7 is required to maintain pH and ion homeostasis, which is needed for acrosome biogenesis. Our findings unveil a novel role for TMC7 in acrosome biogenesis during spermiogenesis.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Advanced Medical Research Institute, Shandong UniversityJinanChina
| | - Yingying Yin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Center for Reproductive Medicine, Shandong UniversityJinanChina
| | - Lei Yang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Advanced Medical Research Institute, Shandong UniversityJinanChina
| | - Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Advanced Medical Research Institute, Shandong UniversityJinanChina
| | - Zixiang Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Advanced Medical Research Institute, Shandong UniversityJinanChina
| | - Chunhong Qiu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
| | - Yuan Gao
- Center for Reproductive Medicine, Shandong UniversityJinanChina
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong KongHong KongChina
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong UniversityJinanChina
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong UniversityJinanChina
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Advanced Medical Research Institute, Shandong UniversityJinanChina
| |
Collapse
|
4
|
Zou J, Mitra K, Anees P, Oettinger D, Ramirez JR, Veetil AT, Gupta PD, Rao R, Smith JJ, Kratsios P, Krishnan Y. A DNA nanodevice for mapping sodium at single-organelle resolution. Nat Biotechnol 2024; 42:1075-1083. [PMID: 37735265 PMCID: PMC11004682 DOI: 10.1038/s41587-023-01950-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Cellular sodium ion (Na+) homeostasis is integral to organism physiology. Our current understanding of Na+ homeostasis is largely limited to Na+ transport at the plasma membrane. Organelles may also contribute to Na+ homeostasis; however, the direction of Na+ flow across organelle membranes is unknown because organellar Na+ cannot be imaged. Here we report a pH-independent, organelle-targetable, ratiometric probe that reports lumenal Na+. It is a DNA nanodevice containing a Na+-sensitive fluorophore, a reference dye and an organelle-targeting domain. By measuring Na+ at single endosome resolution in mammalian cells and Caenorhabditis elegans, we discovered that lumenal Na+ levels in each stage of the endolysosomal pathway exceed cytosolic levels and decrease as endosomes mature. Further, we find that lysosomal Na+ levels in nematodes are modulated by the Na+/H+ exchanger NHX-5 in response to salt stress. The ability to image subcellular Na+ will unveil mechanisms of Na+ homeostasis at an increased level of cellular detail.
Collapse
Affiliation(s)
- Junyi Zou
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Koushambi Mitra
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Palapuravan Anees
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Daphne Oettinger
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Joseph R Ramirez
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Aneesh Tazhe Veetil
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Priyanka Dutta Gupta
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Rajini Rao
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jayson J Smith
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Paschalis Kratsios
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Neuroscience Institute, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Dai P, Zou M, Cai Z, Zeng X, Zhang X, Liang M. pH Homeodynamics and Male Fertility: A Coordinated Regulation of Acid-Based Balance during Sperm Journey to Fertilization. Biomolecules 2024; 14:685. [PMID: 38927088 PMCID: PMC11201807 DOI: 10.3390/biom14060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
pH homeostasis is crucial for spermatogenesis, sperm maturation, sperm physiological function, and fertilization in mammals. HCO3- and H+ are the most significant factors involved in regulating pH homeostasis in the male reproductive system. Multiple pH-regulating transporters and ion channels localize in the testis, epididymis, and spermatozoa, such as HCO3- transporters (solute carrier family 4 and solute carrier family 26 transporters), carbonic anhydrases, and H+-transport channels and enzymes (e.g., Na+-H+ exchangers, monocarboxylate transporters, H+-ATPases, and voltage-gated proton channels). Hormone-mediated signals impose an influence on the production of some HCO3- or H+ transporters, such as NBCe1, SLC4A2, MCT4, etc. Additionally, ion channels including sperm-specific cationic channels for Ca2+ (CatSper) and K+ (SLO3) are directly or indirectly regulated by pH, exerting specific actions on spermatozoa. The slightly alkaline testicular pH is conducive to spermatogenesis, whereas the epididymis's low HCO3- concentration and acidic lumen are favorable for sperm maturation and storage. Spermatozoa pH increases substantially after being fused with seminal fluid to enhance motility. In the female reproductive tract, sperm are subjected to increasing concentrations of HCO3- in the uterine and fallopian tube, causing a rise in the intracellular pH (pHi) of spermatozoa, leading to hyperpolarization of sperm plasma membranes, capacitation, hyperactivation, acrosome reaction, and ultimately fertilization. The physiological regulation initiated by SLC26A3, SLC26A8, NHA1, sNHE, and CFTR localized in sperm is proven for certain to be involved in male fertility. This review intends to present the key factors and characteristics of pHi regulation in the testes, efferent duct, epididymis, seminal fluid, and female reproductive tract, as well as the associated mechanisms during the sperm journey to fertilization, proposing insights into outstanding subjects and future research trends.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| | - Min Liang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (P.D.); (M.Z.); (Z.C.); (X.Z.)
| |
Collapse
|
6
|
Chávez JC, Carrasquel-Martínez G, Hernández-Garduño S, Matamoros Volante A, Treviño CL, Nishigaki T, Darszon A. Cytosolic and Acrosomal pH Regulation in Mammalian Sperm. Cells 2024; 13:865. [PMID: 38786087 PMCID: PMC11120249 DOI: 10.3390/cells13100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
As in most cells, intracellular pH regulation is fundamental for sperm physiology. Key sperm functions like swimming, maturation, and a unique exocytotic process, the acrosome reaction, necessary for gamete fusion, are deeply influenced by pH. Sperm pH regulation, both intracellularly and within organelles such as the acrosome, requires a coordinated interplay of various transporters and channels, ensuring that this cell is primed for fertilization. Consistent with the pivotal importance of pH regulation in mammalian sperm physiology, several of its unique transporters are dependent on cytosolic pH. Examples include the Ca2+ channel CatSper and the K+ channel Slo3. The absence of these channels leads to male infertility. This review outlines the main transport elements involved in pH regulation, including cytosolic and acrosomal pH, that participate in these complex functions. We present a glimpse of how these transporters are regulated and how distinct sets of them are orchestrated to allow sperm to fertilize the egg. Much research is needed to begin to envision the complete set of players and the choreography of how cytosolic and organellar pH are regulated in each sperm function.
Collapse
Affiliation(s)
- Julio C. Chávez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Gabriela Carrasquel-Martínez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
- CITMER, Medicina Reproductiva, México City 11520, Mexico
| | - Sandra Hernández-Garduño
- Departamento de Morfología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico;
| | - Arturo Matamoros Volante
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Claudia L. Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico; (J.C.C.); (G.C.-M.)
| |
Collapse
|
7
|
Fang X, Gu B, Chen M, Sun R, Zhang J, Zhao L, Zhao Y. Genome-Wide Association Study of the Reproductive Traits of the Dazu Black Goat ( Capra hircus) Using Whole-Genome Resequencing. Genes (Basel) 2023; 14:1960. [PMID: 37895309 PMCID: PMC10606515 DOI: 10.3390/genes14101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Reproductive traits are the basic economic traits of goats and important indicators in goat breeding. In this study, Dazu black goats (DBGs; n = 150), an important Chinese local goat breed with excellent reproductive performance, were used to screen for important variation loci and genes of reproductive traits. Through genome-wide association studies (GWAS), 18 SNPs were found to be associated with kidding traits (average litter size, average litter size in the first three parity, and average litter size in the first six parity), and 10 SNPs were associated with udder traits (udder depth, teat diameter, teat length, and supernumerary teat). After gene annotation of the associated SNPs and in combination with relevant references, the candidate genes, namely ATP1A1, LRRC4C, SPCS2, XRRA1, CELF4, NTM, TMEM45B, ATE1, and FGFR2, were associated with udder traits, while the ENSCHIG00000017110, SLC9A8, GLRB, GRIA2, GASK1B, and ENSCHIG00000026285 genes were associated with litter size. These SNPs and candidate genes can provide useful biological information for improvement of the reproductive traits of goats.
Collapse
Affiliation(s)
- Xingqiang Fang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (X.F.); (B.G.); (M.C.); (R.S.); (J.Z.); (L.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing 400715, China
| | - Bowen Gu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (X.F.); (B.G.); (M.C.); (R.S.); (J.Z.); (L.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing 400715, China
| | - Meixi Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (X.F.); (B.G.); (M.C.); (R.S.); (J.Z.); (L.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing 400715, China
| | - Ruifan Sun
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (X.F.); (B.G.); (M.C.); (R.S.); (J.Z.); (L.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing 400715, China
| | - Jipan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (X.F.); (B.G.); (M.C.); (R.S.); (J.Z.); (L.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing 400715, China
| | - Le Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (X.F.); (B.G.); (M.C.); (R.S.); (J.Z.); (L.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing 400715, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (X.F.); (B.G.); (M.C.); (R.S.); (J.Z.); (L.Z.)
- Chongqing Key Laboratory of Herbivore Science, Chongqing 400715, China
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing 400715, China
| |
Collapse
|
8
|
Gardner CC, James PF. Na +/H + Exchangers (NHEs) in Mammalian Sperm: Essential Contributors to Male Fertility. Int J Mol Sci 2023; 24:14981. [PMID: 37834431 PMCID: PMC10573352 DOI: 10.3390/ijms241914981] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are known to be important regulators of pH in multiple intracellular compartments of eukaryotic cells. Sperm function is especially dependent on changes in pH and thus it has been postulated that NHEs play important roles in regulating the intracellular pH of these cells. For example, in order to achieve fertilization, mature sperm must maintain a basal pH in the male reproductive tract and then alkalize in response to specific signals in the female reproductive tract during the capacitation process. Eight NHE isoforms are expressed in mammalian testis/sperm: NHE1, NHE3, NHE5, NHE8, NHA1, NHA2, NHE10, and NHE11. These NHE isoforms are expressed at varying times during spermatogenesis and localize to different subcellular structures in developing and mature sperm where they contribute to multiple aspects of sperm physiology and male fertility including proper sperm development/morphogenesis, motility, capacitation, and the acrosome reaction. Previous work has provided evidence for NHE3, NHE8, NHA1, NHA2, and NHE10 being critical for male fertility in mice and NHE10 has recently been shown to be essential for male fertility in humans. In this article we review what is known about each NHE isoform expressed in mammalian sperm and discuss the physiological significance of each NHE isoform with respect to male fertility.
Collapse
Affiliation(s)
| | - Paul F. James
- Department of Biology, Miami University, Oxford, OH 45056, USA;
| |
Collapse
|
9
|
The SLC9C2 Gene Product (Na+/H+ Exchanger Isoform 11; NHE11) Is a Testis-Specific Protein Localized to the Head of Mature Mammalian Sperm. Int J Mol Sci 2023; 24:ijms24065329. [PMID: 36982403 PMCID: PMC10049371 DOI: 10.3390/ijms24065329] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Na+/H+ exchangers (NHEs) are a family of ion transporters that regulate the pH of various cell compartments across an array of cell types. In eukaryotes, NHEs are encoded by the SLC9 gene family comprising 13 genes. SLC9C2, which encodes the NHE11 protein, is the only one of the SLC9 genes that is essentially uncharacterized. Here, we show that SLC9C2 exhibits testis/sperm-restricted expression in rats and humans, akin to its paralog SLC9C1 (NHE10). Similar to NHE10, NHE11 is predicted to contain an NHE domain, a voltage sensing domain, and finally an intracellular cyclic nucleotide binding domain. An immunofluorescence analysis of testis sections reveals that NHE11 localizes with developing acrosomal granules in spermiogenic cells in both rat and human testes. Most interestingly, NHE11 localizes to the sperm head, likely the plasma membrane overlaying the acrosome, in mature sperm from rats and humans. Therefore, NHE11 is the only known NHE to localize to the acrosomal region of the head in mature sperm cells. The physiological role of NHE11 has yet to be demonstrated but its predicted functional domains and unique localization suggests that it could modulate intracellular pH of the sperm head in response to changes in membrane potential and cyclic nucleotide concentrations that are a result of sperm capacitation events. If NHE11 is shown to be important for male fertility, it will be an attractive target for male contraceptive drugs due to its exclusive testis/sperm-specific expression.
Collapse
|
10
|
Salari A, Zhou K, Nikolovska K, Seidler U, Amiri M. Human Colonoid-Myofibroblast Coculture for Study of Apical Na +/H + Exchangers of the Lower Cryptal Neck Region. Int J Mol Sci 2023; 24:ijms24054266. [PMID: 36901695 PMCID: PMC10001859 DOI: 10.3390/ijms24054266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Cation and anion transport in the colonocyte apical membrane is highly spatially organized along the cryptal axis. Because of lack of experimental accessibility, information about the functionality of ion transporters in the colonocyte apical membrane in the lower part of the crypt is scarce. The aim of this study was to establish an in vitro model of the colonic lower crypt compartment, which expresses the transit amplifying/progenitor (TA/PE) cells, with accessibility of the apical membrane for functional study of lower crypt-expressed Na+/H+ exchangers (NHEs). Colonic crypts and myofibroblasts were isolated from human transverse colonic biopsies, expanded as three-dimensional (3D) colonoids and myofibroblast monolayers, and characterized. Filter-grown colonic myofibroblast-colonic epithelial cell (CM-CE) cocultures (myofibroblasts on the bottom of the transwell and colonocytes on the filter) were established. The expression pattern for ion transport/junctional/stem cell markers of the CM-CE monolayers was compared with that of nondifferentiated (EM) and differentiated (DM) colonoid monolayers. Fluorometric pHi measurements were performed to characterize apical NHEs. CM-CE cocultures displayed a rapid increase in transepithelial electrical resistance (TEER), paralleled by downregulation of claudin-2. They maintained proliferative activity and an expression pattern resembling TA/PE cells. The CM-CE monolayers displayed high apical Na+/H+ exchange activity, mediated to >80% by NHE2. Human colonoid-myofibroblast cocultures allow the study of ion transporters that are expressed in the apical membrane of the nondifferentiated colonocytes of the cryptal neck region. The NHE2 isoform is the predominant apical Na+/H+ exchanger in this epithelial compartment.
Collapse
Affiliation(s)
- Azam Salari
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Kunyan Zhou
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Katerina Nikolovska
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: (U.S.); (M.A.); Tel.: +49-511-532-9427 (U.S.); Fax: +49-511-532-8428 (U.S.)
| | - Mahdi Amiri
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Correspondence: (U.S.); (M.A.); Tel.: +49-511-532-9427 (U.S.); Fax: +49-511-532-8428 (U.S.)
| |
Collapse
|
11
|
Alkaline Dilution Alters Sperm Motility in Dairy Goat by Affecting sAC/cAMP/PKA Pathway Activity. Int J Mol Sci 2023; 24:ijms24021771. [PMID: 36675287 PMCID: PMC9863640 DOI: 10.3390/ijms24021771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
In dairy goat farming, increasing the female kid rate is beneficial to milk production and is, therefore, economically beneficial to farms. Our previous study demonstrated that alkaline incubation enriched the concentration of X-chromosome-bearing sperm; however, the mechanism by which pH affects the motility of X-chromosome-bearing sperm remains unclear. In this study, we explored this mechanism by incubating dairy goat sperm in alkaline dilutions, examining the pattern of changes in sperm internal pH and Ca2+ concentrations and investigating the role of the sAC/cAMP/PKA pathway in influencing sperm motility. The results showed that adding a calcium channel inhibitor during incubation resulted in a concentration-dependent decrease in the proportion of spermatozoa with forward motility, and the sperm sAC protein activity was positively correlated with the calcium ion concentration (r = 0.9972). The total motility activity, proportion of forward motility, and proportion of X-chromosome-bearing sperm decreased (p < 0.05) when cAMP/PKA protease activity was inhibited. Meanwhile, the enrichment of X-chromosome-bearing sperm by pH did not affect the sperm capacitation state. These results indicate that alkaline dilution incubation reduces Ca2+ entry into X-sperm and the motility was slowed down through the sAC/cAMP/PKA signaling pathway, providing a theoretical foundation for further optimization of the sex control method.
Collapse
|
12
|
Bernardazzi C, Sheikh IA, Xu H, Ghishan FK. The Physiological Function and Potential Role of the Ubiquitous Na +/H + Exchanger Isoform 8 (NHE8): An Overview Data. Int J Mol Sci 2022; 23:ijms231810857. [PMID: 36142772 PMCID: PMC9501935 DOI: 10.3390/ijms231810857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The Na+/H+ exchanger transporters (NHE) play an important role in various biologic processes including Na+ absorption, intracellular pH homeostasis, cell volume regulation, proliferation, and apoptosis. The wide expression pattern and cellular localization of NHEs make these proteins pivotal players in virtually all human tissues and organs. In addition, recent studies suggest that NHEs may be one of the primeval transport protein forms in the history of life. Among the different isoforms, the most well-characterized NHEs are the Na+/H+ exchanger isoform 1 (NHE1) and Na+/H+ exchanger isoform 3 (NHE3). However, Na+/H+ exchanger isoform 8 (NHE8) has been receiving attention based on its recent discoveries in the gastrointestinal tract. In this review, we will discuss what is known about the physiological function and potential role of NHE8 in the main organ systems, including useful overviews that could inspire new studies on this multifaceted protein.
Collapse
|
13
|
Hernández-Garduño S, Chavez JC, Matamoros-Volante A, Sánchez-Guevara Y, Torres P, Treviño CL, Nishigaki T. Hyperpolarization induces cytosolic alkalization of mouse sperm flagellum probably through sperm Na+/H+ exchanger. Reproduction 2022; 164:125-134. [PMID: 35900329 DOI: 10.1530/rep-22-0101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
The sperm-specific sodium/proton exchanger (sNHE) is an indispensable protein for male fertility in mammals. Nevertheless, it is still unknown how mammalian sNHE is regulated. Evidence obtained from sea urchin sNHE indicates that hyperpolarization of plasma membrane potential (Vm), which is a hallmark of mammalian capacitation, positively regulates the sNHE. Therefore, we explored the activity of sNHE in mouse and human sperm by fluorescence imaging of intracellular pH (pHi) with a ratiometric dye, SNARF-5F. A valinomycin-induced Vm hyperpolarization elevated sperm flagellar pHi of wild-type mouse, but not in sNHE-KO mouse. Moreover, this pHi increase was inhibited in a high K+ (40 mM) medium. These results support the idea that mouse sNHE is activated by Vm hyperpolarization. Interestingly, we observed different types of kinetics derived from valinomycin-induced alkalization, including some (30 %) without any pHi changes. Our quantitative pHi determinations revealed that unresponsive cells had a high resting pHi (> 7.5), suggesting that the activity of mouse sNHE is regulated by the resting pHi. On the other hand, valinomycin did not increase the pHi of human sperm in the head or the flagellum, regardless of their resting pHi values. Our findings suggest that the regulatory mechanisms of mammalian sNHEs are probably distinct depending on the species.
Collapse
Affiliation(s)
- Sandra Hernández-Garduño
- S Hernández-Garduño, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Julio C Chavez
- J Chavez, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Arturo Matamoros-Volante
- A Matamoros-Volante, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Yoloxochitl Sánchez-Guevara
- Y Sánchez-Guevara, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Paulina Torres
- P Torres, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Claudia L Treviño
- C Treviño, Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Takuya Nishigaki
- T Nishigaki, Genetica del Desarrollo y Fisiologia Molecular, Instituto de Biotecnologia UNAM, Cuernavaca, 62210, Mexico
| |
Collapse
|
14
|
Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. A Review on the Role of Bicarbonate and Proton Transporters during Sperm Capacitation in Mammals. Int J Mol Sci 2022; 23:ijms23116333. [PMID: 35683013 PMCID: PMC9180951 DOI: 10.3390/ijms23116333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Alkalinization of sperm cytosol is essential for plasma membrane hyperpolarization, hyperactivation of motility, and acrosomal exocytosis during sperm capacitation in mammals. The plasma membrane of sperm cells contains different ion channels implicated in the increase of internal pH (pHi) by favoring either bicarbonate entrance or proton efflux. Bicarbonate transporters belong to the solute carrier families 4 (SLC4) and 26 (SLC26) and are currently grouped into Na+/HCO3− transporters and Cl−/HCO3− exchangers. Na+/HCO3− transporters are reported to be essential for the initial and fast entrance of HCO3− that triggers sperm capacitation, whereas Cl−/HCO3− exchangers are responsible for the sustained HCO3− entrance which orchestrates the sequence of changes associated with sperm capacitation. Proton efflux is required for the fast alkalinization of capacitated sperm cells and the activation of pH-dependent proteins; according to the species, this transport can be mediated by Na+/H+ exchangers (NHE) belonging to the SLC9 family and/or voltage-gated proton channels (HVCN1). Herein, we discuss the involvement of each of these channels in sperm capacitation and the acrosome reaction.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), ES-08010 Barcelona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Correspondence: ; Tel.: +34-972-419-514
| |
Collapse
|
15
|
Cavarocchi E, Whitfield M, Saez F, Touré A. Sperm Ion Transporters and Channels in Human Asthenozoospermia: Genetic Etiology, Lessons from Animal Models, and Clinical Perspectives. Int J Mol Sci 2022; 23:ijms23073926. [PMID: 35409285 PMCID: PMC8999829 DOI: 10.3390/ijms23073926] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/18/2022] Open
Abstract
In mammals, sperm fertilization potential relies on efficient progression within the female genital tract to reach and fertilize the oocyte. This fundamental property is supported by the flagellum, an evolutionarily conserved organelle that provides the mechanical force for sperm propulsion and motility. Importantly several functional maturation events that occur during the journey of the sperm cells through the genital tracts are necessary for the activation of flagellar beating and the acquisition of fertilization potential. Ion transporters and channels located at the surface of the sperm cells have been demonstrated to be involved in these processes, in particular, through the activation of downstream signaling pathways and the promotion of novel biochemical and electrophysiological properties in the sperm cells. We performed a systematic literature review to describe the currently known genetic alterations in humans that affect sperm ion transporters and channels and result in asthenozoospermia, a pathophysiological condition defined by reduced or absent sperm motility and observed in nearly 80% of infertile men. We also present the physiological relevance and functional mechanisms of additional ion channels identified in the mouse. Finally, considering the state-of-the art, we discuss future perspectives in terms of therapeutics of asthenozoospermia and male contraception.
Collapse
Affiliation(s)
- Emma Cavarocchi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France; (E.C.); (M.W.)
| | - Marjorie Whitfield
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France; (E.C.); (M.W.)
| | - Fabrice Saez
- UMR GReD Institute (Génétique Reproduction & Développement) CNRS 6293, INSERM U1103, Team «Mécanismes de L’Infertilité Mâle Post-Testiculaire», Université Clermont Auvergne, 63000 Clermont-Ferrand, France
- Correspondence: (F.S.); (A.T.)
| | - Aminata Touré
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France; (E.C.); (M.W.)
- Correspondence: (F.S.); (A.T.)
| |
Collapse
|
16
|
Favia M, Gerbino A, Notario E, Tragni V, Sgobba MN, Dell’Aquila ME, Pierri CL, Guerra L, Ciani E. The Non-Gastric H+/K+ ATPase (ATP12A) Is Expressed in Mammalian Spermatozoa. Int J Mol Sci 2022; 23:ijms23031048. [PMID: 35162971 PMCID: PMC8835340 DOI: 10.3390/ijms23031048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
H+/K+ ATPase Type 2 is an heteromeric membrane protein involved in cation transmembrane transport and consists of two subunits: a specific α subunit (ATP12A) and a non-specific β subunit. The aim of this study was to demonstrate the presence and establish the localization of ATP12A in spermatozoa from Bubalus bubalis, Bos taurus and Ovis aries. Immunoblotting revealed, in all three species, a major band (100 kDa) corresponding to the expected molecular mass. The ATP12A immunolocalization pattern showed, consistently in the three species, a strong signal at the acrosome. These results, described here for the first time in spermatozoa, are consistent with those observed for the β1 subunit of Na+/K+ ATPase, suggesting that the latter may assemble with the α subunit to produce a functional ATP12A dimer in sperm cells. The above scenario appeared to be nicely supported by 3D comparative modeling and interaction energy calculations. The expression of ATP12A during different stages of bovine sperm maturation progressively increased, moving from epididymis to deferent ducts. Based on overall results, we hypothesize that ATP12A may play a role in acrosome reactions. Further studies will be required in order to address the functional role of this target protein in sperm physiology.
Collapse
|
17
|
Zhou K, Amiri M, Salari A, Yu Y, Xu H, Seidler U, Nikolovska K. Functional characterization of the sodium/hydrogen exchanger 8 and its role in proliferation of colonic epithelial cells. Am J Physiol Cell Physiol 2021; 321:C471-C488. [PMID: 34288721 DOI: 10.1152/ajpcell.00582.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Intestinal NaCl, HCO3-, and fluid absorption are strongly dependent on apical Na+/H+ exchange. The intestine expresses three presumably apical sodium-hydrogen exchanger (NHE) isoforms: NHE2, NHE3, and NHE8. We addressed the role of NHE8 [solute carrier 9A8 (SLC9A8)] and its interplay with NHE2 (SLC9A2) in luminal proton extrusion during acute and chronic enterocyte acidosis and studied the differential effects of NHE8 and NHE2 on enterocyte proliferation. In contrast to NHE3, which was upregulated in differentiated versus undifferentiated colonoids, the expression of NHE2 and NHE8 remained constant during differentiation of colonoids and Caco2Bbe cells. Heterogeneously expressed Flag-tagged rat (r)Nhe8 and human (h)NHE8 translocated to the apical membrane of Caco2Bbe cells. rNhe8 and hNHE8, when expressed in NHE-deficient PS120 fibroblasts showed higher sensitivity to HOE642 compared to NHE2. Lentiviral shRNA knockdown of endogenous NHE2 in Caco2Bbe cells (C2Bbe/shNHE2) resulted in a decreased steady-state intracellular pH (pHi), an increased NHE8 mRNA expression, and augmented NHE8-mediated apical NHE activity. Lentiviral shRNA knockdown of endogenous NHE8 in Caco2Bbe cells (C2Bbe/shNHE8) resulted in a decreased steady-state pHi as well, accompanied by decreased NHE2 mRNA expression and activity, which together contributed to reduced apical NHE activity in the NHE8-knockdown cells. Chronic acidosis increased NHE8 but not NHE2 mRNA expression. Alterations in NHE2 and NHE8 expression/activity affected proliferation, with C2Bbe/shNHE2 cells having lower and C2Bbe/shNHE8 having higher proliferative capacity, accompanied by amplified ERK1/2 signaling pathway and increased EGFR expression in the latter cell line. Thus, both Na+/H+ exchangers have distinct functions during cellular homeostasis by triggering different signaling pathways to regulate cellular proliferation and pHi control.
Collapse
Affiliation(s)
- Kunyan Zhou
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Mahdi Amiri
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Azam Salari
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Yan Yu
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Hua Xu
- Department of Pediatrics, University of Arizona Health Science Center, Tucson, Arizona
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Katerina Nikolovska
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Aldana A, Carneiro J, Martínez-Mekler G, Darszon A. Discrete Dynamic Model of the Mammalian Sperm Acrosome Reaction: The Influence of Acrosomal pH and Physiological Heterogeneity. Front Physiol 2021; 12:682790. [PMID: 34349664 PMCID: PMC8328089 DOI: 10.3389/fphys.2021.682790] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/28/2021] [Indexed: 01/31/2023] Open
Abstract
The acrosome reaction (AR) is an exocytotic process essential for mammalian fertilization. It involves diverse physiological changes (biochemical, biophysical, and morphological) that culminate in the release of the acrosomal content to the extracellular medium as well as a reorganization of the plasma membrane (PM) that allows sperm to interact and fuse with the egg. In spite of many efforts, there are still important pending questions regarding the molecular mechanism regulating the AR. Particularly, the contribution of acrosomal alkalinization to AR triggering physiological conditions is not well understood. Also, the dependence of the proportion of sperm capable of undergoing AR on the physiological heterogeneity within a sperm population has not been studied. Here, we present a discrete mathematical model for the human sperm AR based on the physiological interactions among some of the main components of this complex exocytotic process. We show that this model can qualitatively reproduce diverse experimental results, and that it can be used to analyze how acrosomal pH (pH a ) and cell heterogeneity regulate AR. Our results confirm that a pH a increase can on its own trigger AR in a subpopulation of sperm, and furthermore, it indicates that this is a necessary step to trigger acrosomal exocytosis through progesterone, a known natural inducer of AR. Most importantly, we show that the proportion of sperm undergoing AR is directly related to the detailed structure of the population physiological heterogeneity.
Collapse
Affiliation(s)
- Andrés Aldana
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Carneiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova, Oeiras, Portugal
| | - Gustavo Martínez-Mekler
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
19
|
Xiong W, Shen C, Wang Z. The molecular mechanisms underlying acrosome biogenesis elucidated by gene-manipulated mice. Biol Reprod 2021; 105:789-807. [PMID: 34131698 DOI: 10.1093/biolre/ioab117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Sexual reproduction requires the fusion of two gametes in a multistep and multifactorial process termed fertilization. One of the main steps that ensures successful fertilization is acrosome reaction. The acrosome, a special kind of organelle with a cap-like structure that covers the anterior portion of sperm head, plays a key role in the process. Acrosome biogenesis begins with the initial stage of spermatid development, and it is typically divided into four successive phases: the Golgi phase, cap phase, acrosome phase, and maturation phase. The run smoothly of above processes needs an active and specific coordination between the all kinds of organelles (endoplasmic reticulum, trans-golgi network and nucleus) and cytoplasmic structures (acroplaxome and manchette). During the past two decades, an increasingly genes have been discovered to be involved in modulating acrosome formation. Most of these proteins interact with each other and show a complicated molecular regulatory mechanism to facilitate the occurrence of this event. This Review focuses on the progresses of studying acrosome biogenesis using gene-manipulated mice and highlights an emerging molecular basis of mammalian acrosome formation.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Long JE, Lee MS, Blithe DL. Update on Novel Hormonal and Nonhormonal Male Contraceptive Development. J Clin Endocrinol Metab 2021; 106:e2381-e2392. [PMID: 33481994 PMCID: PMC8344836 DOI: 10.1210/clinem/dgab034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The advent of new methods of male contraception would increase contraceptive options for men and women and advance male contraceptive agency. Pharmaceutical R&D for male contraception has been dormant since the 1990s. The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) has supported a contraceptive development program since 1969 and supports most ongoing hormonal male contraceptive development. Nonhormonal methods are in earlier stages of development. CONTENT Several hormonal male contraceptive agents have entered clinical trials. Novel single agent products being evaluated include dimethandrolone undecanoate, 11β-methyl-nortestosterone dodecylcarbonate, and 7α-methyl-19-nortestosterone. A contraceptive efficacy trial of Nestorone®/testosterone gel is underway. Potential nonhormonal methods are at preclinical stages of development. Many nonhormonal male contraceptive targets that affect sperm production, sperm function, or sperm transport have been identified. SUMMARY NICHD supports development of reversible male contraceptive agents. Other organizations such as the World Health Organization, the Population Council, and the Male Contraception Initiative are pursuing male contraceptive development, but industry involvement remains limited.
Collapse
Affiliation(s)
- Jill E Long
- Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Correspondence: Dr. Jill Long, 6710B Rockledge Drive, Room 3243, Bethesda, MD 20892, USA.
| | - Min S Lee
- Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Diana L Blithe
- Contraceptive Development Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Kang H, Liu M, Zhang W, Huang RZ, Zhao N, Chen C, Zeng XH. Na +/H + Exchangers Involve in Regulating the pH-Sensitive Ion Channels in Mouse Sperm. Int J Mol Sci 2021; 22:ijms22041612. [PMID: 33562644 PMCID: PMC7914462 DOI: 10.3390/ijms22041612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
Sperm-specific K+ ion channel (KSper) and Ca2+ ion channel (CatSper), whose elimination causes male infertility in mice, determine the membrane potential and Ca2+ influx, respectively. KSper and CatSper can be activated by cytosolic alkalization, which occurs during sperm going through the alkaline environment of the female reproductive tract. However, which intracellular pH (pHi) regulator functionally couples to the activation of KSper/CatSper remains obscure. Although Na+/H+ exchangers (NHEs) have been implicated to mediate pHi in sperm, there is a lack of direct evidence confirming the functional coupling between NHEs and KSper/CatSper. Here, 5-(N,N-dimethyl)-amiloride (DMA), an NHEs inhibitor that firstly proved not to affect KSper/CatSper directly, was chosen to examine NHEs function on KSper/CatSper in mouse sperm. The results of patch clamping recordings showed that, when extracellular pH was at the physiological level of 7.4, DMA application caused KSper inhibition and the depolarization of membrane potential when pipette solutions were not pH-buffered. In contrast, these effects were minimized when pipette solutions were pH-buffered, indicating that they solely resulted from pHi acidification caused by NHEs inhibition. Similarly, DMA treatment reduced CatSper current and intracellular Ca2+, effects also dependent on the buffer capacity of pH in pipette solutions. The impairment of sperm motility was also observed after DMA incubation. These results manifested that NHEs activity is coupled to the activation of KSper/CatSper under physiological conditions.
Collapse
Affiliation(s)
- Hang Kang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; (H.K.); (M.L.); (W.Z.); (N.Z.)
| | - Min Liu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; (H.K.); (M.L.); (W.Z.); (N.Z.)
| | - Wei Zhang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; (H.K.); (M.L.); (W.Z.); (N.Z.)
| | - Rong-Zu Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226019, Jiangsu, China; (R.-Z.H.); (C.C.)
| | - Na Zhao
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; (H.K.); (M.L.); (W.Z.); (N.Z.)
| | - Chen Chen
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226019, Jiangsu, China; (R.-Z.H.); (C.C.)
| | - Xu-Hui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226019, Jiangsu, China; (R.-Z.H.); (C.C.)
- Correspondence: ; Tel.: +86-177-6196-0066
| |
Collapse
|
22
|
Dwivedi M, Shaw A. Implication of cation-proton antiporters (CPA) in human health and diseases causing microorganisms. Biochimie 2021; 182:85-98. [PMID: 33453344 DOI: 10.1016/j.biochi.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Cation and protons perform a substantial role in all the organism and its homeostasis within the cells are maintained by the cation-proton antiporters (CPAs). CPA is the huge family of the membrane transporter protein throughout the plant and animal kingdom including microorganism. In human, any malfunctioning of these proteins may lead to severe diseases like hypertension, heart diseases etc and CPAs are recently proposed to be responsible for the virulent property of various pathogens including Vibrio cholerae, Yersinia pestis etc. Human Sodium-Proton exchangers (Na+/H+ exchangers, NHEs) are crucial in ion homeostasis whereas Ec-NhaA, Na + -H + Antiporters maintain a balance of Na+ and proton in E. coli, regulating pH and cell volume within the cell. These Sodium-Proton antiporters are found to be responsible for the virulence in various pathogens causing human diseases. Understanding of these CPAs may assist investigators to target such human diseases, that further may lead to establishing the effective path for therapeutics or drug designing against associated human disease. Here we have compiled all such information on CPAs and provide a systematic approach to unravel the mechanism and role of antiporter proteins in a wide range of organisms. Being involved throughout all the species, this review on cation-proton antiporters may attract the attention of many investigators and concerned researchers and will be provided with the recent detailed information on the role of CPA in human health.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India.
| | | |
Collapse
|
23
|
Quade BN, Parker MD, Occhipinti R. The therapeutic importance of acid-base balance. Biochem Pharmacol 2021; 183:114278. [PMID: 33039418 PMCID: PMC7544731 DOI: 10.1016/j.bcp.2020.114278] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Baking soda and vinegar have been used as home remedies for generations and today we are only a mouse-click away from claims that baking soda, lemon juice, and apple cider vinegar are miracles cures for everything from cancer to COVID-19. Despite these specious claims, the therapeutic value of controlling acid-base balance is indisputable and is the basis of Food and Drug Administration-approved treatments for constipation, epilepsy, metabolic acidosis, and peptic ulcers. In this narrative review, we present evidence in support of the current and potential therapeutic value of countering local and systemic acid-base imbalances, several of which do in fact involve the administration of baking soda (sodium bicarbonate). Furthermore, we discuss the side effects of pharmaceuticals on acid-base balance as well as the influence of acid-base status on the pharmacokinetic properties of drugs. Our review considers all major organ systems as well as information relevant to several clinical specialties such as anesthesiology, infectious disease, oncology, dentistry, and surgery.
Collapse
Affiliation(s)
- Bianca N Quade
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA; Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; State University of New York Eye Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
24
|
Sperm ion channels and transporters in male fertility and infertility. Nat Rev Urol 2020; 18:46-66. [PMID: 33214707 DOI: 10.1038/s41585-020-00390-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/16/2022]
Abstract
Mammalian sperm cells must respond to cues originating from along the female reproductive tract and from the layers of the egg in order to complete their fertilization journey. Dynamic regulation of ion signalling is, therefore, essential for sperm cells to adapt to their constantly changing environment. Over the past 15 years, direct electrophysiological recordings together with genetically modified mouse models and human genetics have confirmed the importance of ion channels, including the principal Ca2+-selective plasma membrane ion channel CatSper, for sperm activity. Sperm ion channels and membrane receptors are attractive targets for both the development of contraceptives and infertility treatment drugs. Furthermore, in this era of assisted reproductive technologies, understanding the signalling processes implicated in defective sperm function, particularly those arising from genetic abnormalities, is of the utmost importance not only for the development of infertility treatments but also to assess the overall health of a patient and his children. Future studies to improve reproductive health care and overall health care as a function of the ability to reproduce should include identification and analyses of gene variants that underlie human infertility and research into fertility-related molecules.
Collapse
|
25
|
Jiao SY, Yang YH, Chen SR. Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Hum Reprod Update 2020; 27:154-189. [PMID: 33118031 DOI: 10.1093/humupd/dmaa034] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Infertility is a major issue in human reproductive health, affecting an estimated 15% of couples worldwide. Infertility can result from disorders of sex development (DSD) or from reproductive endocrine disorders (REDs) with onset in infancy, early childhood or adolescence. Male infertility, accounting for roughly half of all infertility cases, generally manifests as decreased sperm count (azoospermia or oligozoospermia), attenuated sperm motility (asthenozoospermia) or a higher proportion of morphologically abnormal sperm (teratozoospermia). Female infertility can be divided into several classical types, including, but not limited to, oocyte maturation arrest, premature ovarian insufficiency (POI), fertilization failure and early embryonic arrest. An estimated one half of infertility cases have a genetic component; however, most genetic causes of human infertility are currently uncharacterized. The advent of high-throughput sequencing technologies has greatly facilitated the identification of infertility-associated gene mutations in patients over the past 20 years. OBJECTIVE AND RATIONALE This review aims to conduct a narrative review of the genetic causes of human infertility. Loss-of-function mutation discoveries related to human infertility are summarized and further illustrated in tables. Corresponding knockout/mutated animal models of causative genes for infertility are also introduced. SEARCH METHODS A search of the PubMed database was performed to identify relevant studies published in English. The term 'mutation' was combined with a range of search terms related to the core focus of the review: infertility, DSD, REDs, azoospermia or oligozoospermia, asthenozoospermia, multiple morphological abnormalities of the sperm flagella (MMAF), primary ciliary dyskinesia (PCD), acephalic spermatozoa syndrome (ASS), globozoospermia, teratozoospermia, acrosome, oocyte maturation arrest, POI, zona pellucida, fertilization defects and early embryonic arrest. OUTCOMES Our search generated ∼2000 records. Overall, 350 articles were included in the final review. For genetic investigation of human infertility, the traditional candidate gene approach is proceeding slowly, whereas high-throughput sequencing technologies in larger cohorts of individuals is identifying an increasing number of causative genes linked to human infertility. This review provides a wide panel of gene mutations in several typical forms of human infertility, including DSD, REDs, male infertility (oligozoospermia, MMAF, PCD, ASS and globozoospermia) and female infertility (oocyte maturation arrest, POI, fertilization failure and early embryonic arrest). The causative genes, their identified mutations, mutation rate, studied population and their corresponding knockout/mutated mice of non-obstructive azoospermia, MMAF, ASS, globozoospermia, oocyte maturation arrest, POI, fertilization failure and early embryonic arrest are further illustrated by tables. In this review, we suggest that (i) our current knowledge of infertility is largely obtained from knockout mouse models; (ii) larger cohorts of clinical cases with distinct clinical characteristics need to be recruited in future studies; (iii) the whole picture of genetic causes of human infertility relies on both the identification of more mutations for distinct types of infertility and the integration of known mutation information; (iv) knockout/mutated animal models are needed to show whether the phenotypes of genetically altered animals are consistent with findings in human infertile patients carrying a deleterious mutation of the homologous gene; and (v) the molecular mechanisms underlying human infertility caused by pathogenic mutations are largely unclear in most current studies. WILDER IMPLICATIONS It is important to use our current understanding to identify avenues and priorities for future research in the field of genetic causes of infertility as well as to apply mutation knowledge to risk prediction, genetic diagnosis and potential treatment for human infertility.
Collapse
Affiliation(s)
- Shi-Ya Jiao
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Yi-Hong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, 610041 Chengdu, China
| | - Su-Ren Chen
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| |
Collapse
|
26
|
Darszon A, Nishigaki T, López-González I, Visconti PE, Treviño CL. Differences and Similarities: The Richness of Comparative Sperm Physiology. Physiology (Bethesda) 2020; 35:196-208. [PMID: 32293232 DOI: 10.1152/physiol.00033.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Species preservation depends on the success of fertilization. Sperm are uniquely equipped to fulfill this task, and, although several mechanisms are conserved among species, striking functional differences have evolved to contend with particular sperm-egg environmental characteristics. This review highlights similarities and differences in sperm strategies, with examples within internal and external fertilizers, pointing out unresolved issues.
Collapse
Affiliation(s)
- Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Ignacio López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| |
Collapse
|
27
|
Wang Z, Shi Y, Ma S, Huang Q, Yap YT, Shi L, Zhang S, Zhou T, Li W, Hu B, Zhang L, Krawetz SA, Pazour GJ, Hess RA, Zhang Z. Abnormal fertility, acrosome formation, IFT20 expression and localization in conditional Gmap210 knockout mice. Am J Physiol Cell Physiol 2020; 318:C174-C190. [PMID: 31577511 PMCID: PMC6985835 DOI: 10.1152/ajpcell.00517.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 01/06/2023]
Abstract
GMAP210 (TRIP11) is a cis-Golgi network-associated protein and a Golgi membrane receptor for IFT20, an intraflagellar transport component essential for male fertility and spermiogenesis in mice. To investigate the role of GMAP210 in male fertility and spermatogenesis, floxed Gmap210 mice were bred with Stra8-iCre mice so that the Gmap210 gene is disrupted in spermatocytes and spermatids in this study. The Gmap210flox/flox: Stra8-iCre mutant mice showed no gross abnormalities and survived to adulthood. In adult males, testis and body weights showed no difference between controls and mutant mice. Low-magnification histological examination of the testes revealed normal seminiferous tubule structure, but sperm counts and fertility were significantly reduced in mutant mice compared with controls. Higher resolution examination of the mutant seminiferous epithelium showed that nearly all sperm had more oblong, abnormally shaped heads, while the sperm tails appeared to have normal morphology. Electron microscopy also revealed abnormally shaped sperm heads but normal axoneme core structure; some sperm showed membrane defects in the midpiece. In mutant mice, expression levels of IFT20 and other selective acrosomal proteins were significantly reduced, and their localization was also affected. Peanut-lectin, an acrosome maker, was almost absent in the spermatids and epididymal sperm. Mitochondrion staining was highly concentrated in the heads of sperm, suggesting that the midpieces were coiling around or aggregating near the heads. Defects in acrosome biogenesis were further confirmed by electron microscopy. Collectively, our findings suggest that GMAP210 is essential for acrosome biogenesis, normal mitochondrial sheath formation, and male fertility, and it determines expression levels and acrosomal localization of IFT20 and other acrosomal proteins.
Collapse
Affiliation(s)
- Zhenyu Wang
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Yuqin Shi
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Suheng Ma
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Qian Huang
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Yi Tian Yap
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Lin Shi
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Shiyang Zhang
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Ting Zhou
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Bo Hu
- Department of Neurology, Wayne State University, Detroit, Michigan
| | - Ling Zhang
- School of Medicine, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Stephen A Krawetz
- Department of Obstetrics/Gynecology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan
- Department of Obstetrics/Gynecology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| |
Collapse
|
28
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
29
|
Long JE, Lee MS, Blithe DL. Male Contraceptive Development: Update on Novel Hormonal and Nonhormonal Methods. Clin Chem 2019; 65:153-160. [PMID: 30602479 DOI: 10.1373/clinchem.2018.295089] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/20/2018] [Indexed: 11/06/2022]
Abstract
BACKGROUND Development of new methods of male contraception would address an unmet need for men to control their fertility and could increase contraceptive options for women. Pharmaceutical research and development for male contraception was active in the 1990s but has been virtually abandoned. The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) has supported a contraceptive development program since 1969 and supports the majority of hormonal male contraceptive development. Nonhormonal methods are also in development but are at earlier stages. CONTENT Several hormonal male contraceptive agents have entered clinical trials. Single-agent products being evaluated include dimethandrolone undecanoate, 11β-methyl-nortestosterone dodecyl carbonate, and 7α-methyl-19-nortestosterone. A contraceptive efficacy trial of Nestorone® gel and testosterone gel in a single application will begin in 2018. Potential nonhormonal methods are at preclinical stages of development. Many nonhormonal male contraceptive targets that affect either sperm production or sperm function have been identified. Targeted pathways include the retinoic acid pathway, bromodomain and extraterminal proteins, and pathways for Sertoli cell-germ cell adhesion or sperm motility. Druggable targets include CatSper, the sperm Na+/K+-exchanger, TSSK, HIPK4, EPPIN, and ADAMs family proteins. Development of a procedure to reversibly block the vas deferens (initially developed in India in the 1980s) is undergoing early stage research in the US under the trade name Vasalgel™. SUMMARY NICHD has supported the development of reversible male contraceptive agents. Other organizations such as the World Health Organization and the Population Council are pursuing male contraceptive development, but industry involvement remains dormant.
Collapse
Affiliation(s)
- Jill E Long
- Contraceptive Development Program; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD.
| | - Min S Lee
- Contraceptive Development Program; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Diana L Blithe
- Contraceptive Development Program; Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
30
|
Xia CH, Ferguson I, Li M, Kim A, Onishi A, Li L, Su B, Gong X. Essential function of NHE8 in mouse retina demonstrated by AAV-mediated CRISPR/Cas9 knockdown. Exp Eye Res 2018; 176:29-39. [PMID: 29958869 DOI: 10.1016/j.exer.2018.06.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/19/2018] [Accepted: 06/22/2018] [Indexed: 11/19/2022]
Abstract
We studied the role of sodium/proton exchanger 8 (NHE8) in retinal pigment epithelium (RPE) and photoreceptor cells of adult mouse retina by using the clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease (Cas)9 from Neisseria meningitidis (Nm). Specific single guide RNAs (sgRNAs) were designed to knockdown the Slc9a8 gene, which encodes the NHE8. Nuclease null NmCas9 and sgRNAs were packaged respectively using adeno-associated viral vector (AAV), and delivered into mouse eyes in vivo by subretinal injection on wild-type mice of about four-week-old when mouse retina is fully developed. Eye samples were collected four weeks after injection for phenotype examination. Real-time PCR analysis demonstrated ∼38% reduction of NHE8 transcripts in retinas injected with AAV-knockdown sgRNA and AAV-Cas9. Loss of photoreceptor cells was found in eyes injected with AAV-knockdown sgRNA and AAV-Cas9 under either the human rhodopsin promoter or the minimal chicken β-actin promoter, while normal morphology was observed in control eyes injected with AAV-Cas9 and AAV-control sgRNA; immunostaining data showed degenerating photoreceptor cells and RPE cells in eyes injected with knockdown sgRNA and Cas9 AAVs. We further determined that mutant M120K-NHE8 displayed altered intracellular pH regulation in human RPE and primary mouse RPE cells using genetically encoded pH sensor pHluorin and that primary cultured NHE8 mutant RPE cells showed different pH titration curves. These results indicate that NHE8 plays essential function in both RPE and photoreceptor cells. NHE8 dysfunction either in photoreceptor or RPE is sufficient to cause retinal degeneration in adult mice at any age.
Collapse
Affiliation(s)
- Chun-Hong Xia
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA, USA
| | - Ian Ferguson
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA, USA
| | - Mei Li
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA, USA
| | - Audrey Kim
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA, USA
| | - Alex Onishi
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA, USA
| | - Lucy Li
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA, USA
| | - Bonnie Su
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA, USA
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
31
|
Lück JC, Puchkov D, Ullrich F, Jentsch TJ. LRRC8/VRAC anion channels are required for late stages of spermatid development in mice. J Biol Chem 2018; 293:11796-11808. [PMID: 29880644 PMCID: PMC6066314 DOI: 10.1074/jbc.ra118.003853] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/31/2018] [Indexed: 11/06/2022] Open
Abstract
Spermatogenesis is a highly complex developmental process that occurs primarily in seminiferous tubules of the testes and requires additional maturation steps in the epididymis and beyond. Mutations in many different genes can lead to defective spermatozoa and hence to male infertility. Some of these genes encode for ion channels and transporters that play roles in various processes such as cellular ion homeostasis, signal transduction, sperm motility, and the acrosome reaction. Here we show that germ cell–specific, but not Sertoli cell–specific, disruption of Lrrc8a leads to abnormal sperm and male infertility in mice. LRRC8A (leucine-rich repeat containing 8A) is the only obligatory subunit of heteromeric volume-regulated anion channels (VRACs). Its ablation severely compromises cell volume regulation by completely abolishing the transport of anions and osmolytes through VRACs. Consistent with impaired volume regulation, the cytoplasm of late spermatids appeared swollen. These cells failed to properly reduce their cytoplasm during further development into spermatozoa and later displayed severely disorganized mitochondrial sheaths in the midpiece region, as well as angulated or coiled flagella. These changes, which progressed in severity on the way to the epididymis, resulted in dramatically reduced sperm motility. Our work shows that VRAC, probably through its role in cell volume regulation, is required in a cell-autonomous manner for proper sperm development and explains the male infertility of Lrrc8a−/− mice and the spontaneous mouse mutant ébouriffé.
Collapse
Affiliation(s)
- Jennifer C Lück
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), D-13125 Berlin, Germany.,the Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany.,the Graduate Program of the Freie Universität Berlin, 14195 Berlin, Germany, and
| | - Dmytro Puchkov
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), D-13125 Berlin, Germany
| | - Florian Ullrich
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), D-13125 Berlin, Germany.,the Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany
| | - Thomas J Jentsch
- From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), D-13125 Berlin, Germany, .,the Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany.,the Neurocure Cluster of Excellence, Charité Universitätsmedizin, 10117 Berlin, Germany
| |
Collapse
|
32
|
Ritagliati C, Baro Graf C, Stival C, Krapf D. Regulation mechanisms and implications of sperm membrane hyperpolarization. Mech Dev 2018; 154:33-43. [PMID: 29694849 DOI: 10.1016/j.mod.2018.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
Abstract
Mammalian sperm are unable to fertilize the egg immediately after ejaculation. In order to gain fertilization competence, they need to undergo a series of biochemical and physiological modifications inside the female reproductive tract, known as capacitation. Capacitation correlates with two essential events for fertilization: hyperactivation, an asymmetric and vigorous flagellar motility, and the ability to undergo the acrosome reaction. At a molecular level, capacitation is associated to: phosphorylation cascades, modification of membrane lipids, alkalinization of the intracellular pH, increase in the intracellular Ca2+ concentration and hyperpolarization of the sperm plasma membrane potential. Hyperpolarization is a crucial event in capacitation since it primes the sperm to undergo the exocytosis of the acrosome content, essential to achieve fertilization of the oocyte.
Collapse
Affiliation(s)
- Carla Ritagliati
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario 2000, Argentina.
| | - Carolina Baro Graf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario 2000, Argentina
| | - Cintia Stival
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario 2000, Argentina
| | - Dario Krapf
- Laboratory of Cell Signal Transduction Networks, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET-UNR), Rosario 2000, Argentina; Laboratorio de Especialidades Reproductivas, Facultad de Ciencias Bioquimicas y Farmacéuticas, UNR, Rosario 2000, Argentina.
| |
Collapse
|
33
|
Muzzachi S, Guerra L, Martino NA, Favia M, Punzi G, Silvestre F, Guaricci AC, Roscino MT, Pierri CL, Dell'Aquila ME, Casavola V, Lacalandra GM, Ciani E. Effect of cariporide on ram sperm pH regulation and motility: possible role of NHE1. Reproduction 2018; 155:433-445. [PMID: 29491124 DOI: 10.1530/rep-17-0456] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/27/2018] [Indexed: 01/05/2023]
Abstract
Sperm motility, a feature essential for in vivo fertilization, is influenced by intracellular pH (pHi) homeostasis. Several mechanisms are involved in pHi regulation, among which sodium-hydrogen exchangers (NHEs), a family of integral transmembrane proteins that catalyze the exchange of Na+ for H+ across lipid bilayers. A preliminary characterization of NHE activity and kinetic parameters, followed by analysis of the expression and localization of the protein in ram spermatozoa was performed. NHE activity showed an apparent Km for external Na+ of 17.61 mM. Immunoblotting revealed a molecular mass of 85 kDa. Immunolocalization pattern showed some species-specific aspects, such as positive labeling at the equatorial region of the sperm head. Cariporide, a selective NHE1 inhibitor, significantly reduced pHi recovery (85%). Similarly, exposure to cariporide significantly inhibited different motility parameters, including those related to sperm capacitation. In vitro fertilization (IVF) was not affected by cariporide, possibly due to the non-dramatic, although significant, drop in motility and velocity parameters or due to prolonged exposure during IVF, which may have caused progressive loss of its inhibitory effect. In conclusion, this is the first study documenting, in a large animal model (sheep) of well-known translational relevance, a direct functional role of NHE on sperm pHi and motility. The postulated specificity of cariporide toward isoform 1 of the Na+/H+ exchanger seems to suggest that NHE1 may contribute to the observed effects on sperm cell functionality.
Collapse
Affiliation(s)
- Stefania Muzzachi
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Lorenzo Guerra
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Nicola Antonio Martino
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy.,Istituto Zooprofilattico Sperimentale della Puglia e della BasilicataFoggia, Italy
| | - Maria Favia
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Giuseppe Punzi
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Fabio Silvestre
- Section of Veterinary Clinics and Animal ProductionsDepartment of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Antonio Ciro Guaricci
- Section of Veterinary Clinics and Animal ProductionsDepartment of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Maria Teresa Roscino
- Section of Veterinary Clinics and Animal ProductionsDepartment of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Ciro Leonardo Pierri
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Maria Elena Dell'Aquila
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Valeria Casavola
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Giovanni Michele Lacalandra
- Section of Veterinary Clinics and Animal ProductionsDepartment of Emergency and Organ Transplantation, University of Bari 'Aldo Moro', Valenzano, Bari, Italy
| | - Elena Ciani
- Department of BiosciencesBiotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
34
|
Fujihara Y, Oji A, Larasati T, Kojima-Kita K, Ikawa M. Human Globozoospermia-Related Gene Spata16 Is Required for Sperm Formation Revealed by CRISPR/Cas9-Mediated Mouse Models. Int J Mol Sci 2017; 18:ijms18102208. [PMID: 29065458 PMCID: PMC5666888 DOI: 10.3390/ijms18102208] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
A recent genetic analysis of infertile globozoospermic patients identified causative mutations in three genes: a protein interacting with C kinase 1 (PICK1), dpy 19-like 2 (DPY19L2), and spermatogenesis associated 16 (SPATA16). Although mouse models have clarified the physiological functions of Pick1 and Dpy19l2 during spermatogenesis, Spata16 remains to be determined. Globozoospermic patients carried a homozygous point mutation in SPATA16 at 848G→A/R283Q. We generated CRISPR/Cas9-mediated mutant mice with the same amino acid substitution in the fourth exon of Spata16 to analyze the mutation site at R284Q, which corresponded with R283Q of mutated human SPATA16. We found that the point mutation in Spata16 was not essential for male fertility; however, deletion of the fourth exon of Spata16 resulted in infertile male mice due to spermiogenic arrest but not globozoospermia. This study demonstrates that Spata16 is indispensable for male fertility in mice, as well as in humans, as revealed by CRISPR/Cas9-mediated mouse models.
Collapse
Affiliation(s)
- Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Asami Oji
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
- RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.
| | - Tamara Larasati
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Kanako Kojima-Kita
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
- School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
- Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|